消弧线圈接地选线原理
- 格式:doc
- 大小:71.50 KB
- 文档页数:5
小电流接地微机选线装置的工作原理是
什么?
小电流接地微机选线装置的工作原理是什么?大家都说说自己的看法!
小电流接地选线装置首先通过测量母线的零序电压判断哪段母
线接地,然后通过各条线路的零序电流与零序电压比较,零序电流落
后零序电压90°,确定接地线路.
还有一种方式是判断母线接地后,通过探索跳闸,经重合闸延时后重
合闸动作,自动合上开关,当零序电压仍然存在,并表明“本线路未
接地”;当零序电压不存在,并表明“本线路接地”。
消弧线圈
消弧线圈主要是由带气隙的铁芯和套在铁芯上的绕组组成,它
们被放在充满变压器油的油箱内。
绕组的电阻很小,电抗很大。
消弧线圈的电感可用改变接入绕组的匝数加以调节。
在正常运
行状态下,由于系统中性点的电压是三相不对称电压,数值很
小,所以通过消弧线圈的电流也很小,电弧可能自动熄灭。
一般采用过补偿方式,就是电感电流略大于电容电流消弧线圈是一种带铁芯的电感线圈。
它接于变压器(或发电机)
的中性点与大地之间,构成消弧线圈接地系统。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
相关原理图:。
消弧线圈接地系统的单相接地选线探究摘要:在电力系统不断发展的形势下,配电网中的电缆线路也在逐步增多,致使电网中的电容电流压力增加,在中性点不接地的情况下,电容电量的不断增加会对电网系统中的绝缘能力和设备安全造成一定影响。
中性消弧线圈可以通过接地保护来维护电力系统的正常运行。
文中就阐述了消弧线圈接地系统的单相接地选线方式进行阐述,并且对选线的原理进行研究。
关键词:消弧线圈接地系统;单相接地;接地选线我国早在1997年就针对电网系统运行安全进行规范,规定中指出在电网系统的电容电量达到10A时,就需要将电压保持不变的中性点消弧线圈接地运行2小时,以此确保电力系统的供电安全和保护设备的绝缘性能。
同时对于通信系统的干扰情况也具有一定的缓解作用。
但是消弧线圈接地系统中的单相接地选线工作一直是保护电力系统安全的重点问题,接地选线对于电力系统的安全运行具有决定性作用。
一、消弧线圈接地系统的单相接地选线方法中性点消弧线圈接地系统因其在对电力系统的稳定运行具有很大提升作用,为此,在我国的电网建设中得以普遍应用。
但是,由于消弧线圈接地系统中的单相接地线很难选择,这也成为应用该项技术的难点所在,并且已经困扰电力工作者多年,从而导致消弧线圈失去良好的发展前景,下面就对单相接地选线的两种类型进行分析:1、改变故障线路的零序电流这种方式主要是以改变消弧线圈回路的相关参数来确定接地故障的基本特征,具体方式是在单相接地故障发生时,将消弧线圈旁接入电阻,并以此改变故障线路的零序电流。
依据对各个线路零序电流的检查结果,分析出最佳的选线。
这种选线方式的准确性较高,同时也存在一定的不足,主要表现在以下几个方面:成本投入方面,使用该方式进行单相接地线路选择时,需要在原有的设备基础上再添加电阻和相应的控制设备,为电力系统的运行增加了成本投入,同时,新添加的电阻控制设备将是电力系统的薄弱之处;在消弧线圈接入电阻时,电流会呈现大幅增长的趋势,这在很大程度上制约了系统的运行安全;消弧线圈所接入的电阻一般在确定系统稳定之后才会进行选线操作,选线时长大约在5秒左右,对于那些小于5秒的则不会产生反应。
1、问题提出随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。
一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。
2、10kV中性点不接地系统的特点选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。
并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。
10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。
3、系统对地电容电流超标的危害实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV 配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下:(1)当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。
(2)配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。
(3)当有人误触带电部位时,由于受到大电流的烧灼,加重了对触电人员的伤害,甚至伤亡。
第十三章HB2000J的综合增量法选线原理HB2000J此时的工作方式为方式1,与ZDB-IIA消弧线圈控制器配套使用。
选线动作的过程:消弧线圈平时处于自动跟踪检测电网的电容电流,等待接地发生进行补偿,熄灭电弧以免由于弧光过电压造成相间短路扩大事故。
当发生接地时消弧线圈响应后首先进行灭弧补偿,然后以通讯的方式通知选线采集各支路的零序电流。
选线采集完毕再通知消弧线圈,消弧线圈改变补偿的电感电流然后再通知选线进行第二次采样,消弧线圈然后处于正常补偿状态等待判断接地解除,而选线则处理数据进行选线判断报警。
下面以图示说明选线的判据(注:以金属性接地按理想情况进行原理概述)假设电网有5条支路,如图示#1 #2 #3 #4 #5表示,各支路的电容电流分别如图所示。
图中的椭圆表示零序电流互感器,其输出分别表示为I1、I2、I3、I4、I5。
图中表示的电网的电容电流为IC=IC1+IC2+IC3+IC4+IC5=5+6+7+8+9=35A。
当没有消弧线圈时,假设#3的B相发生金属性接地,该接地点的电流为35A(实际应为所有支路的基波无功分量之和),各支路零序电流互感器的输出为:I1=5A I2=6A I3=28A I4=8A I5=9A 。
也就是非故障支路的零序电流等于该支路的电容电流,故障支路零序电流等于其他所有非故障支路的电容电流之和。
当存在消弧线圈时,各支路零序电流互感器的输出就有变化了。
如果消弧线圈补偿35A 的电感电流,由于补偿电流只通过接地点,所以各支路的零序电流互感器的输出分别为:I1=5A I2=6A I3= -7A I4=8A I5=9A 。
假设这是选线第一次采集的数据,分别表示为I11 I21I31I41I51 。
如果消弧线圈补偿30A的电感电流,各支路的零序电流互感器的输出分别为:I1=5A I2=6A I3= -2A I4=8A I5=9A 。
假设这是选线第二次采集的数据,分别表示为I12 I22I32I42I52 。
消弧线圈⼯作原理及应⽤消弧线圈⼯作原理及应⽤⽬录摘要 (2)⼀、引⾔ (3)⼆、消弧线圈作⽤原理与特征 (4)三、消弧线圈⾃动补偿的应⽤ (7)四、消弧线圈接地系统⼩电流接地选线 (8)五、消弧线圈的故障处理⽅法与技术 (11)六、结束语 (13)参考⽂献 (14)谢辞 (15)摘要本⽂通过对配电系统中性点接地⽅式和配电⽹中正常及发⽣故障时电容电流的分析,阐述了中性点经消弧线圈接地⽅式在⽬前配电⽹系统中应⽤的必要性,并从消弧线圈的⼯作原理,使⽤条件,容量选择,注意事项和故障处理等⽅⾯进⾏了探讨,同时也对⽬前国内消弧线圈装置进⾏了简单介绍。
关键词:接地;中性点;消弧线圈;电弧;补偿;⼀、引⾔⽬前,在我国⽬前配电⽹系统中,单相接地故障是出现概率最⼤的⼀种,并且⼤部分是可恢复性的故障,6~35 kV电⼒系统⼤多为⾮有效接地系统,由于⾮有效接地系统的中性点不接地,即使发⽣单相接地故障,但是三相线电压依然处于对称状态,所以仍能保持不间断供电,这是中性点不接地系统电⽹的⼀⼤优点,但当供电线路较长时,单相接地电流容易超过规范规定值,造成接地故障处出现持续电弧,⼀旦不能及时熄灭,可能发展成相间短路;其次,当发⽣间歇性弧光接地时,易产⽣弧光接地过电压,从⽽波及整个电⽹。
为了解决这些问题,选择在系统中性点装设消弧线圈接地已经被证实是⼀项有效的措施,对电⽹的安全运⾏⾄关重要。
⼆、消弧线圈作⽤原理与特征2.1各类中性点接地⽅式及优缺点介绍我国⽬前中性点的运⾏⽅式主要有两种:a)中性点直接接地系统直接接地系统主要⽤在110KV及以上的供电系统和低压380V系统。
直接接地系统发⽣单相接地故障时由于故障电流较⼤会使继电保护马上动做切除电源与故障点回路。
中性点直接接地系统的优点是发⽣单相接地时,其它⾮故障相对地电压不升⾼,因此可节省⼀部分绝缘费⽤,供电⽅式相对安全。
其缺点是发⽣单相接地故障时,故障电流⼀般较⼤,要迅速切除故障回路,影响供电的连续性,从⽽供电可靠性较差。
消弧线圈并联电阻的小电流接地故障选线对策消弧线圈并联电阻的小电流接地故障选线对策在电力系统运行中,接地故障是常见的故障类型之一,而小电流接地故障又是其中的一种。
小电流接地故障指的是线路或设备出现地线接地后,接地电流较小(一般不超过几十安培)的故障。
在小电流接地故障中,消弧线圈并联电阻的选线对策是一种有效的解决方法。
一、小电流接地故障的特点小电流接地故障的接地电流较小,往往难以被保护装置及时检测和判断,从而造成故障持续时间长、影响范围大的问题。
在小电流接地故障中,由于接地电流较小,其对线路和设备的伤害也较小,但长期存在的小电流接地故障仍会对电网稳定性和运行安全造成不良影响。
二、消弧线圈并联电阻的作用及原理消弧线圈并联电阻是一种用于减小接地故障影响的设备,其作用是在接地故障发生时,消耗故障电流、限制故障电压并减小故障范围。
消弧线圈并联电阻的原理是通过消弧线圈的电感和并联电阻的电阻,阻止故障电流的急剧增长,从而达到限制故障电压的目的。
三、消弧线圈并联电阻的选线对策消弧线圈并联电阻的选线对策是一种有效应对小电流接地故障的方法。
具体来讲,选线时需注意以下几点:1. 确定故障点位置和故障电流大小,根据故障点所在位置和故障电流大小,选择合适的消弧线圈并联电阻。
2. 根据线路的电压等级、电流负荷和系统容错能力等因素,确定消弧线圈并联电阻的额定电压、额定电流和额定容量。
3. 选用消弧线圈并联电阻时,还需考虑其对线路的谐波滤波效果、电感和损耗等因素的影响。
4. 在实施消弧线圈并联电阻选线对策时,还需对线路的接地方式、接地电阻和保护装置等因素进行综合考虑,确保选用的消弧线圈并联电阻能够满足线路的保护要求和运行要求。
四、小结小电流接地故障是电力系统中常见的故障类型之一,其特点是接地电流较小,难以被保护装置及时检测和判断。
消弧线圈并联电阻是一种有效的解决小电流接地故障的设备,其选线对策需要根据故障点位置、故障电流大小、线路的电压等级、电流负荷和系统容错能力等因素进行综合考虑,确保选用的消弧线圈并联电阻能够满足线路的保护要求和运行要求。
专题二:消弧线圈的工作原理、补偿方式、构造及运行接线一. 消弧线圈的工作原理63kV 及以下电力系统是中性点不接地系统。
电力系统各相导线存在分布电容。
在电力系统正常运行状态下,系统中性点的对地电压基本为零,而各相导线的对地电压也基本等于相电压。
各相导线在对地相电压的作用下,通过对地电容流过电容电流。
由于三相电力系统是对称的,所以各相导线对地的电容电流也是对称的。
当电力系统发生单相对地短路时,则故障相的对地电压降为零,非故障相的对地电压由相电压升至线电压,而中性点的对地电位升至相电压,如图1b )电压电流相量图所示,在这种情况下,故障相的对地电容被短路,非故障相的对地电容电流经过故障相的对地短路点流向非故障相导线中,如图1a )所示;接地点的合成电容电流)(3 3A CU I I AC C ω==,式中: BC AC I I 、——非故障相的对地电容电流;ω——电源角频率(Hz );C ——导线对地电容(F );U ——相电压(V );流过接地点的电流将产生间歇性电弧。
在间歇性电弧的作用下,电力系统将产生过电压,可能危及绝缘薄弱的环节,造成事故扩大;为了使对地间歇性电弧很快熄灭,而且不在重燃,必须使接地点流过电感电流,来补偿电容电流。
消弧线圈即用于此目的的一种电抗器。
在中性点不接地的电力变压器中,通过接地变压器引出一个人为中性点,在中性点与地之间接入一个消弧线圈;在电力系统正常运行状态下,系统中性点的对地电压基本为零,所以消弧线圈中无电流通过;当电力系统中发生单相对地短路时,系统中性点的电压升至相电压,消弧线圈中流过的电流为:(A ),式中:L L o L X U X U I //==O U ——中性点对地电压(V );——消弧线圈的电抗(Ω);L X 适当地选择消弧线圈的电抗,使得流过接地点的电感电流恰等于电容电流,这样接地点的电流将会熄灭;为了避免串联谐振现象的发生而引起的过电压,通常采用过补偿,即将流过消弧线圈的电感电流稍大于流过接地点的电容电流。
消弧线圈补偿原理及运行注意事项一、消弧线圏补偿原理 一、中性点接地方式尺优缺点接地 方式适用范用 (电容电流) 优点 缺点 不接 地 35KV : <1OA 1OKV : <30A 1、 接地电流小,瞬时故障时 可自行熄弧 2、 可带接地故障运行(一般 不超过2h),可靠性较高 1、 对绝缘要求较髙,易引发绝缘击穿,引发相间短路等相继故障 2、 故障泄位难,操作多3、 人员触电时,因线路不跳闸,安 全性较差经消 弧线圈 (1OOA 4、 易发生谐振5、 中性点电位偏移较大6、 运行方式改变时,操作多7、 补偿易受限制,消弧线圈容量增 加可能滞后电网发展经小 电阻 lOO^lOOOA 1、 可抑制谐振过电压 2、 中性点电位偏移较小 3、 可迅速隔离故障点 4、 设备的绝缘水平较底 5、 不受运行方式影响6、 人员触电时,能快速切除 故障,安全性好接地故障线路迅速切除,间断对用 户的供电 二、弧光接地的危害(1) 单相接地的一般进程间歇性电狐接地一一稳固性电弧接地一一金属性接地(2) 弧光接地过电压及电弧电流发生单相间歇性弧光接地(弧光接地)时,由于电弧多次不断的熄灭和重燃,致使系统 对地电容上的电荷多次不断的积累和从头再分派,在非故障相的电感一电容回路上引发髙频 振荡过电压。
对于架空线路,过电压幅值一般可达〜倍相电压,对于电缆线路,非故障相的 过电压可达4〜71倍。
弧光接地时流过故障点的电弧电流为高频电流和工频电流的和,在弧光接地或电弧重燃 的刹时,已充电的相对地电容将要向故障点放电,相当于RLC 放电进程,英髙频振荡电流为:过渡进程结束后,流过故障点的电弧电流只剩下稳态的工频电容电流。
(3) 弧光接地的危害A 、 加重了电缆等固体绝缘的积累性破坏,要挟设备安全:B 、 致使烧PT 或保险熔断:C 、 致使避雷器爆炸;D 、 燃弧点温度髙达5000K 以上,会烧伤导线.乃至致使断线事故:E 、 电弧不能专门快熄火,在风吹、电动力.热气流等因素的影响下,将会进展成为相 间弧光短路事故;F 、 电弧燃烧时会直接破坏电缆相间绝缘,致使相间短路事故的发生;G 、 跨步电压髙,危及人身安全:其中:U 为相电压,6 =R/2L, G )o=l / xTF, 3曲备疋uo (在输电线路中 z R >>(IZH 、髙频电流对通信产生干扰。
一、消弧线圈的工作原理配电系统是直接为用户生产生活提供电能支持的系统,其功能是把变电站或小型发电厂的电力输送给每一个用户,并在必要的地方转换成为适当的电压等级。
国内外对于提高以可靠性和经济性为主要内容的配电网运行水平非常重视。
影响配电系统运行水平的因素主要有网架结构、设备、控制策略和线路等,选择适当的中性点接地方式是最重要和最灵活的提高配电网可靠性和经济性的方法之一,因此进一步研究中性点运行方式对于提高配电系统运行水平有重要意义,中性点运行方式选择是一个重要且涉及面很广的综合技术经济问题,其方式对配电系统过电压、可靠性、继电保护整定、电磁干扰、人身和设备安全等影响很大。
电力系统中中性点是指Y型连接的三相电,中间三相相连的一端。
而电力系统中中性点接地方式主要分为中性点直接接地和中性点不直接接地或中性点经消弧线圈接地。
两种接地方式各自优缺点:中性点不接地系统单相接地时,由于没有形成短路回路,流入接地点的电流是非故障相的电容电流之和,该值不大,且三相线电压不变且对称,不必切除接地相,允许继续运行,因此供电可靠性高,但其它两条完好相对地电压升到线电压,是正常时的√3 倍,因此绝缘水平要求高,增加绝缘费用,对无线通讯有一定影响。
中性点经消弧线圈接地系统单相接地时,除有中性点不接地系统的优点外,还可以减少接地电流,通过消弧线圈的感性补偿,熄灭接地电弧,但接地点的接地相容性电流为3倍的未接地相电容电流,随着网络的延伸,接地电流增大以致使接地电弧不能自行熄灭而引起弧光接地过电压,甚至发展成系统性事故,对无线通讯影响较大。
中性点直接接地系统单相接地时,发生单相接地时,其它两完好相对地电压不升高,因此绝缘水平要求低,可降低绝缘费用,但短路电流大,要迅速切除故障部分,对继电保护的要求高,从而供电可靠性差,对无线通讯影响不大。
随着社会经济的迅猛发展,电力系统的重要性日益凸显。
因而近几年电网的安全可靠运行倍受关注。
在电力系统中发生几率最大的故障类型为单相接地故障。
中性点经消弧线圈接地系统发生单相故障时选线不准问题分析小电流接地系统,包括中性点不接地系统,中性点经高阻接地、中性点经消弧线圈接地系统。
对于中性点不接地系统,由于不够成短路回路,我国规程规定可以继续运行1〜2个小时。
但随着线路长度增加,电容电流增大,弧光接地过电压倍数增高,长时间运行还容易造成相间短路,尤其是在中性点接地系统中,发生永久接地时,故而更有必要分开故障线路,进行检修。
但是由于中性点经消弧线圈系统具有接地故障电流小、不易燃起电弧等特点,其作用原理是补偿发生接地故障时流过中性点的容性电流,这就造成了故障电流变小的特点,给选线装置提出了技术难题,为深入剖析经消弧线圈接地系统选线不准的原因,有必要对小电流接地系统发生接地时的故障特点进行陈述。
对于中性点不直接接地系统,当发生单相接地故障时电路图如下图所示:图I中性点不接地系统示盍图从图中可以看出:1•电力系统发生单相接地时,故障线路故障相电压近于零,非故障相电压升高为线电压。
2. 非故障相线路电容电流值为原来的3倍,相位超前该相对地电压近90度。
3. 故障相零序电流最大,为非故障相零序电流之和。
对于中性点经消弧线圈接地系统,当发生单相接地故障时电路图如下图所示:图2中性点经消弧线圈接地示意图从图中可以看出,当中性点经消弧线圈接地系统,通过接地的电容电流与消弧线圈电感电流相互补偿,在发生单相接地故障时,使流过接地点的电流较小,小电流接地系统一般采用过补偿运行方式,在此种运行情况下,将与中性点不直接接地系统规律不同,故障线路与非故障线路的电流方向大致相同,幅值上也比较接近。
在以上接地故障特征的基础上,对于小电流接地系统故障选线装置,现在通用的单相接地选线方法原则上可以说就是通过故障发生时的故障特征来判断哪条线路发生了故障,这些故障特征一方面是稳态信号,一方面是暂态信号,总的来说稳态故障特征指的就是零序电流、零序电压,相位等,暂态特征指的是高次谐波,因为在发生故障时,高次谐波在故障线路与非故障线路时是不相同的,但总的来说故障电流较小,故障特征不明显是选线理论所要解决的核心问题。
摘要:目前大多数采用中性点经消弧线圈接地系统来降低通过故障点的电容电流,进一步降低电压,熄灭电弧,大大的提高电网系统供电的可靠性,但是利用中性点经消弧线圈接地系统来进行电弧消除的方式中仍存在着许多的不足之处,需要加以深入的研究与完善。
该文阐述了中性点经消弧线圈接地方式及其优点,探讨了中性点经消弧线圈接地方式下常见的选线原理,并分析了选线原理的不足之处与主要原因。
关键词:中性点经消弧线圈接地方式选线装置原理中图分类号:tm7 文献标识码:a 文章编号:1674-098x(2015)10(b)-0144-02 对于中性点经消弧线圈接地系统来说,目前较为常用的选线原理有谐波电流方向保护原理、注入信号寻迹法、首半波保护原理等等,在进行选线时,应采用合理的具有可靠性的原理,才能提高选线的效果。
1 中性点经消弧线圈接地方式及优点由于消弧线圈本质上属于一种补偿装置,因此,中性点经消弧线圈接地系统也被称作为补偿系统。
当电网发生一相接地事故时,消弧线圈能够有效的消除电弧接地的过电压,从而使电网系统能够正常安全的运行。
中性点经消弧线圈接地能够大大的降低保护错误情况的发生,该接地方式最大的优势就是在出现单相接地事故时,能够继续维持用户的用电需求,不会造成电路的短路或者回路。
中性点经消弧线圈接地方式具体来说有以下几个方面的优点:第一,中性点经消弧线圈接地方式能够进一步提高供电的可靠性。
该接地方式能够在电网出现单相接地的情况下,依然能够维持电网运行工作的安全性,还可以进一步减少设备的损耗,在电网出现单相接地时工作人员不需要进行拉闸限电,就能够在较短的时间内找出故障所在,大大的提高了电网供电的可靠性。
第二,中性点经消弧线圈接地方式的信号系统对电磁场比较敏感,当电磁场出现在附近的导体回路中感应电压使,其信号系统很容易受到干扰,进而导致信号设备的误判断。
第三,能够有效的保障人身安全。
若出现单相接地事故,其接地电流较低,故障处的跨步电压以及接触电压都比较小,能够很好的保障人身的安全。
经消弧线圈接地的原理
消弧线圈是一种用来消除电气设备中产生的弧光的电气元件。
它的原理是将电路中产生的弧光中的能量转化为电感能量,然后将其放电到地线上,从而消除弧光。
具体来说,消弧线圈内部包含一个线圈和一个铁芯,当电路中产生弧光时,线圈中的电流会急剧增加,从而产生一个瞬时的磁场。
这个磁场会将弧光中的能量转化为电感能量,并将其存储在线圈中。
随着时间的推移,这个磁场会逐渐消失,导致存储的电感能量被释放。
为了将这些能量安全地释放到地线上,消弧线圈通常会与一个接地电极相连。
当存储的电感能量被释放时,它会通过接地电极放电到地线上,从而消除弧光。
(一)消弧线圈的工作原理1.消弧线圈的结构消弧线圈是一个具有铁心的电感线圈,线圈的电阻很小,电抗很大。
线圈具有抽头,电抗值可用改变线圈的匝数来调节,铁心具有较大的空气歇,它使电抗值稳定,从而使电压与电流成正比。
2.消弧线圈的工作原理正常运行时,中性点对地电压为零,消弧线圈中没有电流流过。
图(a)中性点经消弧线圈接地的电路图如上图(a)所示,单相(如w相)接地故障时,接地点对地电压为零,中性点对地电压上升为相电压,非故障相对地电压上升为线电压,网络的线电压不变。
这与中性点不接地系统相似,此时,消弧线圈处于中性点电压的作用下,有电感电流I L通过,此电流通过接地点形成回路.加上单相接地时的接地电容电流I C,两电流方向相反,见相量图(b)。
在接地处I L和Ic相互抵消,称电感电流对接地电流的补偿,如果适当选取消弧线圈的匝数,可使接地处的电流变得很小或等于零。
从而消除了接地处的电弧,消弧线圈因此而得名。
图(b)中性点经消弧线圈接地的相量图(二)消弧线圈的补偿方式1.完全补偿完全补偿是使电感电流等于电容电流,即I L=I C,接地处电流为零。
从消弧的角度看,完全补偿十分理想,从产生过电压的角度看,却存在严重的问题。
因为,正常运行时,在某些条件下,中性点与地之间会出现一定的电压,此电压作用在消弧线圈通过大地与三相对地电容构成的串联电路中,因此时X L=X C。
满足谐振条件。
产生过电压,危及绝缘。
2.欠补偿欠补偿是使电感电流小于电容电流,即I L<I C,单相接地处有容性电流流过。
在这种补偿方式下,若因停电检修部分线路,或因系统频率降低等原因使接地电流减少,有可能出现完全补偿。
因此,一般变压器中性点不用欠补偿,大容量发电机有时采用欠补偿。
3.过补偿过补偿是使感电流大于电容电流,即I L>I C,单相接地处有感性电流流过。
过补偿既能消除接地处的电弧,又不会产生谐振过电压,这是因为若因停电检修部分线路或系统频率降低,使接地电流I C=3ωCU X减少,I L>>I C,远离产生谐振的条件。
消弧线圈原理接线————————————————————————————————作者:————————————————————————————————日期:消弧线圈原理接线消弧线圈的原理接线如图所示。
它一般经隔离开关接于规定的变压器的中性点与地之间,并装有电压互感器和电流互感器,互感器的二次侧装有电压表和电流表,分别用来测量系统单相接地时消弧线圈的端电压和补偿电流。
电压互感器二次侧还装有电压继电器,当有故障时,电压继电器动作,起动中间继电器,一方面使中央预告信号动作,另一方面使消弧线圈屏上的信号灯亮。
为了防止过电压损坏消弧线圈,在消弧线圈旁还接有避雷器。
图消弧线圈原理接线因为系统中容性电流的大小随着系统运行方式的变化而变化,消弧线圈的补偿电流也应随系统运行方式的变化而作相应的调整。
过去消弧线圈是靠调节线圈的分接头改变其电感的大小,从而改变流过故障点的电流。
要改变分接头,必须先让消弧线圈退出运行,然后或者根据人们的运行经验,或者根据实测电网对地的电容电流的数值,来确定其匝数的多少,很不方便,不能适应电流频繁变化的需要。
因此,近十几年来,国内外相继研制出了能够自动跟踪补偿的消弧线圈。
中性点是指发电机和变压器的三相绕组星形接线时的公共连接点。
中性点的接地方式对电力系统的安全运行有多方面的影响,它涉及供电的可靠性、电力系统运行的稳定性、短路电流的大小、接地保护方式、过电压的高低和对通信的干扰等诸多方面的问题。
电力系统中性点的接地方式主要有两大类,即中性点接地和中性点不接地。
在我国60kV及以下的电力系统中性点是不接地的,称为小电流接地系统;110kV及以上的电力系统中性点接地,称为大电流接地系统。
电力系统中的事故以单相接地故障的概率最大。
中性点不接地系统发生单相金属性接地时,非接地相的对地电压将上升为线电压,中性点电压将升高为相电压。
考虑到三相线路、电缆、配电装置等的对地电容,故障点的电流为非故障相容性电流之和,此接地电流的大小与系统电压、线路长度等有关。
1 选线原理⑴绝缘监察装置。
绝缘监察装置利用接于公用母线的三相五柱式电压互感器,其一次线圈均接成星形,附加二次线圈接成开口三角形。
接成星形的二次线圈供给绝缘监察用的电压表、保护及测量仪表。
接成开口三角形的二次线圈供给绝缘监察继电器。
系统正常时,三相电压正常,三相电压之和为零,开口三角形的二次线圈电压为零,绝缘监察继电器不动作。
当发生单相接地故障时,开口三角形的二次端出现零序电压,电压继电器动作,发出系统接地故障的预告信号。
其优点是投资小,接线简单、操作及维护方便。
其缺点是只发出系统接地的无选择预告信号,不能准确判断发生接地的故障线路,运行人员需要通过推拉分割电网的试验方法才能进一步判定故障线路,影响了非故障线路的连续供电。
⑵零序电流原理。
在中性点不接地的电网中发生单相接地故障时,非故障线路零序电流的大小等于本线路的接地电容电流。
故障线路零序电流的大小等于所有非故障线路的零序电流之和,也就是所有非故障线路的接地电容电流之和。
通常故障线路的零序电流比非故障线路零序电流大得多,利用这一原则,可以采用电流元件区分出接地故障线路。
⑶零序功率原理。
在中性点不接地的电网中发生单相接地故障时,非故障线路的零序电流超前零序电压90°,故障线路的零序电流滞后零序电压90°,故障线路的零序电流与非故障线路的零序电流相位相差180°。
根据这一原则,可以利用零序方向元件区分出接地故障线路。
2 消弧线圈接地系统的特点随着国民经济的不断发展,配网规模日渐扩大,电缆出线日渐增多,系统对地电容电流急剧增加,接地弧光不易自动熄灭,容易产生间隙弧光过电压,进而造成相间短路,使事故扩大。
为了防止这种事故,电力行业标准DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》规定;3~10 kV架空线路构成的系统和所有35 kV、66 kV电网,当单相接地故障电流大于10 A时,中性点应装设消弧线圈,3~10 kV电缆线路构成的系统,当单相接地故障电流大于30 A时,中性点应装设消弧线圈。
根据这一规定,潮州供电分公司对系统进行改造,采取中性点经消弧线圈接地的运行方式,但是造成了采用零序电流原理、零序功率方向原理的接地选线装置的选线正确率急剧下降。
其原因是中性点经消弧线圈接地系统单相接地时,电容电流分布的情况与中性点不接地系统不一样了,如图1所示。
由图1可知,中性点接入消弧线圈后,发生单相接地时,非故障线路电容电流的大小和方向与中性点不接地系统是一样的;但对故障线路而言,接地点增加了一个电感分量的电流I Lo从接地点流回的总电流为:由于与的相位相差180埃将随消弧圈的补偿程度而变,因此,故障线路零序电流的大小及方向也随之改变。
当全补偿时,即,接地电流接近于零,故障线路零序电流等于线路本身的电容电流,方向由母线流向线路,零序功率方向与非故障线路完全相同。
全补偿时,wL = 1/3wC∑,正是工频串联谐振的条件,如果由于系统三相对地电容不对称或者断路器三相不同期合闸时出现零序电压,串接于L及3C∑之间,串联谐振将导致电源中性点对地低压升高及系统过电压,因而不采用这种补偿方式。
当欠补偿时,即分两种情况:如果补偿以后的接地电流大于本身线路电容电流,且方向由线路流向母线,故障线路零序电流将减少。
如果补偿以后的接地电流小于本身线路电容电流,故障线路零序电流不但大小变化,且方向也变为由母线流向线路。
上述情况表明,在欠补偿方式下,故障线路零序电流(功率)的方向是不固定的。
同时,考虑到因运行方式变化,系统电容电流IC∑减少时,有可能又出现串联谐振。
因此,这种补偿方式很少采用。
当过补偿时,即,这种补偿方式没有发生过电压的危险,因而得到了广泛的应用,采用过补偿后,通过故障线路保护安装处的电流为补偿以后的感性电流,它与零序电压的相位关系和非故障线路电容电流与零序电压的相位关系相同,数值也和非故障线路的容性电流相差无几,因此不接地系统中常用的零序电流选线原理和零序功率方向选线原理已不能采用。
3 接地选线原理比较(1) 插入有效电阻法。
发生接地故障时,在消弧线圈上短时并上一个有效电阻,使接地点产生一个有功分量电流,再利用此有功分量电流作为选线依据,经一定延时后,再把电阻切除。
只要电阻选择合适,就能使接地点的有功分量电流足够大,从而达到选线的目的。
(2) 5次谐波原理。
在电力系统中,电源感应电势中本身就存在高次谐波分量,此外由于变压器、电压互感器等设备铁心非线性的影响,电网中必然包含一系列高次谐波分量,其中主要为5次谐波分量。
对中性点经消弧线圈接地的系统,由于消弧线圈对5次谐波呈现的感抗为基波的5倍,而线路容抗为基波1/5,和线路容抗相比,消弧线圈近似于开路状态。
因此,5次谐波感性电流可以忽略,系统单相接地时,5次谐波容性电流分布与中性点不接地系统中基波容性电流几乎相同,籍此可进行故障选线。
(3) 首半波原理。
该原理是基于接地故障发生在相电压接近最大值这一假设,利用单相接地瞬间,故障线路暂态零序电流第1个周期的首半波与非故障线路相反的特点构成。
暂态电容电流中包括自由分量和强制分量,它具有以下几个特点:在相电压接近最大值瞬间单相接地过程中,暂态电容电流比流过消弧线圈的暂态电感电流大很多,暂态电感电流可忽略不计。
因此,在同一电网中,即使中性点经消弧线圈接地,其过渡过程与中性点不接地情况下近似相同。
故障线路暂态零序电流和暂态零序电压首半波方向相反。
非故障线路暂态零序电流和暂态零序电压首半波方向相同。
首半波电容电流幅值比稳态电容电流大几倍到几十倍,对总线路长度较短的系统,暂态过程更加明显。
由上述特点可知,对短线路而言,其稳态电容电流小,暂态电容电流大,该原理比其它各类反映接地稳态量的原理灵敏度高,对单相接地反应迅速。
(4) 注入信号寻踪法。
该原理是通过运行中的电压互感器向接地线注入信号,利用信号寻踪原理,实现故障探测。
该装置由主机和信号电流探测器两部分构成,主机发出的信号通过电压互感器副边二次端子接入,并由故障线路接地点流回。
信号探测器插在主机内部或安装在各条出线绝缘距离以外探测选线。
由于故障选线是通过注入信号实现,无需使用零序电流互感器,也与电流互感器的接线方式无关。
装置还具有测距定位功能,寻踪选线以后,必要时可停电进行测距定位。
4 接地选线装置现场注意事项(1) 零序电流互感器穿过电力电缆和接地线时的接法问题。
不论零序电流互感器与电缆头接地线的相对位置如何,零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属护层、大地形成的闭合回路不得与零序电流互感器匝链。
即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。
同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。
以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。
(2) 接入选线装置的线路数量问题。
一般来说,线路路数至少不少于3路才能保证正确判断,一般变电所都能满足此要求。
当出线路数少,母线有防止电压互感器铁磁谐振或防止过电压的接地电容时,接地选线判断比较准确。
另外,凡是接在母线上的各馈电线路包括补偿无功功率的电容器等的电缆都必须经过零序电流互感器接入选线装置,否则未接入选线装置的线路接地时采用幅值比较法的装置可能误判断,采用方向比较法的则可能判为母线接地。
(3) 零序电流互感器型号统一问题。
幅值比较的前提是变电所各出线的零序电流互感器的特性必须一致,否则可能因特性不一致而造成误判断,这一点,尤其在变电所扩容新增加配电线路时一定要注意。
新增线路的零序电流互感器必须与原有其它线路的零序电流互感器型号、生产厂家保持一致。
对于开合式零序电流互感器,开合接触面应无灰尘,确保面接触。
对有架空出线的线路,虽然可以用三只测量用电流互感器滤出零序电流,但由于与电缆出线零序电流互感器特性不一致,架空出线也应改为一段电缆出线,以便于用同型号零序互感器。
(4) 零序电流互感器的极性问题。
各配电线路的零序电流互感器的极性必须一致,并满足厂家要求(一般沿配电盘柜向线路方向流出为正)。
(5) 某些线路出线为双电缆时。
为保证线路零序电流的准确测量,每条出线电缆应尽可能采用一根电缆,对负荷较大的线路可采用大截面铜心电缆,不得不采用双电缆并列时,应尽可能选用内径较大的零序电流互感器,将两根电缆同时穿入零序互感器。
5 系统调试施工完毕,必须做好系统调试,及时发现施工中存在的问题,具体调试的方法如下:解开TV开口三角的零序电压引入线,用调压器模拟零序电压,加入装置,此时加入的电压应与装置显示的电压一致,同时用升流器在TA一次侧模拟系统单相接地电流,穿过TA一次时,一条线路反穿,其余线路正穿,所加入电流应大于20mA,此时装置能正确选线,说明该装置回路可以投运。
6 结束语现有的接地选线方法,在中性点改为经消弧线圈接地后,有的已不能使用,有的虽然能用但有较大的局限性,选线效果不理想。
根据潮州供电分公司的应用经验,要提高小电流接地选线装置选线的正确率,除了装置采用好的原理外,电力部门自身的安装、调试、运行、维护都至关重要。
只有各环节的工作均做好了,接地选线装置选线的正确率才能达到较高的水平。