电力负荷预测第七章 回归分析预测法
- 格式:ppt
- 大小:2.60 MB
- 文档页数:99
电力系统中的电力负荷预测方法与算法研究引言:在电力系统中,准确预测电力负荷对于实现稳定和可靠的电力供应至关重要。
电力负荷预测是指根据过去的用电数据和相关的环境和经济因素,预测未来一段时间(如天、周、月)内的电力负荷情况。
准确的负荷预测可以帮助电力公司优化电力调度,合理安排发电和输电,有效解决电力供需平衡问题,提高电网运行效率和经济性。
一、传统的电力负荷预测方法:1. 时间序列方法:时间序列方法是一种常用的负荷预测方法,其基本思想是通过分析负荷历史数据的变化趋势、周期性和规律性,预测未来的负荷情况。
常用的时间序列方法包括ARIMA模型、指数平滑模型和季节性分解方法等。
这些方法适用于短期负荷预测,但对于长期预测效果不佳。
2. 统计回归方法:统计回归方法通过建立负荷与相关因素(如气温、湿度、日照等)之间的函数关系,进行负荷预测。
常用的统计回归方法包括多元线性回归分析、多元非线性回归分析和逐步回归分析等。
这些方法适用于中期和长期负荷预测,并且考虑了外部因素的影响,但要求提供大量的相关数据。
二、基于机器学习的电力负荷预测方法:1. 神经网络方法:神经网络方法通过构建具有多层隐含层的人工神经网络模型,通过学习历史数据中的模式和规律,进行负荷预测。
常用的神经网络方法包括BP神经网络、RBF神经网络和CNN神经网络等。
这些方法适用于短期和中期负荷预测,可以更好地捕捉负荷的非线性关系。
2. 支持向量机方法:支持向量机方法通过将负荷预测问题转化为一个优化问题,通过寻找一个最优的超平面,将不同类别的样本分开。
常用的支持向量机方法包括线性支持向量机、非线性支持向量机和径向基函数支持向量机等。
这些方法适用于中期和长期负荷预测,并且具有较好的泛化能力。
3. 遗传算法方法:遗传算法方法通过模拟自然界的遗传和进化过程,寻找最优的解决方案。
常用的遗传算法方法包括基于交叉、变异和选择等操作的进化算法和遗传规划算法等。
这些方法适用于长期负荷预测,可以考虑多个因素之间的复杂关系。
用线性回归分析法进行电力负荷预测摘要:电力负荷预测是电网规划的基础,论文介绍了电力负荷线性回归模型预测基本原理,通过对变量数据统计分析,确定其之间的相关关系。
以福建建阳地区为例分析历史数据,采用EXCEL回归模型的求解方法,证明拟合曲线方程具有较高的预测精确度、实用性。
能够作为福建建阳电力公司进行负荷预测的科学依据。
关键词:电力负荷预测;线性回归分析;最小二乘法1、概述电力负荷预测是供电公司或电力调度部门制定购电计划的依据,是电网规划决策的基础,一个高准确性的负荷预测为电力系统经济、安全运行提供了有力保证。
电力负荷预测从预测内容分类,可分为电量预测和电力预测两大类,其中电量预测主要包含的数据为全社会用电量、网供电量、各产业电量等,电力预测主要包含的数据为最大负荷、最小负荷、负荷曲线等;从预测时间长短分类,可分为超短期、短期、中期和长期预测。
中长期预测受到经济,社会发展、环境等诸多因素的影响,在地区电网规划中应用最多。
2、电力负荷原始数据资料收集电力系统负荷预测,是从已知的社会经济、发展数据以及电力需求为出发点,通过对历史数据统计分析,得出电力需求高度相关的社会经济、发展数据变量拟合曲线方程。
以此作为科学依据,用未来年份社会经济、发展数据预测结果,对电力需求做出预测。
在电力负荷预测之前,需要调研和收集包括电力企业资料、国民经济部门相关资料及数据,选择可靠的和有用的数据作为预测依据。
负荷预测收集的资料一般应包括以下内容:该地区国民经济及社会发展规划、社会经济基本情况、电力系统发展规划、电网现状及存在问题、历年来该地区用电负荷及用电量等。
3、电力负荷线性回归模型预测基本原理电力负荷线性回归模型预测,是根据历史负荷数据建立数学模型,用数理统计中的回归分析法对未来的负荷进行预测。
即采用最小二乘法对已知变量进行统计分析,观测每组变量数据,确定其之间的相关性,拟合出关系曲线,从而实现预测的目的。
在实际预测中,对自变量x 和因变量y 作n 次试验观察,其n 对观察值记为:(x1,y1),(x2,y2),…,(xn,yn)是相互独立的样本观测值。
1.负荷预测分类和基础数据处理1.1负荷预测及其分类1.1.1负荷预测概念负荷预测是根据负荷的历史数据及其相关影响因素,分析负荷的变化规律,综合考虑影响负荷变化的原因,使用一定的预测模型和方法,以未来经济形势、社会发展、气候条件、气象因素等预测结果为依据,估计未来某时段的负荷数值过程。
1.1.2负荷预测的分类按照预测方法的参考体系,工程上的负荷预测方法可分为确定性预测方法、不确定预测方法、空间负荷预测法。
确定性:把电力负荷预测用一个或一组方程来描述,电力负荷与变量之间有明确的一一对应关系。
不确定性:实际电力负荷发展变化规律非常复杂,受到很多因素影响,这种影响关系是一种对应和相关关系,不能用简单的显示数学方程描述,为解决这一问题,产生了一类基于类比对应等关系进行推测预测负荷的不度额定预测方法。
空间负荷预测:确定和不确定负荷预测是对负荷总量的预测。
空间负荷预测是对负荷空间分布的预测,揭示负荷的地理分布情况。
1.2负荷预测的基础数据处理1.2.1负荷预测的基础数据基础数据大致包括四类,分别为:①负荷数据(系统、区域、母线、行业、大用户的历史数据;负荷控制数据;系统、区域、大用户等的最大利用小时数;发电厂厂用电率和网损率。
)②气象数据(整点天气预报;整点气象要素资料;年度气温、降水等气象材料。
)③经济数据和人口(区域产业GDP;城乡可支配收入;大用户产量、产值和单耗;电价结构和电价政策调整;城乡人口。
)④其他时间(特殊时间如大型会议、自然灾害;行政区域调整)1.2.2数据处理为获得较好的预测效果,用于预测数据的合理性得到充分保证,因此需要对历史数据进行合理性分析,去伪存真。
最基本要求是:排除由于人为因素带来的错误以及由于统计口径不同带来的误差。
另外,尽量减少异常数据(历史上突发事件或由于某些特殊原因会对统计数据带来宠大影响)带来的不良影响。
常见的数据处理方法有:数据不全、数据集成、数据变换和数据规约等。
配电网规划中负荷预测的方法分析发表时间:2018-06-22T10:02:38.077Z 来源:《电力设备》2018年第4期作者:许晋白柠齐[导读] 摘要:中长期负荷预测主要用于制定电力系统的规划建设,为所在地区电网发展、能源平衡、电力盈余调剂等提供可靠的依据。
(国网阜新供电公司辽宁阜新 123000)摘要:中长期负荷预测主要用于制定电力系统的规划建设,为所在地区电网发展、能源平衡、电力盈余调剂等提供可靠的依据。
电力负荷预测是以电力负荷为对象进行的一系列预测工作。
简述了电网规划中负荷预测的重要性以及电网规划中负荷预测的分类,探讨分析了电网规划中的负荷预测方法,以供借鉴参考。
关键词:配电网;规划;负荷预测;方法最近几年,伴随着社会经济的发展,人们的生活水平不断提高,对于电力的需求也在迅速增长,配电网络逐步完善。
在配电网规划中,电力负荷预测非常关键,合理的负荷预测结果能够为配电网规范和运行管理提供数据支撑。
因此,选择恰当的电力负荷预测方法,保证电力负荷预测结果的可靠性和有效性,是配电网规划中的一项重要内容,必须得到足够重视。
1电力负荷预测内涵负荷预测在电力调度环节非常重要,主要是结合电力系统运行历史数据和实时数据,对系统负荷变化情况进行分析和判断,继而合理预测电力系统在未来一段时间内的运行情况。
在实际应用环节,电力负荷预测的内容需要包括系统功率及节点负荷,而在以往的电力负荷预测中,采用确定性方法,利用方程对历史电力负荷的相关数据进行描述,将电力负荷和时间变量的关系通过函数方程来表示。
不过,伴随着电力系统的逐步完善,电力负荷与时间变量的关系变得越发复杂,在许多时候,确定性方法并不能对其进行准确表示,也因此出现了许多新的电力预测方法,主要是以类比对应关系进行预测,属于非确定性预测。
电力负荷预测在电力系统中占据至关重要的位置,通过合理的电力负荷预测,能够保证电网规划的科学性,强化用电管理,促进电网稳定运行,也可以及时发现电力系统运行中存在的各种问题,提升用电效率,降低配网运行成本,为电力资源开发和建设提供数据支持,促进电力系统运行经济效益和社会效益的提高。
电力工程专项规划中的负荷预测方法摘要:负荷预测是电网规划中的基础工作,其精度的高低直接影响着电网规划质量的优劣。
负荷预测工作要求具有很强的科学性,需要大量反映客观规律性的科学数据,采用适应发展规律的科学方法,选用符合实际的科学参数,以现状年负荷水平为基础,预测未来年负荷。
关键词:城市规划;电力;负荷预测1.负荷预测方法负荷预测的方法经多年实践和积累已多达数十种,尽管负荷预测的方法有多种,但由于所需的数据难以得到或由于预测模型存在不适应性,针对某一具体规划区域而言,可供选择的预测方法并不多。
(1)比例系数增长法假定规划区今后的电力与过去有相同的增长率,用历史数据求出比例系数,按比例预测未来发展。
该方法的优点是:只需要历史数据、所需的数据量较少。
缺点是:如果负荷出现变动,会引起较大的误差。
(2)弹性系数法由规划区以往的用电量和国民生产总值分别求出它们的平均增长率、,从而求得电力弹性系数E=/,再用某种方法预测未来m年的弹性系数及国民生产总值的增长率,则可得电力需求增长率,从而可按比例系数增长预测法得出第m年的用电量。
弹性系数法是从宏观角度调控电力发展与国民经济发展之间的关系,是说明经济发展总趋势的指标,作为衡量电力发展是否适应国民经济发展的一个参数。
在经济结构调整时期,弹性系数变化较大,且难以预测,不宜作为预测电力需求量的方法。
该方法的优点是:计算公式简单,易于计算。
缺点是:电力需求与经济发展的关系存在不确定性,使得弹性系数法难以确定,预测结果出现较大误差。
(3)回归模型预测法根据过去负荷的历史资料,建立可以进行数学分析的数学模型,对未来的负荷进行预测。
从数学上看,就是用数理统计中的回归分析方法,即通过对变量的观测数据进行统计分析,确定变量之间的相互关系,从而实现预测的目的。
该方法的优点是:预测精度较高,适用于在中、短期预测使用。
缺点是:①规划水平年的工农业总产值很难详细统计;②用回归分析法只能测算出综合用电负荷的发展水平,无法测算出各供电区的负荷发展水平,也就无法进行具体的电网建设规划。
负荷预测的几种方法及其应用摘要:在电力改革进一步深入、电力市场逐步形成、电力企业自主经营、自负盈亏的今天,电力负荷预测工作开始越来越重要。
科技发展为预测提供了各种理论和方法,通过对电力负荷预测,对预测方法及其应用进行初步探讨。
关键词:电力负荷预测方法应用1趋势分析法趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。
它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。
常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(Logistic)模型、龚伯茨(Gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。
采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。
在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。
但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。
分析珠海市1995年以来的用电量历史数据,发现具有比较明显的二项式增长趋势,模型曲线为y=0.229565x2-914.8523x+911472.65,利用该模型曲线得到2005年到2010年的用电量水平分别为52.78亿kWh和85.08亿kWh。
拟合曲线如图1所示。
2回归分析法回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。
其任务是确定预测值和影响因子之间的关系。
电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、人口、气候等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。
但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。