行列式按行列展开定理
- 格式:doc
- 大小:97.50 KB
- 文档页数:4
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x yyx; 2)111111121n n----; 3)121111n n na a xD a xa x---=-.解 1)按1c 展开得原式1111111(1)(1)n n n n n n n xA yA xxy y x y -+-+=+=+-=+-. 2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=按展开. 3)法1 按1r 展开得()112112121223121211(,,,)(,,)(,,).()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++=法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x x M x x x x-----==---.将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑ .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++12121n n n n a x a x a x a ---=++++ . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得111212121.n n n nn n n n n n n n n n D a A xA a xD a a x xD a x a x a x a ------=+=+=++==++++定理3.2 当i j ≠时, 11220i j i j in jn a A a A a A +++= ;11220i j i j ni nj a A a A a A +++= . 注 1122||A i j i j in jn ij a A a A a A +++= δ, 1122||A i j i j ni nj ij a A a A a A +++= δ,其中1,;0,ij i j i j=⎧=⎨≠⎩当当δ为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数1,;(,)0,.x y f x y x y =⎧=⎨≠⎩当当 显然(,)xy f x y =δ.2)diag(1,1,,1)[]ij n n ⨯= δ.例3.4 设四阶行列式1212211220211234D =. 1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号1,;0,.ij i j i j <⎧=⎨>⎩当当ρ 例3.5 1)若正整数i j ≠,则1.ij ji +=ρρ2)仿克罗内克符号有缺项定位功能. 在序列124567,,,,,a a a a a a 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列12467,,,,a a a a a中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式122131121(,,,)()()()(,,)().n n n j i i j nV a a a a a a a a a V a a a a ≤<≤=---=-∏例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcd b b acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++ .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫ ⎪⎝⎭ 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=- ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵;2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++ .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =;2)112111nn n nna b a b D e c d c d +=.。
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则1122||(1,2,,)A i i i i in in a A a A a A i n =+++=L L ; 2)按一列展开法则1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++=L L . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x y yxO O; 2)111111121n n----O OL ; 3)121111n n n a a x D a x a x---=-M O O .解 1)按1c 展开得原式1111111(1)(1)n n n n n nn xA yA xx y y x y -+-+=+=+-=+-.2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=L L 按展开. 3)法1 按1r 展开得法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x xM x x xx-----==---O OO O. 将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑L .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++M O OL L L12121n n n n a x a x a x a ---=++++L . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得 定理3.2 当i j ≠时,11220i j i j in jn a A a A a A +++=L ;11220i j i j ni nj a A a A a A +++=L . 注 1122||A i j i j in jn ij a A a A a A +++=L δ, 1122||A i j i j ni nj ij a A a A a A +++=L δ,其中为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数显然(,)xy f x y =δ. 2)diag(1,1,,1)[]ij n n ⨯=L δ.例3.4 设四阶行列式1212211220211234D =.1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号例3.5 1)若正整数i j ≠,则2)仿克罗内克符号有缺项定位功能. 在序列 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列 中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑L τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcdbb acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++O OO .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫⎪⎝⎭L L 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=-L L ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵; 2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫ ⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++L .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =ONN O;2)112111nn n nna b a b D e c d c d +=ONN O.。
行列式按行列展开定理行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ija 外都为0,则这个行列式等于ij a 与它的代数余子式乘积:ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
行列式的行(列)展开定理
行(列)展开定理用于分析行列式的结构,它表明行列式的值可以从各行(列)中求出。
行展开定理的证明以行列式的一行为基础,将该行中的元素看作常数,把它们乘以该行中的未知数,然后做加法运算,得出了行列式的值。
公式表示为a(1,1)x(1)+a(1,2)x(2)+...+a(1,n)x(n)=|A|,其中a(1,1)~a(1,n)表示第一行的元素,x(1)~x(n)表示第一行未知数,|A|表示行列式A的值。
同样,列展开定理用列来求出行列式的值,其公式为
a(1,1)x(1)+a(2,1)x(2)+...+a(n,1)x(n)=|A|,其中a(1,1)~a(n,1)表示第一列的元素,x(1)~x(n)表示第一列未知数,|A|表示行列式A的值。
相比于行展开定理,列展开定理更容易理解,理论上它们是均有用的,但由于行列式结构的不规则性,有时列展开定理比行展开定理更加有效,避免了因展开完毕后加法操作量过大而需要累加回路的结果。
总之,行(列)展开定理是一种分析行列式结构的基本方法,它既可以用来求出行列式的值,也可以用来求出未知数。
它丰富了行列式计算的方法,被广泛用于各种电子计算机的程序设计和机器算法中,为工程实际应用和科学研究提供了有力帮助。
§6 行列式按行(列)展开对于三阶行列式来说,容易验证:333231232221131211a a a a a a a a a 3332232211a a a aa =3331232112a a a a a -2331222113a a a aa + 这样,三阶行列式的计算就归结为二阶行列式的计算。
我们现在要利用行列式的性质来证明:n (1>)阶行列式的计算总可以归结为较低阶的行列式的计算。
我们将要得到的结论,不但能进一步简化行列式的计算,而且也具有重要的理论地位。
首先引入余子式和代数余子式的概念。
定义 在n 阶行列式中,将元素ij a 所在的第i 行与第j 列划去后,余下的1-n 阶行列式称为元素ij a 的余子式,记作ij M . 若记ij ji ij M A +-=)1(,则称ij A 为元素ij a 的代数余子式。
例如,在三阶行列式333231232221131211a a a a a a a a a D = 中,元素23a 的余子式和代数余子式分别为 3231121123a a a a M =23233223)1(M M A -=-=+引理 一个n 阶行列式,若其中第i 行所有元素除ij a 外都是零,则该行列式等于ij a 与它的代数余子式ij A 的乘积,即ij ij A a D =证明 先证ij a 位于第1行第1列的情形,此时nnn n na a a a a a a D2122221110=1111M a =又由于11111111)1(M M A =-=+,于是1111A a D =.下证一般情形,此时nnnj n ijnj a a a a a a a D1111100= 为了利用前面的结果,将D 的行列作如下调换:先将D 的第i 行依次与第1-i 行、第2-i 行、…、第1行对调,这样,ij a 就调到原来j a 1的位置上,调换的次数为1-i ;再将第j 列依次与第1-j 列、第2-j 列、…、第1列对调,这样,ij a 就调到原来11a 的位置上,调换的次数为1-j . 总之,经过2-+j i 次调换,将ij a 调到左上角所得到的新行列式D D j i 21)1(-+-=,而元素ij a 在1D 中的余子式仍然是ij a 在D 中的余子式ij M . 由于ij a 位于1D 的左上角,于是利用前面的结果,应有ij ij M a D =1所以ij ij ij ij j i j i A a M a D D =-=-=++)1()1(1定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =)或nj nj j j j j A a A a A a D +++= 2211 (n j ,,2,1 =)证明 由行列式的性质5可得nnn n in i i na a a a a a a a a D212111211000000+++++++++=nn n n i n a a a a a a a2111121100=nnn n i na a a a a a a2121121100+nnn n in n a a a a a a a211121100++ 于是由定理1得in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =)同样可按列证明得nj nj j j j j A a A a A a D +++= 2211 (n j ,,2,1 =)定理3称为行列式按行按列展开法则,利用这一法则并结合行列式的性质,可以简化行列式的计算。
行列式展开定理行列式展开定理是线性代数中的一个重要定理,它描述了一个n阶行列式可通过对其中一行(或一列)进行展开,用余子式乘以对应元素的代数余子式构成的和来表示。
这个定理的证明主要基于数学归纳法和代数性质的运用。
首先,我们来介绍一些必要的定义和概念。
行列式是一个有序数表,是一个正方形矩阵中对角线上元素相乘并按照一定规则相加得到的一个数。
例如,对于一个2阶行列式(2x2矩阵):$\begin{vmatrix}a &b \\c & d\\\end{vmatrix}$ = ad - bc行列式的计算可以通过对行或列的操作转化为三角形矩阵,从而简化计算。
对于n阶行列式,可以递归地进行以下展开运算:选择第i行(或第j列)进行展开,将此行的元素乘以对应的代数余子式,并进行符号调整后相加。
具体地,使用数学归纳法,我们可以证明行列式展开定理。
当n=2时,定理显然成立。
假设当n=k时,定理成立,即k阶行列式可以通过任选一行(或一列)展开为余子式乘以对应元素的代数余子式之和,即$\begin{vmatrix}a_{11} & a_{12} & \ldots & a_{1k} \\a_{21} & a_{22} & \ldots & a_{2k}\\\vdots & \vdots & \ldots & \vdots\\a_{k1} & a_{k2} & \ldots & a_{kk}\\\end{vmatrix}$=$a_{i1}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$+(-1)^(i+1)$a_{i2}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$+$\ldots$+(-1)^(i+k)$a_{ik}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$。
行列式按行列展开定理
一、 余子式的定义:
在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M
二、 代数余子式:
在n 阶行列式的ij a 余子式ij M 加上符号(1)
i j +-,称作ij a 的代数
余子式ij A : (1)i j ij ij A M +=-
三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =⋅
四、 行列式按行(列)展开法则:
定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:
1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅
1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)
推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:
1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅
1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)
五、 克拉默法则:
如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++⋅⋅⋅+=
21122222n n a x a x a x b ++⋅⋅⋅+=
31132233n n a x a x a x b ++⋅⋅⋅+=
…………………………………
…………………………………
…………………………………
1122n n nn n n a x a x a x b ++⋅⋅⋅+=
其系数行列式不等于0,即:1111......
......0...n
n nn
a a D a a =≠ 那么,方程组有惟一解:
11D x D =,22D x D =,…n N D x D
= 1111,1122,1
1,1............
.......
...j n
j j n n n j nn a b a a b a D a b a a +++=
① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
② 定理4':如果含n 个未知数的n 个线性方程组无解或
者有两个不同的解,则它的系数行列式必然为0 ③ 定理5:上述方程对应的齐次线性方程组:
11112210n n a x a x a x ++⋅⋅⋅+=
21122220n n a x a x a x ++⋅⋅⋅+=
31132230n n a x a x a x ++⋅⋅⋅+=
…………………………………
…………………………………
…………………………………
11220n n nn n a x a x a x ++⋅⋅⋅+=
120n x x x ==⋅⋅⋅==一定是它的解,这个解叫做齐次线性方程组的0解,如果是一组不全为0的数是齐次线性方程组的解,叫做齐次线性方程组的非0解,齐次线性方程组一定有0解,但是不一定有非0解。
定理5:如果齐次线性方程组有非0解,则它的系数行列式必然等于0
定理5':如果齐次线性方程组的系数行列式等于0,则它一定没有非0解
六、 求解行列式的基本方法:
① 利用初等变换
② 利用性质
③特殊规律行列式解法。