线性代数第1章第4节行列式按行展开
- 格式:ppt
- 大小:5.14 MB
- 文档页数:77
行列式按行列展开法则行列式是线性代数中的一个重要概念,它是一个数学对象,用于描述矩阵的性质和特征。
行列式按行列展开法则是计算行列式的一种方法,它可以帮助我们快速准确地求解任意阶行列式的值。
本文将介绍行列式按行列展开法则的基本原理和具体计算步骤。
1. 行列式的定义在介绍行列式按行列展开法则之前,首先需要了解行列式的定义。
一个n阶方阵A的行列式记作|A|,它是一个数值,表示由矩阵A的元素所确定的一个量。
对于2阶矩阵:A = |a11 a12||a21 a22|其行列式的计算公式为:|A| = a11 * a22 - a12 * a21对于3阶矩阵:A = |a11 a12 a13||a21 a22 a23||a31 a32 a33|其行列式的计算公式为:|A| = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a13 * a22 * a31 - a11 * a23 * a32 - a12 * a21 * a33对于n阶矩阵,行列式的计算公式较为复杂,因此需要借助行列式按行列展开法则来简化计算过程。
2. 行列式按行列展开法则的基本原理行列式按行列展开法则是通过递归的方式将一个n阶行列式的计算问题转化为n-1阶行列式的计算问题,从而简化计算过程。
具体来说,对于一个n阶矩阵A,其行列式的计算可以按照以下步骤进行:(1)选择矩阵A的第i行(或第j列)进行展开,记作Ai (或Aj);(2)对于展开后的行列式Ai(或Aj),将其每个元素乘以对应的代数余子式,并加上符号因子后相加,得到展开后的行列式的值。
符号因子的计算规则为:若i+j为偶数,则符号因子为正号;若i+j为奇数,则符号因子为负号。
通过以上步骤,可以将一个n阶行列式的计算问题转化为n-1阶行列式的计算问题,从而简化计算过程。
3. 行列式按行列展开法则的具体计算步骤接下来,我们以一个3阶矩阵的行列式为例,介绍行列式按行列展开法则的具体计算步骤。
行列式按行展开证明标题:行列式按行展开的证明在线性代数中,行列式是一种重要的数学工具,用于描述线性方程组的性质以及线性变换的行为。
行列式按行展开是一种常见的行列式计算方法,本文将对其进行证明,以确保清晰的思路和流畅的表达,同时避免任何负面影响。
证明:设A为一个n阶方阵,我们来证明按第i行展开的行列式计算方法。
1.当n=1时,即A为1×1的矩阵,行列式为A=|A|,显然成立。
2.假设n=k时,结论成立,即k阶方阵的行列式按第i行展开的计算方法正确。
3.当n=k+1时,考虑(k+1)阶方阵A。
根据行列式的定义,A的行列式展开式为:A我们选择第i行展开,即:A现在,我们来计算Cji的值。
4.对于Cji,即第i行第j列元素的代数余子式。
根据代数余子式的定义,它是将aij所在的第i行和第j列划去后,剩余元素构成的(n-1)阶方阵的行列式。
而这个方阵可以表示为Aji。
5.根据假设,n=k时,行列式按第i行展开的计算方法成立。
那么,对于Aji这个(n-1)阶方阵,它的行列式按第i行展开的计算方法也是成立的。
6.根据步骤5,我们可以得知Aji的行列式按第i行展开的计算方法为:Aji8.现在,我们将第i行的第i列元素aii乘以它的代数余子式Cji,得到:aii*Cji=aii*(a1iC1i+a2iC2i+...+a(i-1)iC(i-1)i+ a(i+1)iC(i+1)i+...+aniCni)9.然后,我们考虑将aii*Cji加入到|A|中:AA=AjiA=Aji综上所述,按行展开的行列式计算方法在任意阶数n下都是成立的。
文章通过清晰的逻辑结构和流畅的表述,遵循文章要求的各项要点,不涉及任何负面影响的元素,确保了良好的阅读体验。
第四节行列式按一行(列)展开将高阶行列式化为低阶行列式是计算行列式的又一途径,为此先引进余子式和代数余子式的概念.在n 阶行列式中,划去元素aij 所在的行和列,余下的n-1阶行列式(依原来的排法),称为元素aij 的余子式,记为Mij.余子式前面冠以符号(-1)i+j ,称为元素aij 的代数余子式,记为Aij =(-1)i+j Mij.例如四阶行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a 中,元素23a 的余子式和代数余子式分别为11121423313234414244;a a a M a a a a a a =23232323(1)A M M +=-=-引理一个n 阶行列式D ,如果第i 行所有元素除ij a 外全为零,则行列式.ij ij D a A =证先证ij a 位于第1行第1列的情形,此时11212221200,nn n nna a a a D a a a = 这时第三节例4中当k=1时的特殊情形,按第三节例4的结论有11111111D a M a A ==.再证一般情形,此时1111100.j n ij n nj nna a a a D a a a = 我们将D 作如下的调换:把D 的第i 行依次与第i-1行,第i-2行,…,第1行对调,这样数ij a 就调到了第1行第j 列的位置,调换次数为i-1次;再把第j 列依次与第j-1列,第j-2列,…,第1列对调,数ij a 就调到了第1行第1列的位置,调换次数为j-1,总共经过(i-1)+(j-1)次对调,将数ij a 调到第1行第1列的位置,第1行其他元素为零,所得的行列式记为D 1,则,而ij a 在D 1中的余子式仍然是ij a 在D 中的余子式Mij ,利用前面的结果,有1ij ijD a M =于是1(1)(1)i j i j ij ij ij ijD D a M a A ++=-=-=定理4.1行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即D=ai 1Ai 1+ai2Ai2+…+ainAin(i=1,2,…,n),或D=a 1jA 1j +a2jA2j +…+anjAnj(j=1,2,…,n).证1112112120000000n i i inn n nn a a a D a a a a a a =++++++++++11121111211112112121212000000,n n n i i in n n nn n n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++根据引理有D=ai1Ai1+ai2Ai2+…+ainAin =∑nk=1aikAik(k=1,2,…,n).类似地,我们可得到列的结论,即D=a1jA1j +a2jA2j +…+anjAnj =∑nk=1akjAkj(j=1,2,…,n).这个定理称为行列式按行(列)展开法则,利用这一法则并结合行列式的性质,可将行列式降阶,从而达到简化计算的目的.例1再解第三节中例1.解25120010371412165927112346122110D -----==---1311126300(1)11311321021013(1)(3)10++--=-=--=-⨯--=-3×(-1)×(-1)×3=-9.例2计算行列式11211nnn nna b a b D c d c d =解按第1行展开有111121111000000n n n nn n na b a b D a c d c d d ----=11111211110(1)00000n n nn n n na b a b b c d c d c --+--+⨯-2(1)2(1)2(1)(),n n n n n n n n n n n a d D b c D a d b c D ---=-=-,以此作递推公式,得22(1)11112(2)111111222211111111111()()()()()()()()()(),n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ni i i i i D a d b c D a d b c a d b c D a b a d b c a d b c a d b c c d a d b c a d b c a d b c a d b c --------------==-=--==---=---=-其中记号“∏”表示所有同类型因子的连乘积.例3证明范德蒙(Vandermonde)行列式1222212111112111()nn n i j n i j n n n nx x x D x x x x x x x x ≥≥---==-∏(4.1)证用数学归纳法证明.当n=2时,211211()i j n i j D x x x x ≥≥==-∏ (4.1)式成立.假设(4.1)式对n-1阶范德蒙行列式成立,要证(4.1)式对n 阶范德蒙行列式成立.为此,将Dn 降阶,从第n 行开始,后一行减前一行的1x 倍得2131122133112222213311111100()()()0()()()n n n n n n n n n x x x x x x D x x x x x x x x x x x x x x x x x x ------=------按第1列展开,并提取每一列的公因子,有232131122223111()()()n n n n n n n x x x D x x x x x x x x x ---=---上式右端行列式是n-1阶范德蒙行列式,由归纳假设它等于∏n ≥i >j ≥2(xi -xj ),故2131121()()()()().n n i j n i j i j n i j D x x x x x x x x x x ≥≥≥≥=----=-∏∏显然,范德蒙行列式不为零的充要条件是x 1,x 2,…,xn 互不相等.由定理4.1还可以得到下述推论.推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即ai 1Aj 1+ai 2Aj 2+…+ainAjn=0,i ≠j ,或a1iA1j+a2iA2j +…+aniAnj=0,i ≠j .证作行列式(i ≠j)11121121212ni i ini i in n n nna a a a a a a a a a a a 则除其第j 行与行列式D 的第j 行不相同外,其余各行均与行列式D 的对应行相同.但因该行列式第i 行与第j 行相同,故行列式为零.将其按第j 行展开,便得ai 1Aj 1+ai 2Aj 2+…+ainAjn=0.同理可证a1iA1j+a2iA2j +…+aniAnj=0.将定理4.1与推论综合起来得∑nk=1aikAjk =D,i =j,0,i ≠j,或∑nk=1akiAkj =D,i =j,0,i ≠j.下面介绍更一般的拉普拉斯(Laplace)展开定理.先推广余子式的概念.定义4.1在一个n 阶行列式D 中,任意取定k 行k 列(k ≤n),位于这些行与列的交点处的k 2个元素,按原来的顺序构成的k 阶行列式M ,称为行列式D 的一个k 阶子式;而在D 中划去这k 行k 列后余下的元素,按原来的顺序构成的n-k 阶行列式N ,称为k 阶子式M 的余子式.若k 阶子式M 在D 中所在的行、列指标分别为i 1,i 2,…,ik 及j 1,j 2,…,jk ,则(-1)(i 1+i 2+…+ik )+(j 1+j 2+…+jk )N称为k 阶子式M 的代数余子式.如在五阶行列式111213141521222324255152535455a a a a a a a a a a a a a a a 中选定第2、第5行,第1、第4列,则二阶子式21245154a a M a a =的余子式121315323335424345a a a N a a a a a a =而代数余子式为2514(1).N N +++-=*定理4.2(拉普拉斯定理)设在行列式D 中任意选定k(1≤k ≤n-1)行(或列),则行列式D 等于由这k 行(列)元素组成的一切k 阶子式与它们对应的代数余子式的乘积之和.(不证)例4用拉普拉斯定理计算行列式12140121.10130131D -=解若取第1、第2行,则由这两行组成的一切二阶子式共有246C =个123456121114,,,010*********,,.121121M M M M M M ===-===--其对应的代数余子式为123456130301,,,311113131110,,.010301A A A A A A ==-===-=则由拉普拉斯定理得D=M1A1+M2A2+…+M6A6=(-1)×(-8)-2×(-3)+1×(-1)+5×1-6×3+(-7)×1=-7.注当取定一行(列)即k=1时,就是按一行(列)展开.从以上计算看到,采用拉普拉斯定理计算行列式一般并不简便,其主要是在理论上的应用.。