预应力混凝土管桩断桩原因分析及加固处理办法
- 格式:pdf
- 大小:263.95 KB
- 文档页数:2
浅析预应力管桩断桩原因及处理\预防措施摘要:预应力管桩可分为后张法预应力管桩和先张法预应力管桩。
因其造价低,施工速度快,可以节约施工周期,加快项目的建设等优点,被广泛应用于工业、房建、高速铁路、高速公路和民用设施工程中。
本文在对预应力管桩断桩事故类型的分析基础上,提出了改善和预防预应力管桩断桩的一些可行性建议,具有一定的参考实践价值。
关键词:预应力管桩,断桩,地质,焊接质量,土方回填Abstract: prestressed pipe pile can be divided into this method prestressed pipe pile and first prestressed pipe pile of law. Because of its low cost, and construction speed is quick, can save the construction period, speed up the construction of the project etc, and is widely used in industry, high speed railway, endowed, highway and civil infrastructure. In this paper the breaking pile prestressed pipe pile are based on the analysis of the accident type, and put forward the improvement and prevent prestressed pipe pile of pile breaking some feasible Suggestions to have the certain reference value of practice.Keywords: prestressed pipe pile, breaking pile, geology, and the quality of welding, turkmen backfilling1、预应力管桩断桩事故类型造成预应力管桩断桩的原因是非常多而复杂的,主要有地质因素、开挖和机械的碾压因素、堆土所产生的挤压力因素和焊接质量因素等等,下文将对预应力管桩在施工中的典型断桩成因进行详细分析。
预应力工程管桩处理方案一、背景预应力管桩是一种常见的基础工程结构,在城市建设和土木工程中被广泛应用。
它通过在管桩内部施加预应力钢束,使管桩具有更好的承载能力和抗侧向力能力。
然而,由于多种因素的影响,预应力管桩在使用过程中可能会出现一些问题,如管桩预应力损失、管桩断裂等,需要进行相应的处理和修复。
二、问题分析1. 预应力管桩的预应力损失预应力管桩在使用过程中,可能由于地基沉降、荷载作用、自身原因等原因导致预应力钢束的松弛和损失,进而影响管桩的承载能力。
2. 管桩的断裂预应力管桩在遭受超过其承载能力的荷载作用或外力冲击时,可能会发生管桩的断裂现象,进而造成工程安全隐患。
三、处理方案1. 预应力损失处理针对预应力损失问题,可以通过以下措施进行处理:(1) 定期检测和监测预应力管桩的预应力损失情况,及时采取补偿预应力措施,如增加预应力钢束的张拉量、更换损坏的预应力钢束等。
(2) 对已发生较严重预应力损失的管桩,可以采取喷涂混凝土、包裹预应力钢束等修补措施,恢复其承载能力。
2. 管桩断裂处理针对管桩断裂问题,可以通过以下措施进行处理:(1) 定期检测和监测管桩的断裂情况,对出现裂缝的管桩及时进行修补加固,以防止其继续发展。
(2) 对已发生严重断裂的管桩,可以采取削弱、加固、局部加固等措施,恢复其承载能力。
四、施工工艺及技术措施1. 管桩预应力损失处理施工工艺针对预应力损失问题,处理施工工艺流程如下:(1) 预应力管桩预应力损失检测:采用超声波、钢束应力测试、测距仪等设备进行管桩预应力损失检测。
(2) 补偿预应力措施:根据预应力损失情况,采取相应补偿预应力措施,包括增加预应力钢束的张拉力、更换损坏的预应力钢束等。
(3) 喷涂混凝土加固:对已发生较严重预应力损失的管桩,采用喷涂混凝土的方式进行加固处理。
2. 管桩断裂处理施工工艺针对管桩断裂问题,处理施工工艺流程如下:(1) 管桩断裂检测:通过检测设备对管桩进行裂缝检测,确定断裂情况。
预应力静压管桩断桩事故分析和处理办法通过工程实例,分析预应力静压管桩的断桩问题,提出相应的处理办法,以供借鉴。
静压管桩;断桩;桩基事故处理1 工程概况1.1 设计情况南宁市青秀山旁某工程为商品房住宅小区,其第一期由4栋6.5层框剪结构住宅楼组成,总建筑面积30698m2。
其中C栋建筑面积5274m2,采用静压高强预应力管桩基础,共布桩179根,设计桩长为12m~15m(分2段接长),桩内径160mm,外径300mm。
设计单桩竖向抗压极限承载力为850kN,桩身混凝土强度等级为C80。
根据地质勘察报告,该施工场地各岩土层的分布和性质自上而下描述如下:(1)耕土层:土质松散,强度低,高压缩性,厚度为0.3m~2.0m。
(2)黏土层:硬塑状,强度高,中~低压缩性,厚度约为13.3m。
工程技术2013.09-121(3)粉质黏土层:可塑状,中等压缩性,厚度为0.5m~5.9m。
(4)粉土层:湿~饱和,稍密状态,强度低,压缩性偏高,厚度为1.5m~13.5m。
(5)粉质黏土层:上部黏粒含量较高,下部含砂量大,很湿,软塑状态,压缩性高,厚度为0.4m~6.3m。
(6)圆砾层:含砾为50%~70%,饱和,中密~稍密状态,埋藏深强度高,层厚8.5m~15.1m,为该工程的设计持力层。
1.2 施工情况施工单位静压桩工程队在对C栋25轴和C2轴交点承台下的桩基施工中,在同一承台内,编号为122号和120号的桩身分别在1600km和1440km的压力下出现桩身断裂的现象。
具体过程如下:(1)当122号桩压入土15.70m时,压力突然从1600kN降至800kN,压桩队立即停止施工(地面标高为75.564m,实际施工桩顶高程为74.864m)。
(2)当120号桩压入土15.40m时,压力突然从1440kN骤降至500kN,再压桩至15.50m 时,压力未有回升,停止施压(当时地面标高为75.462m,实际施工桩顶标高为74.962m)。
混凝土断桩的原因及处理措施
1. 原因:混凝土断桩可能是由于钢筋数量或直径不足,混凝土质量不佳或未充分振捣等原因所致。
处理措施:应加强工程监控和验收,确保按照设计要求进行混凝土搅拌、浇筑和振捣工作。
遇到混凝土质量不佳或存在空鼓、砂眼等情况时,应及时进行修补或更换。
2. 原因:在钻孔施工中,如果发现施工现场地质条件较复杂,钻孔深度较深,地下水位较高等情况,容易出现混凝土断桩的情况。
处理措施:应在施工前进行充分的地质勘察和技术方案设计,采用符合要求的钻具,严格控制混凝土浇注质量,同时在桩身周围施加压力,避免混凝土断桩。
3. 原因:由于施工过程中的设计或执行问题,导致混凝土断桩可能是由于振动少,钢筋排布不当,钢筋绑扎不严格或模板破损等原因。
处理措施:应加强施工过程的现场管理和监督,加强施工质量控制,确保混凝土浇筑均匀、钢筋布局合理,避免模板破损等情况。
同时,及时发现并排除周围环境因素对施工质量的影响。
4. 原因:当地基土壤受力不均匀、开挖深度超过预期或气候温度变化较大时,混凝土断桩也可能发生。
处理措施:应在施工前进行充分的地质勘察和技术方案设计,采用符合要求的施工方法,注意环境应力影响,如采用试压、凿岩等技术措施。
保证混凝土在正确的温度下进行浇筑,避免出现水分蒸发引起的混凝土裂缝。
预应力管桩施工断桩原因和预防措施邹泓荣CAUSE OF PILE-BREAKAGE AND ITS PREVENTIONMEASURE OF PRESTRESSED TUBULAR PILE DURINGCONSTRVCTIONZOU Hongrong某粮库采用500×125 mm预应力管桩,单桩竖向承载力标准值R k=2 500 kN,以硬塑残积土为桩基持力层(或强风化层),控制贯入度为2 cm/10击。
施工断裂桩总数23根,破桩率达8%,损失30万元,其中7号、155号、156号、269号桩位分别断桩5根、3根、2根(均无一成桩)。
1断桩过多的原因1.1地质情况比较复杂该场地软弱土层(填土、淤泥)厚度达15 m以上,从地质剖面图看,粮库(北座)场地强风化岩面较浅,残积层较薄。
后来在ZK1和ZK7附近的补钻孔证明,该部位淤泥层直接覆盖基岩,基岩表面强风化层和中风化岩层很薄,甚至缺失(直接到微风化)。
在这种“上软下硬,软硬突变”的地质条件下打桩,管桩很快穿越软覆盖层后即遇硬层,贯入度突然变小;桩身反弹剧烈,桩身容易断裂。
从打桩记录看,212号桩仅23击就断裂;而同一承台未断桩211号桩,从1~21 m 管桩自沉,其第22 m、23 m、24 m分别为3击、16击、213击。
269号和269号补桩,分别以20击、22击断裂。
粮库(南座)场地强风化岩层较深,有明显陡坡(其偏北部位残积层较薄)。
桩尖在锤击振动下沿岩面陡坡滑移,造成桩身断裂。
1.2地质资料不够详尽《软土地区工程地质勘察规范》(JGJ 83-91)第七章“桩基工程勘察”第7.0.3条二规定:“当相邻勘探点揭露的持力层层面高差大于2m,或土层性质变化较大时,宜适当加密,必要时尚应查明持力层厚度的变化”。
该工程地质报告在持力层层面高差太大,并有明显陡坡的情况下未按规范要求进一步加密钻孔;ZK1、ZK7钻孔强风化岩层薄且无标贯数据。
该地质报告在强风化层上做了8个标贯测试,最小N=50,最大N=82.9。
预应力混凝土管桩施工中断桩原因分析及处理本文对某建筑工程的预应力混凝土管桩施工中出现连续断桩现象进行详细分析及进行合理的处理,并提出预应力混凝土管桩施工的相关注意事项。
标签:预应力混凝土管桩;地质勘探;断桩;原因分析前言近年来,预应力混凝土管桩被广泛应用于多层、小高层民用建筑及工业厂房等建筑基础工程中,主要是由于其具有以下多个优点:(1)桩身强度高;(2)桩身质量易于保证和检查;(3)桩端进入持力层的承载力高;(4)桩的成型好;(5)桩身混凝土的密度大,抗腐蚀性强;(6)设计选用范围广;(7)施工速度快、工效高、工期短;但在一些地区的复杂地质工程中也会容易出现断桩、弯桩等质量问题。
1 工程概况广东省某小区一商住楼,13层框架、剪力墙结构,建筑面积约21000m2,桩基础采用?准400×98AB(外径+壁厚)预应力混凝土管桩基础,以强风化基岩为桩端持力层。
预计桩长16~30m,设计的单桩承载力极限值为P=1300kN,桩身混凝土设计强度等级C80,要求锤击沉桩,总桩数为396根。
施工桩机选用HD50柴油锤击桩打机,锤重40kN,锤高1.8m,最后三阵十锤,每十锤总的贯入度不大于2.0cm。
预应力混凝土管桩选用江门市某预应力混凝土管桩厂生产的管桩。
2 工程地质情况本拟建工程的场地原为耕地、渔塘,后经人工填土。
根据场地勘探深度范围内钻探地质结果得地基岩土层自上而下如为:①素填土,层厚为1.0~2.9m,土黄褐色,湿,松散,成份主要为粉质粘土,夹少量基岩碎块;②淤泥层,层厚为3.6~13.7m,深灰~赤黑色,饱和,流塑,成份主要为粘粒,富有腐植质,局部含粉砂;③1粘土层,层厚为2.5~16.1m,土黄~红褐色,成份主要为粘粒,湿,可塑,局部底部硬塑;③2中粗砂层,层厚为1.5~9.0m,灰白色,饱和、稍密~密实,成份主要为石英中粗砂,含少量粉粒;③3粉质粘土层,平均厚3.6m,暗红色~黄褐色,成份主要为粉粒及粘粒,湿,硬塑;③4中粗砂层,平均厚10.2m,灰白色,饱和、稍密~密实,成份主要为石英中粗砂,局部含砾;④1粉质粘土层,层厚为1.5~14.85m,棕红色~黄褐色,成份主要为粉粒及粘粉,很湿,可塑;④2粉质粘土层,层厚为1.2~14.5m,棕红色~黄褐色,成份主要为粉粒及粘粉,湿,硬塑;⑤1全风化泥质粉砂岩层,层厚为1.0~11.0m,棕红色~杂色,稍湿,坚硬,岩心呈土状,原岩已完全高岭土化、褐铁矿化,局部残留泥质粉砂结构。
预应力管桩倾斜、偏位、断桩的预防和处理1、前言预应力管桩基础由于其施工工期短、工程造价相对较低、单桩承载力大、施工质量容易保证等诸多优势,在建筑工程领域得到广泛应用。
但在软弱地基中,打桩过程中的挤土效应、施工过程中的端头板焊接不良、重型施工机械的行走碾压、基坑边坡失稳和挖土不当等原因,使桩出现倾斜,甚至偏位以及断桩情况。
此类质量问题轻则延误工期、增加工程造价,重则会引起重大质量事故。
因此,分析研究预应力管桩施工质量问题产生的原因及处理方法,具有重要的工程意义。
2 、管桩倾斜的原因分析、预防和处理2. 1 管桩倾斜的原因分析(1)预应力混凝土管桩属挤土型桩,在施打大面积密集群桩时,往往造成先打入的桩挤土产生倾斜,管桩施工速度太快时会加剧挤土效应;(2)施工顺序不当导致应力扩散不均匀,随着施工数量的增加,挤土效应越加明显;(3)基坑开挖方法不当,一次性开挖深度太深,使桩的一侧承受土压力较大,桩身发生弯曲变形;(4)为确保桩机行走,上部填土形成硬壳,随着沉桩施工产生的挤土效应致使上部硬壳向已施工方向移动;(5)沉桩过程中地下遇到大块坚硬物体,把桩挤向一侧;(6)施工过程中桩身不垂直。
2. 2 预防措施(1)施工过程中应根据地层情况、基础形式、布桩情况等选择合理的施工机械,并限制打桩速率,并优化打桩的施工方向和顺序路线,一般宜自桩群中间向两个方向或四周对称施工,当一侧毗邻建筑物时,可从毗邻建筑物处开始沉桩。
(2)在打桩或挖土施工前,如果地表土层较软,或地表土层虽然较硬,但厚度相对较薄时,应在机械行走的位置填一定厚度的碎石或路基板,减小机械对场地表面土体的挤压作用。
(3)合理选择基槽支护与开挖施工方法。
施工应坚持先支护后挖土的原则。
深基坑一定要分层开挖,软土每层挖土的厚度不应超过1.5 m,层与层之间留出一定宽度的工作面,并根据土质情况合理放坡,严防土体滑动。
深基坑在接近坑底时应采取接力开挖,前边(接近坑底层土)用小挖机,后边用大挖机,这样可减小挖土机械对桩顶土层的挤压作用。