数学思想讲座-数学美的几种类型
- 格式:ppt
- 大小:137.50 KB
- 文档页数:25
数学思想中“美”的体现谈及“数学”,你一定会联想到数学理论的演绎推理和数学公式的枯燥。
然而我却认为数学是一门心智的艺术与灵魂的音乐。
在数学教学过程中,如果我们能够在传授学生数学思想与方法的同时把美感渗透给学生,引导学生细心体会,体验数学中这些固有的美,不但能协调学生的情绪,美化他们的心灵,提高学生对美的认识,而且能提高他们对数学学习的兴趣,实现较好的课堂教学效果。
下面就简述一下常用数学思想与美的统一。
数形结合思想简洁美“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。
高中数学中章章都可见其身影,集合中的韦恩图,求交、并、补集时借用数轴,函数图像对其自身性质的直观体现等等,都无不细述了数学中的简洁之美。
分类讨论思想的整体美当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。
比如:解不等式中我们常要对系数,判别式,根的大小进行讨论,对直线方程中斜率的存在性进行讨论,对公式的选择进行讨论,正是因为如此多的讨论,才使我们分析问题时更加严谨,处理问题时方法更多样,这不恰是整体美的体现吗?类比思想的统一美挖掘数学教学内容中的统一美,进行类比思维的训练,有助于学生更加准确、快速的理解。
如类比指数函数研究对数函数,类比与正弦函数研究余弦函数,类比与图象的中心对称研究图象的轴对称,类比与平移变换研究放缩变换,类比与用均值定理求最小值研究求最大值,类比与分母有理化研究分母实数化,类比与等差数列研究等比数列,类比平面向量研究空间向量,类比与勾股定理研究长方体对角线的长,类比与将平行四边形转化为三角形求面积研究求四棱柱的体积,类比与椭圆的方程和性质研究双曲线的方程和性质等等。
化归、推理思想的秩序美由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳), 归纳法在科学研究中经常被运用,人们对归纳法有了审美感受, 有人直接把归纳法体现的美感称为“归纳美”,比如对数列中通项公式的猜想,对棱锥、棱柱体积,多边形内角和公式化的猜想。
浅论初中数学课堂中如何体现数学美的思想初中数学课堂是培养学生数学思维和兴趣的重要环节,也是让学生感受到数学美的场所。
数学美指的是数学的优雅、简洁、深邃等方面,它是一种抽象思维的艺术。
本文将从数学课堂内容、教学方法和学生参与等方面,探讨如何体现数学美的思想。
一、数学课堂内容的体现1.整体性思维。
数学是一个系统的学科,数学课堂应该展示出数学的整体性。
教师可以通过引导学生解决复杂问题、进行整体思考,让学生从整个数学体系中感受到数学的完整性和美感。
2.抽象思维。
数学课堂强调培养学生的抽象思维能力,教师可以通过举一反三的例子,引导学生从具体的问题中发现普遍规律,从而提高学生的抽象思维水平。
例如,在讲解数列时,教师可以通过一个具体的数列例子,引导学生找到通项公式,并使用通项公式计算其他项。
3.空间思维。
数学课堂也应该体现空间思维,培养学生的几何直觉和想象力。
例如,在讲解三角形的面积时,教师可以引导学生通过剪纸、折纸等活动,感受到几何形状的美感和规律。
4.逻辑思维。
数学是一门基于逻辑的学科,数学课堂的内容应该注重培养学生的逻辑思维能力。
教师可以通过解决数学问题的过程,引导学生形成清晰的逻辑链条,培养学生的逻辑推理和分析能力。
二、数学教学方法的体现1.激发兴趣。
数学美的体现需要学生对数学产生兴趣。
教师可以运用启发性问题、趣味游戏等方式,激发学生的学习兴趣,让他们主动参与到数学活动中。
2.开放性问题。
数学课堂应该注重引导学生进行探究学习,而不是简单地灌输知识。
教师可以提出开放性问题,让学生自由思考,寻找多种解决路径和方法,从而培养学生的创新意识和解决问题的能力。
3.学以致用。
数学是一门应用广泛的学科,数学课堂应该将知识与实际生活相结合。
教师可以通过实际问题的引入,让学生明确数学知识与日常生活和实际问题的联系,培养学生将抽象概念应用于实际的能力。
三、学生参与的体现1.合作学习。
数学课堂可以采用小组合作学习的方式,让学生相互合作、交流,共同解决问题。
1、对美的理解在提倡素质教育,培养全面发展人才的今天,提到美,人们便会自然而然的联想到音乐、绘画、舞蹈、影视、文艺等视觉艺术和听觉艺术。
而作为研究自然规律的一门学科—数学中,是否存在美?这是历来数学研究者们关注的问题。
古代希腊时期的毕达哥拉斯学派第一次提出了“美是合谐与比例”的观点。
古代哲学家、数学家普洛克拉斯也断言:“哪里有数,哪里就有美”。
罗素说:“数学,如果正确地看它,不但拥有真理,而且也具有至高的美,正像雕刻的美,是一种泛而严肃的美。
这种美,不是投合我们天性的微弱的一面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完满的境地。
”量子力学的创始人海森堡说:“自然界把我们引向极其简单而美丽的数学形式……我被自然界向我们显示的数学体系的简单性和美强烈地吸引住了。
”开普勒甚至认为:“数学是这个世界之美的原型。
”从这些论述中,我们可以清楚地看到:数学研究者在其科研活动中深刻感受到了数学美的存在,并以追求数学美来推动数学的不断发展。
2、数学美的几种形式数学美的含义是丰富多彩的,如数学概念的精确,数学定理的概括,数学公式的简捷、齐整,数学图形的和谐、对称,数学结构系统的协调、完备,数学方法的奇妙、多样等等,这就决定了数学美具有简单性、统一性、对称性、奇异性、秩序性等表现形式。
2.1 简单性数学家们常常以简单性作为自己的追求目标,那种最简洁的数学理论最能给人以美的享受。
狄德罗曾指出:“数学中所谓美的问题是指一个难于解决的问题,所谓美的解答则指一个困难、复杂问题的简单回答。
”高斯在回顾二次互反律的证明过程时也曾说:“去寻找一种最美和最简洁的证明,乃是吸引我去研究的主要动力。
”最能说明简单性是推动数学发展与创造的美学因素之一的典型例子便是为了避免重复的加法和乘法运算而引进乘法与幂的运算:3+3+3+3=3×4a〃a〃a……=a质能公式E=m,如此深刻地揭示了微观、宏观世界的种种质能变化规律,因而其内容极为丰富,但其表述却又如此简单明了。
谈谈数学中的美谈谈数学中的美【】“哪里有数学,哪里就有美”。
只要我们用心体会,它们就会呈现出来,给我们以美的享受。
有:简洁美;符号美,抽象美,统一美;协调美,对称美;公式的普遍性;应用的广泛性;奇异美等。
【】美,符号,黄金分割,对称当你倘佯在音乐的殿堂,聆听那优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地,泣鬼神”的绝妙语句,一定能够领悟文学带给你的的“美”……其实,“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价.数学中同样存在着能够启迪智慧,陶冶情操的“美”。
数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。
下面结合初等数学谈谈我对数学美的理解。
1数学概念的简洁美数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。
如代数中因式分解的概念:把一个多项式分解成几个整式乘积的形式。
几何中线段垂直平分线的概念:“垂直于这条线段并且平分这条线段的直线等。
如:如在《图的初步知识》教学中,可以先让学生去探究过两点的直称图形。
这些性质使正方形获得了人们的喜爱和广泛应用。
如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。
人们也喜欢用正方形图案美化环境。
比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。
毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。
”因为这两种图形在任何方向上看都是对称的。
其实在我们身边随处可见根据对称设计的东西。
小到一块橡皮、一只球拍,大到一架飞机、一座建筑。
著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。
4公式的普遍性世界上存在着无数形状不同、大小不一的三角形,但面积公式S=1/2ah适用于一切三角形面积的计算,这也是数学美的具体体现。
欣赏数学之美当你倘佯在音乐的殿堂,聆听优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地泣鬼神”的绝妙语句,一定能够领悟文学带给你的“美”……。
美的事物,总是被人们乐意醉心地追求着。
那数学呢?自古以来,数学就以其高度的抽象性、严密的逻辑性令许多人望而生畏。
但是,没有一门学科像数学那样,在大家的心目中其重要性和亲近性竟产生这么大的分歧:一方面:全世界所有国家的中小学生都把数学作为一门重要的基础课程学习着; 另一方面:大家却是对数学望而却步。
大部分学生学习数学是为了分数,是不得已,没有乐趣,没有得到享受,那数学真的就那么冰冷、枯燥、乏味吗?其实,并非如此。
前苏联国家元首加里宁说过:“数学是思维的体操。
”数学家克莱因说过“音乐能激发或抚慰情怀,绘画是人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
”我国数学家华罗庚曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学”。
还有人将数学比喻为吻醒经济学这个睡美人的白马王子,等等。
数学存在于我们的生活中,它无时无刻不在围绕着我们。
数学有其冰冷的美丽,也有其火热的情怀,今天让我们共同欣赏数学的美丽风采。
一、数学的简洁美(ppt)反映多面体的(顶)点、棱、面的数量关系的欧拉公式F –E+V=2数学美的简洁性是数学结构美的重要标志,它是指数学的表达形式和数学理论体系结构的简单性。
圆的周长公式:C=2πR,堪称“简单美”的典范。
1. 数学的简洁之美1. 数学的简洁之美二次曲线(椭圆、抛物线、双曲线)=圆锥曲线=三种宇宙速度下物体运动的轨迹1. 数学的简洁之美1. 数学的简洁之美1. 数学的简洁之美1. 数学的简洁之美二、数学的和谐美形式美一元二次方程20,(0)ax bx c a ++=≠的两个根是1x =, 2x =, 如果单独看这两根,有一种“孤立、游子”的感觉,但把它们合在一起来看:12b x x a +=-, 12c x x a=这样便有一种“珠联璧合、比翼双飞、连理枝”的感觉了。