浅析经消弧线圈接地系统的特点
- 格式:docx
- 大小:27.82 KB
- 文档页数:2
浅析中性点经消弧线圈接地方式摘要:电力系统的中性点指的是发电机或者是变压器的中性点,从电力系统运行的安全性、经济性、可靠性以及人身安全等层面来考虑,通常采取的是经消弧线圈接地的具体运行方式。
所以,对于该种运行开展理论层面上的研究与分析就显得非常关键。
关键词:中性点;经消弧线圈;接地方式1.引言我国的配电网中性点重点采取三种接地方法:中性点不接地(对地绝缘)、中性点经电阻接地以及中性点经消弧线圈接地。
配电网在以往大多数采用的是中性点不接地的运行方式,以往的供电网络结构比较简单,系统的容量也不大,输电线通过架空线为主,因为受到大风、树叶以及雷击等因素的影响,单相接地故障是配电网当中产生概率最高的一种故障,并且通常是可以恢复的故障。
因为中性点不接地,即便是发生了单相金属性永久接地或者是稳定电弧接地,依然可以不间断进行供电,这是该种配电网的优势所在,这样能够很好的确保供电的可靠性。
但是伴随着我国供电系统的改造,电缆线路在不断的增多,配电网的接地电容在到达一定的数值之后,配电网的供电可靠性将会受到一定的威胁。
首先,在配电网产生单相接地的时候,接地电容的电流比较大,电弧难以熄灭,或许会发展成为相间短路;其次,在产生间歇性弧光接地的时候,容易产生弧光接地过电压,进而对整体配电网产生威胁。
为了改善这些问题,配电网中性点经消弧线圈接地是一项非常科学的对策,通过消弧线圈带来的感性电流来补偿故障点的电容、电流,使得配电网在产生单相接地故障的时候电弧可以在瞬间熄灭。
2.中性点经消弧线圈接地特征配电网中性点经消弧线圈接地是通过消弧线圈所带来的感性电流来对故障点的电容与电流进行补偿的,一定要采取过补偿的运行方式,即消弧线圈的感抗应该低于电网对地的容抗,这样可以利用调整消弧线圈分接头的方式实现。
因为人为的加设一个比电网接地电容电流稍微大一些、相位差是180°的电感电流,电容电流就可以被电感电流所补偿,通过接地故障点的电流,仅仅是补偿之后数值很小的残存电流,具备下述的特征:(1)配电网的运行可靠性较高。
10kV配电网中性点经消弧线圈接地系统的故障选线方法探讨摘要:伴随我国整个电力系统的持续发展,选用电缆线路的中低压配电网日渐增多;需要指出的是,因电缆线路在具体电容上,要明显大于架空线,所以增加电缆线路会迅速增大系统的电容电流,最终会影响设备绝缘安全与设备保护。
针对此情况,做好故障选线工作尤为重要。
本文围绕10kV配电网中性点经消弧线圈接地系统,就其故障选线方法作一探讨。
关键词:10kV配电网;中性点;经消弧线圈接地系统;故障选线在我国所应用的3~10kV电力系统当中,如果出现单相接地故障,且电容电流>30A,或者是35~60kV系统电容电流>10A,都需要采用的接地方式为中性点经消弧线圈方式。
针对此方式而言,其有着比较多的优点,比如能实现瞬时性接地故障的自动消除、较小的线路接地故障电流等,因而被广泛应用在10kV配电网系统当中。
但需要指出的是,受消弧线圈所具有的补偿作用的影响,使得原本用于区分非故障线路与故障线路的电气特性消失,而且在相电压过零点时、过峰值时发生故障存在不同特征,使得常规故障选线方法已较难满足现实需要。
本文基于小波变换中信号奇异性检测原理,分析故障发生后的暂态零序电流,并通过对比暂态零序电流最大模极大值比值与其既定阀值,来实现选线。
1.中性点经消弧线圈接地系统故障特征分析针对中性点经消弧线圈接地电网来讲,当其出现单相接地故障后,其在具体的特征量上,主要有两部分构成,其一为故障等效电源作用所形成的故障分量,其二是对称三相电源作用所形成的正常分量。
还需要指出的是,因电力系统各个元件能够在参数元件中等效分布,因此,该过程与一个分布参数网络所对应的零状态响应过程处于等效状态。
因线路当中存在有分布电容、电感,因此,在整个故障暂态分量当中,会充斥大量的故障信息,而且还囊括有许多频率成分,所以,可通过得到暂态特征量,来促进选线精度的提升。
2.小波变换信号奇异性检测的基本原理小波分析乃是傅里叶变换的重要部分,能够实现时-频的同时局部化,而且还能分解信号,使之处于各频带上,也就是在低频部分上,时间分辨率低,且频率分辨率的高;而在高频部分,则频率分辨率较低,且时间分辨率较高,尤其适用于暂态信号、非平稳信号的分析。
10kV系统中性点经消弧线圈接地方式分析摘要:针对10kV配电网系统规模的不断扩大及电缆馈线回路的增加,单相接地电容电流也在不断的增大,改造电网中性点接地方式、合理选择电网中性点接地方式,已是关系到电网运行可靠性关键的技术问题,文中就10kV电网的中性点经消弧线圈接地方式进行分析和探讨。
关键词:10kV配电网中性点接地;消弧线圈前言:在选择电力网中性点接地方式是一个综合性问题,需要考虑以下几方面:①供电可靠性;②与设备制造和建设投资息息相关的电网绝缘水平与绝缘配合;③对继电保护和自动装置等的影响;④对通讯和信号系统的干扰;⑤对系统稳定的影响。
电力系统中实际采用的中性点接地方式,按主要运行特性划分,可分为有效接地系统和非有效接地系统两大类。
有效接地系统也称大电流接地系统,其划分标准是系统的零序电抗X0 和正序电抗X1 的比值X0/X1≤3,且零序电阻R0 和正序电阻R1 的比值R0/R1≤1。
这类接地系统的优点是内部过电压较低和可以降低设备的绝缘水平,从而大幅度节约投资,在110kV 及以上电压系统得到普遍应用。
非有效接地系统也称小电流接地系统,其划分标准是系统的零序电抗X0 和正序电抗X1 的比值X0/X1>3,且零序电阻R0 和正序电阻R1 的比值R0/R1>1。
这类接地系统的优点是供电可靠性较高,在绝缘投资所占比重不大的110kV 以下配电网中普遍采用。
此类接地系统,包括中性点不接地系统、中性点经消弧线圈接地及中性点经高电阻接地等方式。
一、概述我国10kV电压等级配电网多为中性点不接地系统,在电网发生单相接地时,不会跳闸,仅有不大的容性电流流过,允许继续运行一段时间。
但是随着电网的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地时容性电流不断增加,接地弧光不易自动熄灭,容易产生间隙弧光过电压,进而造成相间短路,导致电网内单相接地故障扩展为事故。
我国电力行业标准DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》规定;3~10 kV架空线路构成的系统和所有35 kV、66 kV电网,当单相接地故障电流大于10 A时,中性点应装设消弧线圈,3~10 kV电缆线路构成的系统,当单相接地故障电流大于30 A时,中性点应装设消弧线圈。
中性点经消弧线圈接地方式及存在问题的探讨作者:车朋波来源:《商情》2010年第24期通过配电网的中性点经消弧线圈接地事例加以说明,分析配电网的中性点经消弧线圈接地方式的利与弊。
[关键词]中性点接地方式脱谐度问题探讨三相交流电网中性点与大地间电气连接的方式,称为电网中性点接地方式。
电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。
中性点接地方式直接影响到系统设备绝缘水平、系统过电压水平、过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。
在选择电网中性点接地必须进行具体分析、慎重研究。
我国的110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;继电保护装置能迅速断开故障线路,设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。
这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的中性点经消弧线圈接地方式。
一、适用范围适用于单相接地故障电容电流、瞬时性单相接地故障多的以架空线路为主的电网。
二、中性点经消弧线圈接地方式的特点1.利用消弧线圈的感性电流对电网的对地电容电流进行补偿,使单相接地故障电流小于10A,从而使故障点电弧可以自熄;2. 故障点绝缘可以自行恢复;3.可以减少间隙性弧光接地过电压的概率;4.单相接地时不破坏系统对称性,可以带故障运行一段时间,以便查找故障线路。
三、对以电缆线路为主的城市配网,消弧线圈接地方式存在的一些问题1.单相接地故障时,非故障相对地电压升高到3相电压以上,持续时间长、波及全系统设备,可能引起第二点绝缘击穿,引起事故扩大事故。
2.消弧线圈不能补偿谐波电流,有些城市电网谐波电流占的比例达5%-15%,仅谐波电流就可能远大于10A,仍然可能发生弧光接地过电压。
有发电机直配线的电厂发电机中性点消弧线圈接地方式浅析一、概述和配电网中性点接地方式一样,电厂发电机中性点接地方式的选择是一项重大的技术决策,它不仅涉及到系统本身的安全可靠性、过电压绝缘水平的选择,而且对通讯干扰、人身安全有重要影响。
有发电机直配线的电厂一般为60MW以下容量较小的电厂,发电机直配线一般为10kV或者6kV电压等级,相应的厂用母线电源由发电机直配线直接或经过电抗器引接,也有直接将厂用辅机接于发电机直配线上的。
二、发电机和厂用电系统的接地方式简介电厂发电机和厂用电系统的中性点接地方式一般有以下几种:不接地;经高电阻接地;经低电阻接地;经消弧线圈接地。
1中性点不接地方式电厂中的发电机系统根据《交流电气装置的过电压保护和绝缘配合》(DL/T 620-1997)中有关系统接地方式中的规定“3kV~20kV具有发电机的系统,发电机内部发生单相接地故障不要求瞬时切机时,如单相接地故障不大于表1所示的允许值,应采用1/ 6不接地方式;大于该允许值时,应采用消弧线圈接地方式,且故障点残余电流也不得大于该允许值。
”以上实际就是电气设计中俗称的“4321”的规定。
厂用电系统中性点不接地在我国电厂中采用的最广泛,根据《火力电厂厂用电设计技术规定》(DL/T 5153-2002)中的规定,当厂用电系统的接地电容电流小于等于7A时,可采用不接地方式。
2经高电阻接地方式发电机系统当要求发电机内部发生单相接地故障要求瞬时切机时,宜采用高电阻接地方式。
电阻器一般接在发电机中性点变压器的二次绕组上。
常在一些大机组电厂中采用。
厂用电系统的中性点经过高电阻接地,目的是为了降低不接地系统中可能出现的异常过电压。
中性点电阻值的计算方法在《火力电厂厂用电设计技术规定》(DL/T 5153-2002)中有具体规定。
3经低电阻接地方式低电阻接地系统一般是厂用电系统的电容电流大于7A时使用,厂用电系统的中性点经过低阻值电阻接地,目的是为了增强保护跳闸的可靠性,一般采用的接地故障电流为100A~1000A。
中性点经消弧线圈接地系统发生单相故障时选线不准问题分析小电流接地系统,包括中性点不接地系统,中性点经高阻接地、中性点经消弧线圈接地系统。
对于中性点不接地系统,由于不够成短路回路,我国规程规定可以继续运行1〜2个小时。
但随着线路长度增加,电容电流增大,弧光接地过电压倍数增高,长时间运行还容易造成相间短路,尤其是在中性点接地系统中,发生永久接地时,故而更有必要分开故障线路,进行检修。
但是由于中性点经消弧线圈系统具有接地故障电流小、不易燃起电弧等特点,其作用原理是补偿发生接地故障时流过中性点的容性电流,这就造成了故障电流变小的特点,给选线装置提出了技术难题,为深入剖析经消弧线圈接地系统选线不准的原因,有必要对小电流接地系统发生接地时的故障特点进行陈述。
对于中性点不直接接地系统,当发生单相接地故障时电路图如下图所示:图I中性点不接地系统示盍图从图中可以看出:1•电力系统发生单相接地时,故障线路故障相电压近于零,非故障相电压升高为线电压。
2. 非故障相线路电容电流值为原来的3倍,相位超前该相对地电压近90度。
3. 故障相零序电流最大,为非故障相零序电流之和。
对于中性点经消弧线圈接地系统,当发生单相接地故障时电路图如下图所示:图2中性点经消弧线圈接地示意图从图中可以看出,当中性点经消弧线圈接地系统,通过接地的电容电流与消弧线圈电感电流相互补偿,在发生单相接地故障时,使流过接地点的电流较小,小电流接地系统一般采用过补偿运行方式,在此种运行情况下,将与中性点不直接接地系统规律不同,故障线路与非故障线路的电流方向大致相同,幅值上也比较接近。
在以上接地故障特征的基础上,对于小电流接地系统故障选线装置,现在通用的单相接地选线方法原则上可以说就是通过故障发生时的故障特征来判断哪条线路发生了故障,这些故障特征一方面是稳态信号,一方面是暂态信号,总的来说稳态故障特征指的就是零序电流、零序电压,相位等,暂态特征指的是高次谐波,因为在发生故障时,高次谐波在故障线路与非故障线路时是不相同的,但总的来说故障电流较小,故障特征不明显是选线理论所要解决的核心问题。
浅析10kV消弧线圈接地系统单相接地的处置摘要] 为了提高供电可靠性,我国6-10kV电力系统一般采用中性点不接地或经消弧线圈接地的方式,即小电流接地系统方式。
小电流接地系统的最大优点就是当系统发生单相接地时,线路不会跳闸,从而保证了对用户尤其是重要用户的正常供电,提高了电网的供电可靠性。
但当系统发生单相接地时,消弧线圈及非故障相出现过电压。
长期的过电压会损坏设备的绝缘,可能导致系统发生更严重的事故。
[关键词] 消弧线圈单相接地处置一、前言为了提高供电可靠性,我国6-10kV电力系统一般采用中性点不接地或经消弧线圈接地的方式,即小电流接地系统方式。
小电流接地系统的最大优点就是当系统发生单相接地时,线路不会发生跳闸,从而保证了对用户尤其是重要用户的正常供电,提高了电网运行的供电可靠性。
在当系统发生单相接地时,10kV消弧线圈及非故障相会出现过电压,长期的过电压会损坏设备的绝缘,可能导致系统发生更严重的事故,如:绝缘击穿、单相多点接地、多相故障等。
因此在实际运行中,当经消弧线圈接地系统发生单相接地故障后,应尽速进行处置,避免系统长时间单相接地运行,按照规定运行时间一般不超过2个小时。
二、单相接地故障的现象分析与判断(一)单相接地的特点单相接地是一种常见故障,特别是雨季、大风和暴雪等恶劣天气条件下,单相接地故障更是频繁发生,如果在发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。
在10kV经消弧线圈接地系统中,当发生单相接地故障时,则其它两相电压会升高至相电压的倍,达到线电压的水平,此时由于线电压的大小和相位不变(仍对称),且系统绝缘又是按线电压设计的,所以允许短时运行而不切断故障设备,系统可坚持运行2小时,从而提高了供电可靠性,这正是小电流接地系统的最大优点。
(二)单相接地的故障现象1.变电站内单相接地的现象警铃响,主控盘发出母线接地、掉牌未复归、电压回路断线等光字牌;检查绝缘指示母线一相电压降低、另两相升高。
中性点经消弧线圈接地系统原理浅析摘要:中性点接地方式的选择,不仅影响电网的可靠性、经济性,同时对系统设备绝缘水平的选择、过电压水平及继电保护方式等都有影响。
因此,对于不同电压等级的变压器,按其运行方式,采用的中性点接地方式就会有所不同。
当各级电压电网单相接地故障时,如果接地电容电流超过一定数值,在中性点装设消弧线圈,利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障电流减少,以致自动熄弧,保证继续供电。
关键词:中性点、单相接地、消弧线圈1、中性点有效接地系统中性点有效接地(大电流接地):包括中性点直接接地和中性点经低阻接地。
中性点直接接地以后,中性点电位固定为零电位,发生单相接地故障时,非故障短路电流为零,非故障相对地电压不会升高;故障相电流的正、负、零序分量大小相等方向相同,故障相电压为零。
故障电流很大,继电保护一般能快速准确切除故障,系统设备承受过电压的时间较短。
因此,大电流接地系统可使整个系统设备绝缘水平降低,造价上相对比较经济。
主要适用于我国110kV及以上电网。
1.1中性点直接接地系统中性点直接接地是指将中性点直接接入大地。
这种系统中,当发生一相接地时,就会有除中性点以外的另一个接地点构成短路回路,接地故障相电流很大。
由于接地短路电流大,所以接地保护的选择易于实现,发生单相接地故障时,保护快速动作将故障线路切除,而系统的非故障部分仍可正常运行。
此种接地方式,一方面,单相接地时中性点电压为零,非故障相电压不升高,所以可按照相电压标准设计设备和线路对地电压,绝缘方面要求相对较低,属于经济型。
另一方面,由于接地故障时就需断开故障电路造成供电中断,须装设了自动重合闸装置,但对供电可靠性而言还是有一定影响。
2、中性点非有效接地系统中性点非有效接地(小电流接地):包括中性点不接地、高阻接地、经消弧线圈接地方式等。
中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。
浅析经消弧线圈接地系统的特点
摘要:电力系统输电线路经消弧线圈接地,为小电流接地系统的一种,中性点
经过消弧线圈接地的系统,也称为谐振接地系统。
系统中性点与大地之间接入消
弧线圈后,当发生单相接地故障时,接地处的接地电流就可以减少。
消弧线圈是
一个具有铁芯的电感线圈,线圈的电阻很小,电抗很大。
关键词:消弧线圈;接地;电力系统
引言
随着电力系统的发展,配电网采用的电缆线路越来越多,电缆线路的增加导致系统电容
电流急剧增加,在中性点不接地的运行方式下电容电流的不断增加对设备绝缘的安全和保护
设备的配备带来了严重影响,所以从提高供电可靠性、电气设备和线路的绝缘水平等方面综
合分析考虑,正确的选择中性点接地方式对确保配电网的安全运行十分必要。
1电力系统中中性点的接地方式
电力系统中的接地系统可以分为中性点直接接地系统和中性点不接地系统。
中性点直接
接地系统(包括中性点静小电阻接地系统),发生单相接地故障是,接地电流很大,故这种
接地系统也称为大电流接地系统;中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故也称其为小电流接地系统。
大电流接地系统一般用于110kV及以上的高电压等级系统,小电流接地系统一般用于3—66kV电压等级的系统。
2消弧线圈的作用及补偿方式
消弧线圈是用于小电流接地系统的一种补偿装置。
当电网发生单相接地故障时,消弧线
圈产生感性电流补偿接地电容电流,使通过接地点的电流低于产生间歇电弧或维持稳定的电
弧所需要的电流值,起到消除接地点电弧的作用。
当电网发生单相接地故障后,提供一电感
电流,补偿接地电容电流,使得接地电流减小,也使得故障相接地电弧两端的恢复电压速度
降低,达到熄灭电弧的目的,有效减少弧光接地过电压的几率,抑制过电压的幅值,最大限
度减小故障点热破坏作用及接地网的电压。
在单相接地故障时,根据消弧线圈产生的电感电流对容性的接地故障电流补偿的程度,
可将消弧线圈的补偿方式分为三种:完全补偿、欠补偿和过补偿。
完全补偿(I L=I C)就是消弧线圈产生的电感电流刚好等于容性的接地电容电流,在接地故障处的电流等于零,不会产
生电弧。
欠补偿(I L<I C)就是由消弧线圈产生的电感电流略小于接地故障处流过的容性接地故障电流,在接地处仍有未补偿完的的容性接地故障电流IC—IL流过。
产生电弧的情况由电
流I=IC—IL的大小决定。
电流I较小就不会产生稳定电弧,一般要求补偿到不会产生电弧为止。
过补偿(I L>I C)就是由消弧线圈产生的电感电流略大于接地故障处流过的容性接地故障电流,在发生完全接地故障时,接地处有大小为I L>I C的感性电流流过,过补偿时,流过接地故障
处的电流也不大,一般也要求补偿到不会产生电弧为止。
中性点经消弧线圈接地的系统在运
行时,实际上都不采用完全补偿的方式,也不采用欠补偿的方式,而采用过补偿的方式。
若
采用完全补偿的方式运行,在发生单相接地故障时,是一个谐振的系统,完好相的电容与消
弧线圈的电感形成串联谐振回路,串联谐振也是电压谐振,谐振过电压不但危及系统的对地
绝缘,也对消弧线圈形成威胁。
因此一般谐振系统都不采用完全补偿的运行方式。
3经消弧线圈接地系统的优点
中性点经消弧线圈接地的系统在正常工作时,中性点的电位为零,消弧线圈两端没有电压,所以没有电流通过消弧线圈。
当某一相发生金属性接地时,消弧线圈中就会有电感电流
流过,补偿了单相接地电流,如果适当选择消弧线圈的匝数,就使消弧线圈的电感电流和接
地的对地电容电流大致的相等,就可使流过接地故障电流变得很小,从而减轻了电弧的危害。
所以在小电流接地系统中经消弧线圈接地系统具有以下优点。
3.1提高电力系统的供电可靠性
首先系统发生瞬间单相接地故障时不断电。
消弧线圈是一个具有铁心的可调电感线圈,
当由于电气设备绝缘不良、外力破坏、运行人员误操作、内部过电压等任何原因引起的电网
瞬间单相接地故障时,接地电流通过消弧线圈呈电感电流,与电容电流的方向相反,可以使接地处的电流变得很小或等于零,从而消除了接地处的电弧以及由此引起的各种危害,自动消除故障,不会引起继电保护和断路器动作,大大提高了电力系统的供电可靠性。
3.2对电力设备具有保护作用
中性点经消弧线圈接地系统发生单相接地故障时,接地电流与故障点的位置无关。
由于残流很小,接地电弧可瞬间熄灭,有力地限制了电弧过电压的危害作用。
继电保护和自动装置、避雷器、避雷针等,只能保护具体的设备、厂所和线路,而消弧线圈却能使绝大多数的单相接地故障不发展为相间短路,发电机可免供短路电流,变压器等设备可免受短路电流的冲击,继电保护和自动装置不必动作,断路器不必动作,从而对所在系统中的全部电力设备均有保护作用。
3.3当发生永久性故障时不被动
由于消弧线圈能够有力地限制单相接地故障电流,虽然非故障相对地电压升高倍,三相导线之间线电压仍然平衡,发电机可以免供不对称负荷,电力系统可以继续运行。
特别是在电源紧张或停电后果严重时,有足够的时间启动备用电源或转移负荷,避免突然中断对用户的供电而陷入被动局面。
4经消弧线圈接地系统运行中的注意事项
(1)消弧线圈装置运行中从一台变压器的中性点切换到另一台时,必须先将消弧线圈断开后再切换。
不得将两台变压器的中性点同时接到一台消弧线圈上。
(2)系统中发生单相接地时,禁止操作或者手动调节该段母线上的消弧线圈。
(3)主变压器和消弧线圈装置一起停电时,应先拉开消弧线圈的隔离开关,再停主变,送电时以此相反。
(4)中性点经消弧线圈接地系统发生接地时,接地相电压为零,非接地相电压升高为√3倍相电压,线电压保持不变,允许继续运行2h。
(5)消弧线圈既不接在高压侧,也不接在低压侧,应该说是接在“本级电压侧”,也就是说,35KV的消弧线圈就接在35KV侧,10KV的消弧线圈就接在10KV侧,6KV的消弧线圈就接在6KV侧;35KV的消弧线圈解决不了10KV侧的问题,同样的10kv的消弧线圈也不能安装在35kv侧。
5结语
不同的接地方式各有优缺点,应该根据配电网的发展水平、电网结构,电容电流水平、负荷重要程度等实际情况进行综合比较后正确选择接地方式。
当系统发生瞬间单相接地故障时不断电,消弧线圈又是一个具有铁心的可调电感线圈,当由于电气设备绝缘不良、外力破坏、运行人员误操作、内部过电压等任何原因引起的电网瞬间单相接地故障时,接地电流通过消弧线圈呈电感电流,与电容电流的方向相反,可以使接地处的电流变得很小或等于零,从而消除了接地处的电弧以及由此引起的各种危害,自动消除故障,不会引起继电保护和断路器动作,大大提高了电力系统的供电可靠性。
参考文献:
[1] 国家电网,《10~66kV消弧线圈管理规范》,中国电力出版社,2006,1,ISBN:155083.1313
[2] 赵智大,《高电压技术》,中国电力出版社,2013,5 ISBN978-7-5123-4229-3
[3] 杜松平,《电力系统接地技术》,中国电力出版社,2011,6,1I S B N:9787512317680
[4] 平绍勋,《电力系统中性点接地方式及运行分析》中国电力出版社,2010,3.ISBN:978-7-5083-9926-3。