电机振动的频谱分析
- 格式:pdf
- 大小:164.71 KB
- 文档页数:2
振动测量及频谱分析振动测量及频谱分析是一个在工程领域中广泛应用的技术领域。
振动测量能够对物体的振动行为进行准确测量,并通过频谱分析来分析振动信号的频率分布及能量大小。
本文将从振动测量的原理、频谱分析的方法和应用领域等方面来进行介绍。
一、振动测量的原理振动测量是利用传感器将物体的振动变化转化为电信号,再通过相应的测量仪表来实现对振动的测量。
常用的振动传感器有加速度传感器、速度传感器和位移传感器。
加速度传感器是最常见的振动传感器,它通过感受物体的加速度来测量振动。
速度传感器则通过测量物体的速度来间接测量振动,位移传感器则直接测量物体的位移变化。
振动测量通常可以采用两种方式进行:点测法和场测法。
点测法是通过将传感器直接固定在被测物体上来测量振动,适用于机械系统中的部件振动测量。
场测法则是将传感器固定在离被测物体一定距离的固定点上,通过测量传感器所在点的振动来间接测量被测物体的振动。
场测法适用于较大物体或结构的振动测量。
二、频谱分析的方法频谱分析是将振动信号转换为频谱图以进行分析的方法。
常用的频谱分析方法有傅里叶变换、功率谱密度分析和包络分析等。
1.傅里叶变换:傅里叶变换是一种将时域信号转化为频域信号的方法。
通过傅里叶变换,可以得到振动信号的频率分布特性。
傅里叶变换可以表示为:\[ X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt \]其中,X(f)是频域上的信号,x(t)是时域上的信号,f是频率。
2.功率谱密度分析:功率谱密度分析是一种分析振动信号频率分布密度的方法,它描述了频域上各个频率的能量大小。
功率谱密度可以通过直接对振动信号进行傅里叶变换得到,也可以通过相关函数计算得到。
3.包络分析:包络分析是一种分析振动信号包络曲线的方法。
在振动信号中,常常会存在着多个频率分量,包络分析可以将各个频率分量分离出来,得到振动信号的主要振动频率。
三、频谱分析的应用领域1.机械故障诊断:通过振动测量及频谱分析可以检测机械系统中的振动异常,进而判断机械系统的故障类型和严重程度。
电机振动测量方法引言电机是工业生产中常用的动力设备之一,而电机振动的大小和稳定性直接影响到电机的性能和寿命。
因此,电机振动测量是电机维护和故障诊断中非常重要的一项工作。
本文将介绍几种常用的电机振动测量方法。
一、接触式测量方法接触式测量方法是通过将振动传感器安装在电机的外壳表面,直接接触到电机振动信号,然后将信号放大并转换成电压信号进行测量和分析。
这种方法简单易行,适用于大部分电机振动测量场景。
1. 接触式加速度测量方法接触式加速度测量方法是最常用的一种电机振动测量方法。
该方法通过将加速度传感器安装在电机外壳表面,测量电机振动的加速度信号,然后通过放大器将信号转换成电压信号进行测量和分析。
这种方法可以直接反映电机振动的强度和频率特征。
2. 接触式速度测量方法接触式速度测量方法是通过将速度传感器安装在电机外壳表面,测量电机振动的速度信号,然后通过放大器将信号转换成电压信号进行测量和分析。
这种方法可以更加准确地反映电机振动的速度特征。
二、非接触式测量方法非接触式测量方法是通过将振动传感器安装在电机附近,不直接接触电机表面,通过测量电机周围的振动信号来间接获得电机振动信息。
1. 感应式测量方法感应式测量方法是利用感应原理,通过感应电机振动引起的磁场变化来测量电机振动信号。
该方法无需直接接触电机,避免了传感器与电机之间的摩擦,减少了测量误差。
2. 光学测量方法光学测量方法是利用光学传感器测量电机振动引起的光强变化来获得电机振动信号。
该方法具有高灵敏度、不受电磁干扰的特点,适用于高精度振动测量。
三、信号处理和分析电机振动信号的处理和分析是电机振动测量的重要环节。
通过对振动信号进行滤波、放大、采样和频谱分析等处理,可以获得电机振动的频率、幅值、相位等信息,进而判断电机的运行状态和存在的故障。
1. 滤波振动信号中包含了很多不同频率的成分,为了提取出感兴趣的频率成分,需要对信号进行滤波处理。
常用的滤波方法有低通滤波、高通滤波和带通滤波等。
电机震动的测量方法电机震动是指电机运行时产生的机械振动。
电机震动会导致电机和机器设备的损坏,影响设备的正常运行。
因此,对电机震动的测量和监测十分重要。
本文将介绍电机震动的测量方法。
1.传感器测量法:传感器是目前最常用的电机震动测量方法之一、传感器能够直接测量电机震动,并将其转化为电信号进行分析和判读。
主要使用的传感器包括加速度传感器、速度传感器和位移传感器。
- 加速度传感器(Accelerometer)是最常见的电机震动传感器。
它能够测量电机震动的加速度,通过与电机振动频率的关系,进而分析和判读电机的状态。
加速度传感器常常安装在电机轴承处,能够直接感知到电机的振动。
- 速度传感器(Velocity transducer)能够测量电机震动的速度。
与加速度传感器相比,速度传感器不易受到高频振动的干扰,因此在一些特定场合下更加适用。
- 位移传感器(Displacement sensor)测量电机震动的位移,可以直接反映电机的振动情况。
位移传感器能够精确度量电机振动的幅值,对于分析电机问题有较高的准确性。
2.振动计测量法:振动计是利用机械传动原理进行测量的设备。
它可以将电机振动转换成旋转角度或位置,进而判断电机的振动情况。
-机械式振动计是一种简单而有效的电机震动测量设备。
它通常由旋转惯性装置和振动表盘组成。
当电机运行时,旋转惯性装置会受到振动影响,进而使得振动表盘移动。
振动表盘的读数可以反映电机的振动程度。
-电子式振动计是一种采用电子技术进行测量的设备。
它通过电子传感器测量电机振动的角度或位置,转化为电信号进行分析和判读。
电子式振动计具有高精度、自动记录和数字化等优点。
3.频谱分析法:频谱分析是电机震动测量中常用的一种方法。
通过测量电机振动信号的频谱,可以分析电机振动的频率成分和振幅分布,从而得到电机的振动特征。
- 傅里叶变换(Fourier Transform)是频谱分析的基础方法。
它能够将时域的振动信号转换为频域的频谱分布图,直观地反映不同频率成分在整个振动信号中所占比例。
生活中的频谱分析案例
一、频谱分析的基本理论
我们可以将信号看作为许多简谐信号之和,每一个简谐信号称作该信号的一个频率成分。
傅立叶原理是进行信号分析的理论基础
[2.12.4.15.16]。
二、振动案例分析
利用频谱分析理论对一台风机进行振动试验,转速3750r/min,频率60HZ,按照经验,共测量2个位置,一个是电机,一个是齿轮箱,每个位置测量水平,垂直,轴向这三个方向的振动。
以下为测得的几张频谱图:如图2.1-2.6所示。
从以上几张速度频谱图可以看出,电机的水平方向(H)测得的振动值最大,达到6.3左右,已处于故障状态,故更换同一型号的电机,重新测试,得到的频谱图如图2.7-2.12所示:各种振动值均在允许的范围内,风机运行正常。
电机在60Hz运行过程中的故障频谱分析摘要:电机超速运行是为了考核转子机械强度与装配质量,验证电机超速后,各部件有无永久变形和不妨碍电机正常运行的其它缺陷,对一合电机的振动情况进行数据采集,概述了该电机在60Hz运行过程中所出现的振动状况、参数和特征,利用频谱分析对其振动原因进行推理和分析。
关键词:电机;60Hz运行;故障;频谱分析1概述频谱是一种典型的动态信号分析方法,是将电流信号从时域转换到频域上,通过对电流频率的成分和频率的结构组成进行分析,将各次谐波电流按照高低排列成频谱图,对特征电流谐波进行分析,判断电机运行状态的一种监测诊断方法。
电流频谱诊断是一种不停机不拆电机就可进行电机运行状态的在线诊断技术,通过对电流谐波的分析实现对电机运行的状态量化评价和劣化部位的定位,在数据采集和管理的基础上进一步对电机进行趋势管理。
2诊断原理电机设备是基于电磁理论将电能转换为机械能的动力设备,由电路系统、磁路系统、绝缘系统和机械系统等组成。
系统间相互独立并关联,影响电流成分的因素主要是电路(绕组)和磁路(铁芯)。
故障形成的过程和表现形式存在多样性,如电机绕组过流、过热引起的局放、匝间短路、绝缘老化和电机转子偏心等情况引起的电流成分的改变。
电流频谱诊断原理是通过对电机的各次谐波含有率与总谐波失真率进行处理比较,对电机运行状态和劣化程度的评估和判断,对电机中的各次数谐波电流的含有率进行标准化处理,根据各次数谐波函数对各次谐波的含有率进行运算后得出各次数的诊断计算值,并计算出判定基准值,将判定基准与数据标准化后的指数值进行分析对比,就可对电机的运行情况进行判断评估。
3电流谐波产生的机理谐波电流是以基本频率为基数的整倍频电流,具有一定的规律性,电机中的谐波电流是因电磁场和空间位置的相对变化所产生的。
谐波电流作用在基波上形成复合波形,按照傅里叶级数进行波形的展开,则可分解为不同频率的正弦波电流,分解为各次谐波电流。
电机振动测量方法
电机振动测量是通过对电机振动信号进行分析,在电机运行过程中,通过测量电机振动信号的幅值、频率和相位等参数,来评估电机的运行状态以及可能存在的故障。
常用的电机振动测量方法有以下几种:
1. 加速度传感器法:使用加速度传感器将电机振动信号转化为电信号,通过测量加速度来评估电机振动情况。
该方法可以测量电机在不同方向上的振动,并可以得到振动的时域和频域信息。
2. 速度传感器法:使用速度传感器来测量电机的转速,并根据转速的变化来评估电机振动情况。
该方法可以快速获取电机转速和振动频率的关系。
3. 位移传感器法:使用位移传感器来测量电机轴向或径向的位移,并根据位移的变化来评估电机振动情况。
该方法可以得到电机轴向或径向的振动情况和变化趋势。
4. 频谱分析法:对电机振动信号进行频谱分析,得到振动信号在不同频率上的能量分布情况。
通过分析频谱可以判断电机是否存在故障,如不平衡、轴承磨损等。
5. 小波分析法:使用小波分析方法对电机振动信号进行分析,可以得到不同尺度下的振动信号信息,对于不同频率范围的振动信号有更好的分辨能力。
以上方法可以单独应用或结合使用,根据具体的需求和电机特点选择合适的测量方法,进行电机振动的监测和分析。