三角形的四心问题(最全面精品)
- 格式:doc
- 大小:1.04 MB
- 文档页数:8
三角形“四心”问题一、三角形的“重心”1、重心的定义:中线的交点,重心将中线长度分成2:1三角形中线向量式:AM ⃗⃗⃗⃗⃗⃗ =12(AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 2、重心的性质:(1)重心到顶点的距离与重心到对边中点的距离之比为2:1。
(2)重心和三角形3个顶点组成的3个三角形面积相等。
(3)在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即(x A +x B +x C 3,y A +y B +y C3).3、常见重心向量式:设O 是∆ABC 的重心,P 为平面内任意一点 ①OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ②PO⃗⃗⃗⃗⃗ =13(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) ③若AP⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),λ∈[0,+∞),则P 一定经过三角形的重心 ④若AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC ),λ∈[0,+∞),则P 一定经过三角形的重心二、三角形的“垂心”1、垂心的定义:高的交点。
锐角三角形的垂心在三角形内; 直角三角形的垂心在直角顶点上; 钝角三角形的垂心在三角形外。
2、常见垂心向量式:O 是∆ABC 的垂心,则有以下结论: 1、OA⃗⃗⃗⃗⃗ ∙OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ∙OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ∙OA ⃗⃗⃗⃗⃗ 2、|OA⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2=|OB ⃗⃗⃗⃗⃗ |2+|CA ⃗⃗⃗⃗⃗ |2=|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2 3、动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |cosC ),λ∈(0,+∞),则动点P 的轨迹一定通过∆ABC 的垂心4、奔驰定理推论:S ∆BOC :S ∆COA :S ∆AOB =tanA:tanB:tanC ,tanA ∙OA ⃗⃗⃗⃗⃗ +tanB ∙OB⃗⃗⃗⃗⃗ +tanC ∙OC ⃗⃗⃗⃗⃗ =0⃗ . 三、三角形的“内心”1、内心的定义:角平分线的交点(或内切圆的圆心)。
微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0 .(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0 .(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0 .【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +AC AC 所在的直线上. AB ⋅PC +BC ⋅PC +CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA ⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0 ⇔P 为△ABC 的重心.【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心【答案】D【解析】因为GA +GB +GC =0 ,所以GA +GB =-GC =CG .以GA 、GB 为邻边作平行四边形GADB ,连接GD 交AB 于点O .如图所示:则CG =GD ,所以GO =13CO ,CO 是AB 边上的中线,所以G 点是△ABC 的重心.故选:D例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD =DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1【答案】A【解析】因为BD =DC ,所以D 为BC 中点,又因为G 是△ABC 的重心,所以GD =13AD ,又因为D 为BC 中点,所以AD =12AB +12AC ,所以GD =1312AB +12AC =16AB +16AC ,所以x =y =16,所以x +y =13.故选:A例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175【答案】D【解析】依题意,作出图形,因为点G 是△ABC 的重心,所以M 是BC 的中点,故AM =12AB +AC ,由已知得BC =a ,AC =b ,AB =c ,因为BG ⊥CG ,所以GM =12BC =12a ,又因为点G 是△ABC 的重心,所以GM =12GA ,则AM =12a +a =32a ,又因为AM 2=14AB +AC 2,所以94a 2=14c 2+b 2+2bc cos A ,则9a 2=c 2+b 2+2bc cos A ,又由余弦定理得a 2=c 2+b 2-2bc cos A ,所以9c 2+b 2-2bc cos A =c 2+b 2+2bc cos A ,整理得2c 2+2b 2-5bc cos A =0,因为5b =6c ,令b =6k k >0 ,则c =5k ,所以2×5k 2+2×6k 2-5×6k ×5k cos A =0,则cos A =122150=6175.故选:D .题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC ,则λ+μ=______.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC ⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-372例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +AC ACλ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】C 【解析】因为AB AB 为AB 方向上的单位向量,AC AC 为AC 方向上的单位向量,则AB |AB |+AC |AC |的方向与∠BAC 的角平分线一致,由OP =OA +λAB AB +AC AC ,可得OP -OA =λAB AB +AC AC,即AP =λAB AB +AC AC,所以点P 的轨迹为∠BAC 的角平分线所在直线,故点P 的轨迹一定经过△ABC 的内心.故选:C .例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB +cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心【答案】B 【解析】因为IB =IA +AB ,IC =IA +AC ,所以aIA +bIB +cIC =aIA +b IA +AB +c IA +AC =a +b +c IA +bAB +cAC =0 ,所以(a +b +c )IA =-(b ⋅AB +c ⋅AC ),所以IA =-(b ⋅AB +c ⋅AC )a +b +c =-b a +b +c ⋅AB +c a +b +c AC =-1a +b +c b ⋅AB +c ⋅AC=-bc a +b +c AB c +AC b=-bc a +b +c AB AB +AC AC ,所以IA 在角A 的平分线上,故点I 在∠BAC 的平分线上,同理可得,点I 在∠BCA 的平分线上,故点I 在△ABC 的内心,故选:B .例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yAC x ,y ∈R ,则x +y 的最大值为( )A.23B.6-65C.7-76D.8-227【答案】D【解析】如图:圆O 在边AB ,BC 上的切点分别为E ,F ,连接OE ,OF ,延长AO 交BC 于点D设∠OAB =θ,则cos A =cos2θ=1-2sin 2θ=34,则sin θ=24设AD =λAO =λxAB +λyAC∵B ,D ,C 三点共线,则λx +λy =1,即x +y =1λ1λ=AO AD =AO AO +OD ≤AO AO +OF =11+OF AO =11+OE AO=11+sin θ=11+24=8-227即x +y ≤8-227故选:D .题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN =NC ,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94【答案】B【解析】因为BN =NC ,则N 是BC 的中点,所以AN =12AB +12AC ,设外接圆的半径为r ,所以AO ⋅AN =AO ⋅12AC +12AB =12AO ⋅AC +12AO ⋅AB =12r ×3×cos ∠OAC +12r ×2×cos ∠OAB =12×3×32+12×2×1=134.故选:B .例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB =PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心【答案】A 【解析】PA =PB =PC 表示P 到A ,B ,C 三点距离相等,P 为外心.故选:A .例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA ⋅OB +OB ⋅OC +OC ⋅OA =( )A.4B.-4C.2D.-2【答案】B 【解析】∵直角△ABC 中,∠C =90°,AB =4,O 为△ABC 的外心,∴O 为AB 的中点,即OA =OB =2,∴OA +OB =0 且OA ⋅OB =|OA |⋅|OB |⋅cos180°=-4,∴OA ⋅OB +OB ⋅OC +OC ⋅OA =-4+OC ⋅(OA +OB )=-4+0=-4,故选:B .例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO =( )A.-12B.12C.-1D.23【答案】B【解析】因为点O 为△ABC 的外心,设AB 的中点为D ,连接OD ,则OD ⊥AB ,如图所以AB ⋅AO =AB ⋅(AD +DO )=AB ⋅AD +AB ⋅DO =12AB 2+0=12×12=12.故选:B .题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心【答案】D 【解析】HA 2+BC 2=HB 2+CA 2⇒HA 2+BH +HC 2=HB 2+CH +HA 2,得BH ⋅HC =CH ⋅HA ⇒HC ⋅BA =0,即HC ⊥BA ;HA 2+BC 2=HC 2+AB 2⇒HA 2+BH +HC 2=HC 2+AH +HB 2,得BH ⋅HC =AH ⋅HB ⇒BH ⋅AC =0,即BH ⊥AC ;HB 2+CA 2=HC 2+AB 2⇒HB 2+CH +HA 2=HC 2+AH +HB 2,CH ⋅HA =AH ⋅HB ⇒HA ⋅CB =0,即HA ⊥CB ,所以H 为△ABC 的垂心.故选:D .例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平面内,则下列说法正确的是( )A.若OA =OB =OC ,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC =0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC =0,则I 是△ABC 的垂心【答案】ABCD【解析】对A ,根据外心的定义,易知A 正确;对B ,PB ⋅PA -PC =PB ⋅CA =0⇒PB ⊥CA ,同理可得:PA ⊥CB ,PC ⊥AB ,所以P 是垂心,故B 正确;对C ,记AB 、BC 、CA 的中点为D 、E 、F ,由题意NA +NB =2ND =-NC ,则|NC |=2|ND |,同理可得:|NA |=2|NE |,|NB |=2|NF |,则N 是重心,故C 正确;对D ,由题意,CB ⊥IA ,AC ⊥IB ,BA ⊥IC ,则I 是垂心,故D 正确故选:ABCD .例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA +5HB +6HC =0 ,则cos ∠AHB =_____.【答案】-2211【解析】∵H 是△ABC 的垂心,∴HA ⊥BC ,HA ⋅BC =HA ⋅HC -HB =0,∴HA ⋅HB =HC ⋅HA ,同理可得,HB ⋅HC =HC ⋅HA ,故HA ⋅HB =HB ⋅HC =HC ⋅HA ,∵4HA +5HB +6HC =0 ,∴4HA 2+5HA ⋅HB +6HA ⋅HC =0,∴HA ⋅HB =-411HA 2,同理可求得HA ⋅HB =-12HB 2,∴cos ∠AHB =HB ⋅HA HB HA =-411HA 2HB HA ,cos ∠AHB =HB ⋅HA HB HA =-12HB 2HB HA,∴cos 2∠AHB =211,即cos ∠AHB =-2211.故答案为:-2211.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO =( )A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC 【答案】C【解析】设E ,F ,D 分别是AC ,AB ,BC 的中点,由于O 是三角形ABC 的重心,所以BO =23BE =23×AE -AB =23×12AC -AB =-23AB +13AC .故选:C .2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB 2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与ABAB cos B +AC ACcos C 共线【答案】B【解析】如图,设AB 中点为M ,则OM ⊥AB ,∴AO cos ∠OAM =AM ,∴AO ·AB =AO AB cos ∠OAB =AB AO cos ∠OAB =AB ⋅AB 2=12AB2,故A 正确;OA ·OB =OA ·OC 等价于OA ·OB -OC =0等价于OA ·CB =0,即OA ⊥BC ,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直,故B 错误;设BC 的中点为D ,则AG =23AD =13AB +AC =131λAE +1μAF =13λAE +13μAF ,∵E ,F ,G 三点共线,∴13λ+13μ=1,即1λ+1μ=3,故C 正确;AB AB cos B +AC AC cos C ⋅BC =AB ⋅BC AB cos B +AC ⋅BC AC cos C=AB BC cos π-B AB cos B +AC BC cos C AC cos C =-BC +BC =0,∴AB AB cos B +AC AC cos C与BC 垂直,又∵AH ⊥BC ,∴AB AB cos B +AC AC cos C与AH 共线,故D 正确.故选:B .3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD ,则3x +y =( )A.73B.2C.83D.3【答案】C【解析】如图,设AC 与BD 相交于点O ,由G 为△BCD 的重心,可得O 为BD 的中点,CG =2GO ,则AG =AO +OG =AO +13OC =43AO =43×12AB +AD =23AB +23AD ,可得x =y =23,故3x +y =83.故选:C .4.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.1【答案】B【解析】设△ABC 的重心为点G ,延长AG 交BC 于点M ,则M 为线段BC 的中点,因为D 、G 、E 三点共线,设DG =λDE ,即AG -AD =λAE -AD ,所以,AG =1-λ AD +λAE =1-λ xAB +λyAC ,因为M 为BC 的中点,则AM =AB +BM =AB +12BC =AB +12AC -AB =12AB +12AC ,因为G 为△ABC 的重心,则AG =23AM =13AB +13AC ,所以,1-λ x =λy =13,所以,1x +1y=31-λ +3λ=3.故选:B .5.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA +λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心B.内心C.重心D.垂心【答案】C【解析】取线段BC 的中点E ,则AB +AC =2AE .动点P 满足:OP =OA +λ(AB +AC ),λ>0,则OP -OA =2λAE 则AP =2λAE .则直线AP 一定通过△ABC 的重心.故选:C .6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC ,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或35【答案】D【解析】当O 在AC 上,则O 为AC 的中点,x =0,y =12满足2x +10y =5,符合题意,∴AB ⊥BC ,则cos ∠BAC =AB AC =35;当O 不在AC 上,取AB ,AC 的中点D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥AC ,则AB ⋅AO =AB AO cos ∠OAD =AB ×AO ×AD AO =12AB 2=18,同理可得:AC ⋅AO =12AC 2=50∵AB ⋅AO =AB ⋅xAB +yAC =xAB 2+yAB ⋅AC =36x +60y cos ∠BAC =18,AC ⋅AO =AC ⋅xAB +yAC =xAC ⋅AB +yAC 2=60x cos ∠BAC +100y =50,联立可得36x +60y cos ∠BAC =1860x cos ∠BAC +100y =502x +10y =5,解得x =14y =920cos ∠BAC =13 ,故选:D .7.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心【答案】D 【解析】因为PA ⋅PB=PB ⋅PC ,则PB ⋅PC -PA =PB ⋅AC =0,所以,PB ⊥AC ,同理可得PA ⊥BC ,PC ⊥AB ,故P 是△ABC 的垂心.故选:D .8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心【答案】A【解析】设AB 中点为D ,因为OA +OB +OC =0 ,所以OA +OB +OC =2OD +OC =0 ,即-2OD =OC ,因为OD ,OC有公共点O ,所以,O ,D ,C 三点共线,即O 在△ABC 的中线CD ,同理可得O 在△ABC 的三条中线上,即为△ABC 的重心;因为PA =PB=PC ,所以,点P 为△ABC 的外接圆圆心,即为△ABC 的外心综上,点O ,P 依次是△ABC 的重心,外心.故选:A9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP =OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】A【解析】根据题意,设BC 边的中点为D ,则AB +AC =2AD ,因为点P 满足OP =OA+λAB +AC ,其中λ∈R所以,OP -OA=AP =λAB +AC =2λAD ,即AP =2λAD ,所以,点P 的轨迹为△ABC 的中线AD ,所以,点P 的轨迹一定经过△ABC 的重心.故选:A10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO =13AB +13AC,则∠BAC 等于( )A.30°B.45°C.60°D.90°【答案】C【解析】依题意,因为AO =13AB +13AC ,所以O 也是△ABC 的重心,又因为O 是△ABC 的外心,所以△ABC 是等边三角形,所以∠BAC =60°.11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC +OC ⋅AB的最大值为( )A.1B.32C.3D.72【答案】C【解析】解:由题知,记△ABC 的三边为a ,b ,c ,因为O 是△ABC 的外心,记AB 中点为D ,则有OD ⊥AB ,所以OD ⋅AB =0且CD =12CA +CB ,所以AC ⋅BC +OC ⋅AB =CA ⋅CB +OD +DC ⋅AB =CA ⋅CB +OD ⋅AB +DC ⋅AB =CA ⋅CB -12CA +CB ⋅AB=CA ⋅CB -12CA +CB ⋅CB -CA=CA ⋅CB +12CA 2-CB 2=b ⋅a ⋅cos ∠ACB +12b 2-a 2=122ab +b 2-a 2 ①,在△ABC 中,由余弦定理得:cos ∠ACB =a 2+b 2-c 22ab =22,即a 2+b 2-c 2=2ab ,即a 2+b 2-2=2ab ,代入①中可得:AC ⋅BC +OC ⋅AB=b 2-1,在△ABC 中,由正弦定理得:a sin A=b sin B =csin C =222=2,所以b =2sin B ≤2,所以AC ⋅BC +OC ⋅AB=b 2-1≤3,当b =2,a =c =2,A =C =45∘,B =90∘时取等,故AC ⋅BC +OC ⋅AB的最大值为3.12.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO=λAB +μBC ,则λ+μ=( )A.23B.34C.56D.35【答案】C【解析】由AO =λAB +μBC 得AO =λOB -OA +μOC -OB ,则1-λ OA +λ-μ OB +μOC =0,因为O 为△ABC 的内心,所以BC OA +AC OB +AB OC =0,从而1-λ :λ-μ :μ=5:4:3,解得λ=712,μ=14,所以λ+μ=56.故选:C .13.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心【答案】D【解析】因为|OA |=|OB |=|OC |,所以OA =OB =OC ,所以O 为△ABC 的外心;因为MA ⋅MB =MB ⋅MC=MC ⋅MA ,所以MB ⋅(MA-MC )=0,即MB ⋅CA=0,所以MB ⊥AC ,同理可得:MA ⊥BC ,MC ⊥AB ,所以M 为△ABC 的垂心;因为NA +NB +NC =0 ,所以NA +NB =-NC ,设AB 的中点D ,则NA +NB =2ND,所以-NC =2ND,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND ,所以N 为△ABC 的重心.故选:D .14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB=OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA ,则点O ,P 依次是△ABC 的( )A.重心,垂心B.重心,内心C.外心,垂心D.外心,内心【答案】C【解析】由于OA =OB =OC ,所以O 是三角形ABC 的外心.由于PA ⋅PB =PB ⋅PC ,所以PA -PC ⋅PB =0,CA ⋅PB=0⇒CA ⊥PB ,同理可证得AB ⊥PC ,BC ⊥PA ,所以P 是三角形ABC 的垂心.故选:C二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =0【答案】BD【解析】对于A ,在△OAB 中,因为D 为AB 的中点,所以OD =12(OA +OB ),所以OA +OB =2OD ,所以A 正确,对于B ,因为△ABC 为正三角形,O 为△ABC 的重心,所以OA =OB =OC ,∠AOB =∠BOC =∠AOC =120°,设OA =OB =OC =a ,则OA ⋅OB +OB ⋅OC +OC ⋅OA =OA ⋅OB cos ∠AOB +OB ⋅OC cos ∠BOC +OC ⋅OAcos ∠AOC=a 2cos120°+a 2cos120°+a 2cos120°=-32a 2≠0,所以B 错误,对于C ,因为AO ⋅AB -AC =0,所以AO ⋅CB =0,所以AO ⊥CB,所以OA ⊥BC ,所以C 正确,对于D ,因为边AB ,BC ,CA 的中点分别为D ,E ,F ,所以OD =12(OA +OB ),OE =12(OB +OC ),OF =12(OA +OC),因为O 为△ABC 的重心,所以CO =2OD ,所以2OD =-OC,所以OD +OE +OF =12(OA +OB )+12(OC +OB )+12(OA+OC )=OA +OB +OC=2OD +OC=-OC +OC =0 ,所以D 错误,故选:BD16.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =0【答案】BCD【解析】对于A 选项,由题意可知,D 、E 、F 分别为BC 、AC 、AB 的中点,所以,AD =AB +12BC =AB +12AC -AB =12AB +AC ,同理可得BE =12BA +BC ,CF =12CA +CB,所以,AD +BE =12AB +AC +12BA +BC =12AC +BC =-CF ,A 错;对于B 选项,由重心的性质可知AD =32AO ,BE =32BO ,CF =32CO,由A 选项可知,AD +BE +CF =32AO +BO +CO =0,所以,MA +MB +MC =MO +OA +MO +OB +MO +OC =3MO -AO +BO +CO =3MO ,B 对;对于C 选项,由重心的性质可知OD =12AO ,OE =12BO ,OF =12CO ,所以,MD +ME +MF=MO +OD +MO +OE +MO +OF =3MO +12AO +BO +CO=3MO ,C 对;对于D 选项,BC ⋅AD =12AC -AB ⋅AC +AB =12AC 2-AB 2,同理可得CA ⋅BE =12BA 2-BC 2 ,AB ⋅CF =12CB 2-CA 2,因此,BC ⋅AD+CA ⋅BE +AB ⋅CF =0,D 对.故选:BCD .17.(2023秋·重庆渝北·高二重庆市两江育才中学校校考阶段练习)设O 为△ABC 的外心,且满足2OA+3OB +4OC =0 ,OA=1,则下列结论中正确的是( )A.OB ⋅OC =-78B.AB =62C.∠A =2∠CD.sin ∠A =14【答案】ABC【解析】有题意可知:OA =OB =OC =1.对于A :2OA +3OB +4OC =0 ⇒2OA =-3OB -4OC.两边同时平方得到:4OA 2=9OB 2+16OC 2+24OB ⋅OC.解得OB ⋅OC =-78,故A 正确.对于B :2OA +3OB +4OC =0 ⇒2OA -2OB =-5OB -4OC ⇒2AB =5OB +4OC.两边再平方得到:4AB 2=25OB 2+16OC 2+40OB ⋅OC.结合A 可得:AB =62.所以B 正确.对于C :2OA +3OB +4OC =0 ⇒3BO =2OA +4OC.两边平方得到:9BO 2=4OA 2+16OC 2+16OA OCcos ∠AOC .解得cos ∠AOC =-1116.同理可得cos ∠AOB =14,cos ∠BOC =-78.∵∠AOB =2∠C ,∠COB =2∠A .∴cos2∠C =14<12,所以π3<2∠C <π2,则2π3<4∠C <π,cos2∠A =-78<-22,所以3π4<2∠A <π,∵cos4∠C =2cos 22∠C -1=2×142-1=-78=cos2∠A ,2∠A =4∠C .∴∠A =2∠C .故C 正确;由cos2∠A =2cos 2∠A -1=-78,所以cos 2∠A =116,所以sin 2∠A =1516,所以sin ∠A =±154,显然sin ∠A =154,故D 错误.故选:ABC .18.(2023春·安徽淮北·高一淮北师范大学附属实验中学校考阶段练习)生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上.”这就是著名的欧拉线定理.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个选项中正确的是( )A.GH =2OGB.GA +GB +GC =0C.AH =2ODD.S △ABG =S △BCG =S △ACG【答案】ABCD【解析】在△ABC 中,O ,H ,G 分别是外心、垂心和重心,画出图形,如图所示.对于B 选项,根据三角形的重心性质由重心的性质可得G 为AD 的三等分点,且GA =-2GD ,又D 为BC 的中点,所以GB +GC =2GD ,所以GA +GB +GC =-2GD+GD =0 ,故选项B 正确;对于A 与C 选项,因为O 为△ABC 的外心,D 为BC 的中点,所以OD ⊥BC ,所以AH ∥OD ,∴△AHG ∽△DOG ,∴GH OG =AH OD =AGDG=2,∴GH =2OG ,AH =2OD ,故选项A ,C 正确;对于D ,过点G 作GE ⊥BC ,垂足为E ,∴△DEG ∽△DNA ,则GE AN =DG DA=13,∴△BGC 的面积为S △BGC =12×BC ×GE =12×BC ×13×AN =13S △ABC ;同理,S △AGC =S △AGB =13S △ABC ,选项D 正确.故选:ABCD19.(2023·全国·模拟预测)在△ABC 中,点D ,E 分别是BC ,AC 的中点,点O 为△ABC 内的一点,则下列结论正确的是( )A.若AO =OD ,则AO =12OB +OCB.若AO =2OD ,则OB =2EOC.若AO =3OD ,则OB =58AB +38ACD.若点O 为△ABC 的外心,BC =4,则OB ⋅BC=-4【答案】AB【解析】选项A :因为AO =OD ,所以O 为AD 中点,由题易知AO =OD =12OB +OC ,故A 正确.选项B :若AO =2OD ,则点O 为△ABC 的重心,(三角形重心的性质)则OB =2EO,故B 正确.选项C :若AO =3OD ,则OB =OD +DB =14AD +12CB =14×12AB +AC +12AB -AC=58AB -38AC,故C 错误.选项D :若点O 为△ABC 的外心,BC =4,则OD ⊥BC ,(三角形外心的性质)故OB ⋅BC =OD +DB ⋅BC =-12BC 2=-8,故D 错误.故选:AB20.(2023春·河北石家庄·高一统考期末)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,垂心为H ,重心为G ,且AB =3,AC =4,下列说法正确的是( )A.AH ⋅BC =0B.AG ⋅BC =-73 C.AO ⋅BC =72D.OH =OA +OB +OC【答案】ACD【解析】对于A 选项,由垂心的性质可知AH ⊥BC ,则AH ⋅BC=0,A 对;对于B 选项,设D 为BC 的中点,则AG =23AD,AD =AB +BD =AB +12BC =AB +12AC -AB =12AB +AC ,所以,AG =23AD =13AB +AC ,所以,AG ⋅BC =13AC +AB ⋅AC -AB =13AC 2-AB 2 =73,B错;对于C 选项,由外心的性质可知OB =OC ,则OD ⊥BC ,∴AO ⋅BC =AD +DO ⋅BC =AD ⋅BC =12AB +AC ⋅AC -AB =12AC 2-AB 2 =72,C 对;对于D 选项,由AH ⎳OD 得AH OD =AGGD=2,所以AH =2OD ,因为OD =OB +BD =OB +12BC =OB +12OC -OB =12OB +OC,所以OH -OA =AH =2OD =OB +OC ,即OH =OA +OB +OC,D 对.故选:ACD .三、填空题21.(2023秋·上海长宁·高二上海市延安中学校考期中)已知△ABC 的顶点坐标A -6,2 、B 6,4 ,设G 2,0 是△ABC 的重心,则顶点C 的坐标为_________.【答案】6,-6 【解析】设点C a ,b ,∵G (2,0)是△ABC 的重心,所以,-6+6+a 3=22+4+b 3=0,解得a =6b =-6 ,故点C 的坐标为6,-6 .故答案为:6,-6 .22.(2023秋·山西吕梁·高三统考阶段练习)设O 为△ABC 的外心,且满足2OA +3OB +4OC =0,OA=1,下列结论中正确的序号为______.①OB ⋅OC =-78;②AB =2;③∠A =2∠C .【答案】①③【解析】由题意可知:OA =OB =OC =1.①2OA +3OB +4OC =0 ,则2OA =-3OB -4OC ,两边同时平方得到:4=9+24OB ⋅OC +16,解得:OB ⋅OC =-78,故①正确.②2OA +3OB +4OC =0 ,则2OA -2OB =-5OB -4OC ,2BA =-5OB -4OC ,两边再平方得到:4AB 2=25+16+40OB ⋅OC=6.所以|AB =62,所以②不正确.③2OA +3OB +4OC =0 ,4OC =-3OB -2OA ,两边平方得到:16=9+4+12OA ⋅OB =13+12OA OB cos ∠AOB ,cos ∠AOB =14,∠AOB ∈0,π2,同理可得:cos ∠BOC =-78,∠BOC ∈π2,π ,∠AOB =2∠C ,∠COB =2∠A .故cos2C =14,cos2A =-78,且∠C ∈0,π4 ,∠A ∈π4,π2,cos4C =2cos 22C -1=2×14 2-1=-78=cos2A ,即∠A =2∠C .故③正确.故答案为:①③23.(2023·河北·模拟预测)已知O 为△ABC 的外心,AC =3,BC =4,则OC ⋅AB=___________.【答案】-72【解析】如图:E ,F 分别为CB ,CA 的中点,则OE ⊥BC ,OF ⊥AC∴OC ⋅AB =OC ⋅CB -CA =OC ⋅CB -OC ⋅CA=OE +EC ⋅CB -OF +FC ⋅CA=OE ⋅CB +EC ⋅CB -OF ⋅CA -FC ⋅CA=-12|CB |2--12|CA |2 =12CA |2- CB |2 =12×9-16 =-72.故答案为:-72.24.(2023秋·上海嘉定·高二上海市嘉定区第一中学校考期中)已知A 、B 、C 为△ABC 的三个内角,有如下命题:①若△ABC 是钝角三角形,则tan A +tan B +tan C <0;②若△ABC 是锐角三角形,则cos A +cos B <sin A +sin B ;③若G 、H 分别为△ABC 的外心和垂心,且AB =1,AC =3,则HG ⋅BC =4;④在△ABC 中,若sin B =25,tan C =34,则A >C >B ,其中正确命题的序号是___________.【答案】①②③④【解析】对于①,若△ABC 是钝角三角形,由tan C =-tan (A +B )=-tan A +tan B1-tan A tan B得tan A +tan B +tan C =tan A tan B tan C <0,故①正确,对于②,若△ABC 是锐角三角形,则A +B >π2,有0<π2-B <A <π2且0<π2-A <B <π2,则cos B =sin π2-B<sin A ,同理得cos A <sin B ,故cos A +cos B <sin A +sin B ,故②正确,对于③,由HG ⋅BC =(AG -AH )⋅BC =AG ⋅(AC -AB )=12(AC 2-AB 2)=4,故③正确,对于④,若sin B =25,tan C =34,则sin C =35,sin B <sin C <22,则B <C <π4,故A >π2>C >B ,故④正确,故答案为:①②③④25.(2023秋·天津南开·高三南开大学附属中学校考开学考试)在△ABC 中,AB =3,AC =5,点N 满足BN =2NC ,点O 为△ABC 的外心,则AN ⋅AO 的值为__________.【答案】596【解析】分别取AB ,AC 的中点E ,F ,连接OE ,OF ,因为O 为△ABC 的外心,∴OE ⊥AB ,OF ⊥AC ,∴AB ⋅OE =0,AC ⋅OF =0,∵BN =2NC ,∴BN =23BC ,∴AN =AB +BN =AB +23BC =AB +23(AC -AB )=13AB +23AC ,∴AO ⋅AB =12AB +EO ⋅AB =12AB 2=92,AO ⋅AC =12AC +FO ⋅AC =12AC 2=252,∴AN ⋅AO =13AB +23AC ⋅AO =13AB ⋅AO +23AC ⋅AO =13×92+23×252=596故答案为:59626.(2023·全国·高三专题练习)已知G 为△ABC 的内心,且cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,则∠A =___________.【答案】π3【解析】首先我们证明一个结论:已知O 是△ABC 所在平面上的一点,a ,b ,c 为△ABC 的三边长,若a ⋅OA +b ⋅OB +c ⋅OC =0 ,则O 是△ABC 的内心.证明:OB =OA +AB ,OC =OA +AC ,则a ⋅OA +b ⋅OB +c ⋅OC =0 ⇔(a +b +c )⋅OA +b ⋅AB +c ⋅AC =0 ,等式两边同时除以a +b +c 得,AO =bc a +b +c AB |AB |+AC |AC | ,AB |AB |表示AB 方向上的单位向量,同理AC |AC |表示AC 方向上的单位向量,则由平行四边形定则可知bc a +b +c AB |AB |+AC |AC |表示∠BAC 的角平分线方向上的向量,则AO 为∠BAC 的角平分线,同理BO 、CO 分别为∠ABC ,∠ACB 的角平分线,所以O 是△ABC 的内心.于是我们得到本题的一个结论aGA +bGB +cGC =0 .又∵cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,∴由正弦定理与题目条件可知sin A :sin B :sin C =a :b :c =cos A :cos B :cos C .由sin A :sin B =cos A :cos B 可得sin A cos B -cos A sin B =sin (A -B )=0,可得A =B ,同理可得B =C ,C =A ,即A =B =C =π3.故答案为:π3.27.(2023·全国·高三专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为______.【答案】3-32【解析】延长AO 交BC 于D ,设BC 与圆O 相切于点E ,AC 与圆O 相切于点F ,则OE =OF ,则OE ≤OD ,设AD =λAO =λxAB +λyAC ,因为B 、C 、D 三点共线,所以λx +λy =1,即x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE OA =11+OF OA=11+sin A 2,因为cos A =1-2sin 2A 2=13,0<A <π,0<A 2<π2,所以sin A 2=33,所以x +y ≤11+33=3-32.故答案是:3-3228.(2023·全国·高三专题练习)设I 为△ABC 的内心,若AB =2,BC =23,AC =4,则AI ⋅BC =___________【答案】6-23【解析】解法1:不难发现,△ABC 是以B 为直角顶点的直角三角形,如图,设圆I 与AB 、AC 、BC 分别相切于点D 、E 、F ,设圆I 的半径为r ,则ID =IE =IF =r ,显然四边形BDIF 是正方形,所以BD =BF =r ,从而AD =2-r ,CF =23-r ,易证AE =AD ,CE =CF ,所以AE =2-r ,CE =23-r ,故AE +CE =2+23-2r =AC =4,从而r =3-1,AD =2-r =3-3,AI ⋅BC =AI ⋅AC -AB =AI ⋅AC -AI ⋅AB =AI ⋅AC ⋅cos ∠IAC -AI ⋅AB ⋅cos ∠IAB=AE ⋅AC -AD ⋅AB =AD AC -AB =2AD =6-23.故答案为:6-23.解法2:按解法1求得△ABC 的内切圆半径r =3-1,由图可知AI在BC 上的投影即为3-1,所以AI ⋅BC =3-1 ×23=6-23.故答案为:6-23.。
三角形“四心”向量形式的充要条件应用在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。
现归纳总结如下:一. 知识点总结 1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++4)O 是内心ABC ∆的充要条件是|CB |CB |CA |CA OC |BC |BC |BA |BA OB ACAC |AB |AB OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成:0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅ O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);二. 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心BCHA图6解析:因为ABAB 是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.点评:这道题给人的印象当然是“新颖、陌生”,首先ABAB 是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。
三角形的外心、内心、重心、垂心• 三角形的外心定义:三角形外接圆的圆心叫做三角形的外心.三角形外接圆的圆心也就是三角形三边垂直平分线的交点,三角形的三个顶点就在这个外接圆上.性质:三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径.用三角形的三边和面积表示外接圆半径的公式R =—公式中Q,b,c是这三角形的三条边,s为三角形的面积.证明:例题精讲一、求三角形的外接圆的半径1、直角三角形如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边.例1已知:在ZiABC中,AB=13, BC=12, AC=5,求ZiABC的外接圆的半径.2、一般三角形①已知一角和它的对边例2如图,在AABC中,AB=10, ZC=100° ,求△ABC外接圆。
的半径.(用三角函数表示)例3 如图,已知,在ZiABC 中,AB=10, ZA=70° , ZB=50°求△ABC外接圆。
的半径.②已知两边夹一角例4 如图,已知,在ZSABC 中,AC=2, BC = 3, ZC =60°③已知三边例5如图,已知,在&\BC中,AC=13, BC=14, AB = 15,求八人日。
外接圆。
的半径.• 三角形的内切圆定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心性质:内心到三角形三边的距离相等;内心与顶点连线平分内角. 内切圆半径;2V一般三角形中,r= -------- (S 为三角形面积)a + Z? + cRt △中,~- (a,b 为直角边,c 为斜边) 2例题精讲:探索1:如图,在△ABC 中,点0是内心,ZABC=50° , ZACB=7 0 °变式1:在AABC 中,点。
是内心,ZBAC=50° ,求NBOC 的度数.变式2:在△ABC 中,点。
是内心,ZB0C=120° ,求ZBAC 的度数.探索2:.已知△ABC 的三边长分别为a, b, c,它的内切圆半径为r,你会求△ABC 的面积吗?探索3:如图,直角三角形的两直角边分别是a, b,斜边为c 求其内切圆的半径r 和外接圆 半径R.,求ZBOC 的度数.AB二、求三角形的内切圆的半径1、直角三角形例已知:在AABC 中,ZC = 90° , AC=b, BC = a, AB=c 求AABC外接圆。
高中知识背景下的三角形“四心”问题
三角形是一个重要的基本几何模型,它的相关性质可以被广泛地应用于解决多种问题,也经常作为重要考察点出现在各大考试中.除了最常用的边长和差不等式及内角和关系,三角形四心(指三角形的重心.外心、内心、垂心)的相关性质也是高中三角形问题中的高频考点.高中阶段,相关考题常常在平面向量、立体几何和解析几何的背景下考察三角形“四心”的性质,要求学生在深入理解四心概念的基础上灵活运用其性质进行转化和化归,学生在这类考题的表现上往往不甚理想,主要在两个方面存在较大问题:其一,混淆基本概念,部分学生由于不理解“四心”的来历而对四心的基本概念没有足够清晰的认知,常常在遇到具体问题时将四者混淆,例如部分学生会将重心(中线的交点)、垂心(高的交点)、内心(角平分线的交点) 与外心(垂直平分线的交点) 混淆起来;其二,不能灵活地将四心的性质与新知识结合起来,学生可能清楚四心的基本概念和性质,却不能灵活地将其与问题背景知识(如向量) 结合起来.
因此,笔者对向量、立体几何和解析几何背景下的三角形四心的常用结论和经典例题进行汇总整理望能给各位读者一定的帮助.。
立体几何中三角形的四心问题一、外心问题(若PA=PB=PC,则O 为三角形ABC 的 外心)例1.设P 是ΔABC 所在平面α外一点,若PA ,PB ,PC 与平面α所成的角都相等,那么P 在平面α内的射影是ΔABC 的( )A.内心B.外心C.垂心D.重心如图所示,作PO ⊥平面α于O ,连OA 、OB 、OC ,那么∠PAO 、∠PBO 、∠PCO 分别是PA 、PB 、PC 与平面α所成的角,且已知它们都相等.∴Rt ΔPAO ≌Rt ΔPBO ≌Rt ΔPCO. ∴OA =OB =OC ∴应选B.例2. Rt △ABC 中,∠C =90°,BC =36,若平面ABC 外一点P 与平面A ,B ,C 三点等距离,且P 到平面ABC 的距离为80,M 为AC 的中点.(1)求证:PM ⊥AC ;(2)求P 到直线AC 的距离;(3)求PM 与平面ABC 所成角的正切值.解析:点P 到△ABC 的三个顶点等距离,则P 在平面ABC 内的射影为△ABC 的外心,而△ABC 为直角三角形,其外心为斜边的中点.证明 (1)∵PA =PC ,M 是AC 中点,∴PM ⊥AC解 (2)∵BC =36,∴MH =18,又PH =80,∴PM =8218802222=+=+MH PH ,即P 到直线AC 的距离为82; (3)∵PM=PB=PC ,∴P 在平面ABC 内的射线为△ABC 的外心,∵∠C=90° ∴P 在平面ABC 内的射线为AB 的中点H 。
∵PH ⊥平面ABC ,∴HM 为PM 在平面ABC 上的射影,则∠PMH 为PM 与平面ABC 所成的角,∴tan ∠PMH =9401880==MH PH 例3.斜三棱柱ABC —A 1B 1C 1的底面△ABC 中,AB=AC=10,BC=12,A 1到A 、B 、C 三点的距离都相等,且AA1=13,求斜三棱柱的侧面积。
解析:∵A 1A=A 1B=A 1C∴ 点A 1在平面ABC 上的射影为△ABC 的外心,在∠BAC 平分线AD 上 ∵ AB=AC ∴ AD ⊥BC∵ AD 为A 1A 在平面ABC 上的射影∴ BC ⊥AA 1 ∴ BC ⊥BB 1∴ BB 1C 1C 为矩形,S=BB 1×BC=156取AB 中点E ,连A 1E∵ A 1A=A 1B ∴ A 1E ⊥AB∴ 12)2AB (AA E A 2211=-= ∴ 1111120AA C C AA B B S S ==∴ S 侧=396二、内心问题(若P 点到三边AB,BC,CA 的距离相等,则O 是三角形ABC 的 内心)例4.如果三棱锥S —ABC 的底面是不等边三角形,侧面与底面所成的角都相等,且顶点S 在底面的射影O 在ΔABC 内,那么O 是ΔABC 的( )A.垂心B.重心C.外心D.内心解 (1)利用三垂线定理和三角形全等可证明O 到ΔABC 的三边的距离相等,因而O 是ΔABC 的内心,因此选D.说明三角形的内心、外心、垂心、旁心、重心,它们的定义和性质必须掌握.质找出与平面平行的直线。
三角形的外心、内心、重心、垂心
序号名
称
定义图形性质
1 三
角
形
的
外
心
三角形的三条边
的垂直平分线交
于一点,这点称
为三角形的外心
(外接圆圆心)
1.三角形的外心到三角形的三个顶点距
离相等.都等于三角形的外接圆半径;
2.锐角三角形的外心在三角形内;
直角三角形的外心在斜边中点;
钝角三角形的外心在三角形外
2 三
角
形
的
内
心
三角形的三条内
角平分线交于一
点,这点称为三
角形的内心(内
切圆圆心)
1.三角形的内心到三边的距离相等,都等
于三角形内切圆半径;
2.直角三角形的内心到边的距离等于两
直角边的和减去斜边的差的二分之一
3 三
角
形
的
重
心
三角形的三条中
线交于一点,这
点称为三角形的
重心
1.三角形的重心到边的中点与到相应顶
点的距离之比为 1∶ 2;
2.重心和三角形3个顶点组成的3个三角
形面积相等;
3.重心到三角形3个顶点距离的平方和最
小
4 三
角
形
的
垂
心
三角形的三条高
交于一点,这点
称为三角形的垂
心
1.三角形任一顶点到垂心的距离,等于外
心到对边的距离的2倍;锐角三角形的垂
心到三顶点的距离之和等于其内切圆与
外接圆半径之和的2倍;
2.锐角三角形的垂心在三角形内;直角三
角形的垂心在直角顶点上;钝角三角形的
垂心在三角形外
A
B C
O
I
K
H
E
F
D
A
B C
M
A
B
C
D
E
F
G
A B
C
D
E
F
O
三角形的外心
定义:三角形外接圆的圆心叫做三角形的外心.三角形外接圆的圆心也就是三角形三边垂直平分线的交点,三角形的三个顶点就在这个外接圆上.
性质:三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径. 用三角形的三边和面积表示外接圆半径的公式
S
R 4abc
公式中 是这三角形的三条边,S 为三角形的面积.
证明:
例题精讲
一、求三角形的外接圆的半径 1、直角三角形
如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 例1已知:在△ABC 中,AB =13,BC =12,AC =5,求△ABC 的外接圆的半径.
2、一般三角形
①已知一角和它的对边
例2如图,在△ABC 中,AB =10,∠C =100°,求△ABC 外接圆⊙O 的半径. (用三角函数表示)
C
O
C
O
例3如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50° 求△ABC 外接圆⊙O 的半径.
②已知两边夹一角
例4如图,已知,在△ABC 中,AC =2,BC =3,∠C =60° 求△ABC 外接圆⊙O 的半径. .
③已知三边
例5如图,已知,在△ABC 中,AC =13,BC =14,AB =15,求△ABC 外接圆⊙O 的半径.
A
B
C
O
D
A
B
C
O
D E A
B
C
O
D E
三角形的内切圆
定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
内心性质:内心到三角形三边的距离相等;内心与顶点连线平分内角. 内切圆半径;
一般三角形中,r=c b S
++a 2(S 为三角形面积)
Rt △中,r=2
b c
a -+(a,
b 为直角边,
c 为斜边)
例题精讲:
探索1:如图,在△ABC 中,点O 是内心,∠ABC=50°,∠ACB =70°,求∠BOC 的度数.
变式1:在△ABC 中,点O 是内心,∠BAC=50°,求∠BOC 的度数.
变式2:在△ABC 中,点O 是内心,∠BOC=120°,求∠BAC 的度数.
探索2:.已知△ABC 的三边长分别为a ,b ,c ,它的内切圆半径为r ,你会求△ABC 的面积吗?
探索3:如图,直角三角形的两直角边分别是a ,b,斜边为c 求其内切圆的半径r和外接圆半径R.
二、求三角形的内切圆的半径 1、直角三角形
例 已知:在△ABC 中,∠C =90°,AC =b ,BC =a ,AB =c 求△ABC 外接圆⊙O 的半径.
2、一般三角形 ①已知三边
例 已知:如图,在△ABC 中,AC =13,BC =14,AB =15
求△ABC 内切圆⊙O 的半径r.
②已知两边夹一角
例 已知:如图,在△ABC 中,sin ∠B=5
3
,AB =5,BC =6 求△ABC 内切圆⊙O 的半径r.
A
B
C
O
E D
b
c
a A B
C
O E F
D
A
B
C
O
D
③已知两角夹一边
例 已知:如图,在△ABC 中,∠B =60°,∠C =45°,BC =6 求△ABC 内切圆⊙O 的半径r.(精确到0.1)
总之,只要通过边、角能确定三角形,就可以借鉴上面的方法求出这个三角形的外接圆和内切圆的半径.
三角形的重心
三角形重心是三角形三条中线的交点. 性质:
1.重心到顶点的距离与重心到对边中点的距离之比为2:1.
2.重心和三角形3个顶点组成的3个三角形面积相等.
3.重心到三角形3个顶点距离的平方最小.
例:已知:△ABC ,E 、F 是AB ,AC 的中点.EC 、FB 交于G. 求证:EG=1/2CG
A
B
C
O D
例:在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线.根据重心性质知:
例题精讲:
⑴求线段长
例如图3所示,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,当G是Rt△ABC 的重心,GE⊥AC于点E,若BC=6cm,则GE= cm.
解:
⑵求面积
例在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积.
解:
如图,若G 是ABC ∆的重心,且GH ∥BC ,则GH:BC=
如图,若G 是ABC ∆的重心,且GE ∥,CB GF ∥AB ,则=∆GEBF
四边形S S ABC。