行列式按行列展开法则
- 格式:ppt
- 大小:141.00 KB
- 文档页数:8
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x yyx; 2)111111121n n----; 3)121111n n na a xD a xa x---=-.解 1)按1c 展开得原式1111111(1)(1)n n n n n n n xA yA xxy y x y -+-+=+=+-=+-. 2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=按展开. 3)法1 按1r 展开得()112112121223121211(,,,)(,,)(,,).()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++=法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x x M x x x x-----==---.将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑ .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++12121n n n n a x a x a x a ---=++++ . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得111212121.n n n nn n n n n n n n n n D a A xA a xD a a x xD a x a x a x a ------=+=+=++==++++定理3.2 当i j ≠时, 11220i j i j in jn a A a A a A +++= ;11220i j i j ni nj a A a A a A +++= . 注 1122||A i j i j in jn ij a A a A a A +++= δ, 1122||A i j i j ni nj ij a A a A a A +++= δ,其中1,;0,ij i j i j=⎧=⎨≠⎩当当δ为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数1,;(,)0,.x y f x y x y =⎧=⎨≠⎩当当 显然(,)xy f x y =δ.2)diag(1,1,,1)[]ij n n ⨯= δ.例3.4 设四阶行列式1212211220211234D =. 1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号1,;0,.ij i j i j <⎧=⎨>⎩当当ρ 例3.5 1)若正整数i j ≠,则1.ij ji +=ρρ2)仿克罗内克符号有缺项定位功能. 在序列124567,,,,,a a a a a a 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列12467,,,,a a a a a中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式122131121(,,,)()()()(,,)().n n n j i i j nV a a a a a a a a a V a a a a ≤<≤=---=-∏例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcd b b acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++ .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫ ⎪⎝⎭ 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=- ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵;2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++ .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =;2)112111nn n nna b a b D e c d c d +=.。
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则1122||(1,2,,)A i i i i in in a A a A a A i n =+++=L L ; 2)按一列展开法则1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++=L L . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x y yxO O; 2)111111121n n----O OL ; 3)121111n n n a a x D a x a x---=-M O O .解 1)按1c 展开得原式1111111(1)(1)n n n n n nn xA yA xx y y x y -+-+=+=+-=+-.2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=L L 按展开. 3)法1 按1r 展开得法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x xM x x xx-----==---O OO O. 将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑L .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++M O OL L L12121n n n n a x a x a x a ---=++++L . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得 定理3.2 当i j ≠时,11220i j i j in jn a A a A a A +++=L ;11220i j i j ni nj a A a A a A +++=L . 注 1122||A i j i j in jn ij a A a A a A +++=L δ, 1122||A i j i j ni nj ij a A a A a A +++=L δ,其中为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数显然(,)xy f x y =δ. 2)diag(1,1,,1)[]ij n n ⨯=L δ.例3.4 设四阶行列式1212211220211234D =.1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号例3.5 1)若正整数i j ≠,则2)仿克罗内克符号有缺项定位功能. 在序列 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列 中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑L τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcdbb acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++O OO .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫⎪⎝⎭L L 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=-L L ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵; 2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫ ⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++L .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =ONN O;2)112111nn n nna b a b D e c d c d +=ONN O.。
行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则1122||(1,2,,)A i i i i in in a A a A a A i n =+++=L L ; 2)按一列展开法则1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++=L L . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x y yxO O; 2)111111121n n----O OL ; 3)121111n n n a a x D a x a x---=-M O O .解 1)按1c 展开得原式1111111(1)(1)n n n n n nn xA yA xx y y x y -+-+=+=+-=+-.2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=L L 按展开. 3)法1 按1r 展开得()112112121223121211(,,,)(,,)(,,).()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++=L L L LL法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x xM x x xx-----==---O OO O. 将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑L .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++M O OL L L12121n n n n a x a x a x a ---=++++L . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得111212121.n n n nn n n n n n n n n n D a A xA a xD a a x xD a x a x a x a ------=+=+=++==++++L L定理3.2 当i j ≠时,11220i j i j in jn a A a A a A +++=L ;11220i j i j ni nj a A a A a A +++=L . 注 1122||A i j i j in jn ij a A a A a A +++=L δ, 1122||A i j i j ni nj ij a A a A a A +++=L δ,其中1,;0,ij i j i j=⎧=⎨≠⎩当当δ为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数1,;(,)0,.x y f x y x y =⎧=⎨≠⎩当当 显然(,)xy f x y =δ.2)diag(1,1,,1)[]ij n n ⨯=L δ.例3.4 设四阶行列式1212211220211234D =.1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号1,;0,.ij i j i j <⎧=⎨>⎩当当ρ 例3.5 1)若正整数i j ≠,则1.ij ji +=ρρ2)仿克罗内克符号有缺项定位功能. 在序列124567,,,,,a a a a a a 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列12467,,,,a a a a a中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑L τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式122131121(,,,)()()()(,,)().n n n j i i j nV a a a a a a a a a V a a a a ≤<≤=---=-∏L L L例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcdbb acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b abD a b aba b++=++O O O. 二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫⎪⎝⎭L L 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=-L L ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵; 2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫ ⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++L .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式12000035000635475124583240064270034D -=-. 例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =ONN O;2)112111nn n nna b a b D e c d c d +=ON N O.。
行列式按行列展开定理行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ija 外都为0,则这个行列式等于ij a 与它的代数余子式乘积:ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
行列式展开定理行列式展开定理是线性代数中的重要定理之一,它是计算行列式的一个有效方法。
行列式是一个与矩阵相关的数值,它对于矩阵的性质和变换具有重要的作用。
行列式展开定理的全称为“按某一行(列)展开”,它是通过一系列代数运算将一个n阶行列式转化为n-1阶行列式来计算行列式的方法。
设A是一个n阶矩阵,其行列式用det(A)表示。
行列式展开定理可以按任意一行或一列展开,我以按行展开为例。
设A的第i行的元素为a[i1]、a[i2]、……、a[in],则根据行列式展开定理,行列式的展开可以表示为如下形式:det(A) = a[i1]∙A[i1] + a[i2]∙A[i2] + … +a[in]∙A[in]其中A[i]表示经过去掉第i行和第j列后的(n-1)阶子矩阵的行列式。
我们可以继续展开每个A[i],直到展开到2阶行列式或者1阶行列式为止。
对于2阶行列式,计算公式为:det(B) = b11∙b22 - b12∙b21其中B是2阶矩阵,b11、b12、b21、b22为矩阵B的元素。
对于1阶行列式,计算公式为:det(C) = c11其中C是一个1阶矩阵,c11为矩阵C的元素。
通过不断展开每个子矩阵,并根据2阶和1阶行列式的计算公式,我们最终可以将n阶行列式的计算转化为一系列的代数计算,从而得到行列式的具体数值。
行列式展开定理的应用非常广泛,例如在解线性方程组、求逆矩阵、计算行列式的值等方面都有重要的作用。
它不仅可以帮助我们更深入地理解矩阵的性质,还能够为我们提供一种高效的计算方法。
总之,行列式展开定理是线性代数中的重要定理之一,它通过一系列代数运算将n阶行列式转化为n-1阶行列式来计算行列式的值,具有广泛的应用价值。
行列式按行列展开法则1、三角形行列式的值,等于对角线元素的乘积。
计算时,一般需要多次运算来把行列式转换为上三角型或下三角型。
2、交换行列式中的两行(列),行列式变号。
3、行列式中某行(列于)的公因子,可以明确提出放在行列式之外。
4、行列式的某行乘以a,加到另外一行,行列式不变,常用于消去某些元素。
5、若行列式中,两行(列于)全然一样,则行列式为0;可以推断,如果两行(列于)成比例,行列式为0。
6、行列式展开:行列式的值,等于其中某一行(列)的每个元素与其代数余子式乘积的和;但若是另一行(列)的元素与本行(列)的代数余子式乘积求和,则其和为0。
7、在解代数余子式有关问题时,可以对行列式展开值替代。
8、克拉默法则:利用线性方程组的系数行列式求解方程。
9、齐次线性方程组:在线性方程组等式右侧的常数项全部为0时,该方程组称作齐次线性方程组,否则为非齐次线性方程组。
齐次线性方程组一定存有零求解,但不一定存有非零求解。
当d=0时,存有非零求解;当d!=0时,方程组无非零求解。
行列式性质①行列式a中某行(或列于)用同一数k乘,其结果等同于ka。
②行列式a等于其转置行列式at(at的`第i行为a的第i列)。
③若n阶行列式|αij|中某行(或列于);行列式则|αij|就是两个行列式的和,这两个行列式的第i行(或列于),一个就是b1,b2,…,bn;另一个就是с1,с2,…,сn;其余各行(或列于)上的元与|αij|的全然一样。
④行列式a中两行(或列)互换,其结果等于-a。
⑤把行列式a的某行(或列于)中各元同乘一数后加进另一行(或列于)中各对应元上,结果仍然就是a。
行列式的行(列)展开定理
行(列)展开定理用于分析行列式的结构,它表明行列式的值可以从各行(列)中求出。
行展开定理的证明以行列式的一行为基础,将该行中的元素看作常数,把它们乘以该行中的未知数,然后做加法运算,得出了行列式的值。
公式表示为a(1,1)x(1)+a(1,2)x(2)+...+a(1,n)x(n)=|A|,其中a(1,1)~a(1,n)表示第一行的元素,x(1)~x(n)表示第一行未知数,|A|表示行列式A的值。
同样,列展开定理用列来求出行列式的值,其公式为
a(1,1)x(1)+a(2,1)x(2)+...+a(n,1)x(n)=|A|,其中a(1,1)~a(n,1)表示第一列的元素,x(1)~x(n)表示第一列未知数,|A|表示行列式A的值。
相比于行展开定理,列展开定理更容易理解,理论上它们是均有用的,但由于行列式结构的不规则性,有时列展开定理比行展开定理更加有效,避免了因展开完毕后加法操作量过大而需要累加回路的结果。
总之,行(列)展开定理是一种分析行列式结构的基本方法,它既可以用来求出行列式的值,也可以用来求出未知数。
它丰富了行列式计算的方法,被广泛用于各种电子计算机的程序设计和机器算法中,为工程实际应用和科学研究提供了有力帮助。
矩阵论基础1.2⾏列式按⾏展开
第⼆节⾏列式按⾏展开
计算三阶⾏列式时有如下规律:
,,
把所在的⾏和列都划掉,剩下的元素保持原来的相对位置不变⽽构成的新⾏列式称为元素的余⼦式,记作。
记
上述三阶⾏列式可记为
即,三阶⾏列式等于它的第⼀⾏的每个元素与其对应代数余⼦式的乘积之和。
如果定义⼀阶⾏列式,则上述展开规律同样适⽤于⼆阶⾏列式,即
例3 按第⼀⾏展开计算⾏列式
解
⾏列式按第⼀⾏展开规律还可以类推为如下定理:
定理1 三阶⾏列式等于它的任⼀⾏(或列)的每个元素与它对应的代数余⼦式的乘积之和即
或
例如,例3中的⾏列式按第⼆⾏展开为
按第三列展开为
例4 计算⾏列式
解第⼆列有两个元素为零,按第⼆列展开较好。
行列式按行列展开法则行列式是线性代数中的一个重要概念,它是一个数学对象,用于描述矩阵的性质和特征。
行列式按行列展开法则是计算行列式的一种方法,它可以帮助我们快速准确地求解任意阶行列式的值。
本文将介绍行列式按行列展开法则的基本原理和具体计算步骤。
1. 行列式的定义在介绍行列式按行列展开法则之前,首先需要了解行列式的定义。
一个n阶方阵A的行列式记作|A|,它是一个数值,表示由矩阵A的元素所确定的一个量。
对于2阶矩阵:A = |a11 a12||a21 a22|其行列式的计算公式为:|A| = a11 * a22 - a12 * a21对于3阶矩阵:A = |a11 a12 a13||a21 a22 a23||a31 a32 a33|其行列式的计算公式为:|A| = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a13 * a22 * a31 - a11 * a23 * a32 - a12 * a21 * a33对于n阶矩阵,行列式的计算公式较为复杂,因此需要借助行列式按行列展开法则来简化计算过程。
2. 行列式按行列展开法则的基本原理行列式按行列展开法则是通过递归的方式将一个n阶行列式的计算问题转化为n-1阶行列式的计算问题,从而简化计算过程。
具体来说,对于一个n阶矩阵A,其行列式的计算可以按照以下步骤进行:(1)选择矩阵A的第i行(或第j列)进行展开,记作Ai (或Aj);(2)对于展开后的行列式Ai(或Aj),将其每个元素乘以对应的代数余子式,并加上符号因子后相加,得到展开后的行列式的值。
符号因子的计算规则为:若i+j为偶数,则符号因子为正号;若i+j为奇数,则符号因子为负号。
通过以上步骤,可以将一个n阶行列式的计算问题转化为n-1阶行列式的计算问题,从而简化计算过程。
3. 行列式按行列展开法则的具体计算步骤接下来,我们以一个3阶矩阵的行列式为例,介绍行列式按行列展开法则的具体计算步骤。