专题八化学反应速率与化学平衡
- 格式:doc
- 大小:3.22 MB
- 文档页数:33
初中化学计划化学反应速率与化学平衡的关系化学反应速率是指在单位时间内反应物或生成物的浓度变化量。
而化学平衡是指反应物与生成物浓度保持一定比例的状态。
两者之间存在着密切的关系,本文将讨论化学反应速率与化学平衡之间的相互影响及其原因。
一、化学反应速率对化学平衡的影响化学反应速率的变化会对化学平衡产生影响,具体体现在以下几个方面:1. 反应速率对平衡位置的影响当反应速率变化时,反应达到平衡的速度也会相应改变。
如果反应速率增加,平衡位置将偏向生成物,反之,如果反应速率减小,平衡位置将偏向反应物。
2. 反应速率对平衡浓度的影响反应速率的变化还将导致平衡时反应物与生成物的浓度发生变化。
如果反应速率增加,生成物的浓度将增加,反应物的浓度将减少。
反之,如果反应速率减小,生成物的浓度将减少,反应物的浓度将增加。
3. 反应速率对平衡的稳定性的影响反应速率的快慢也决定了平衡的稳定性。
如果反应速率非常快,平衡将很容易被打破,反应物与生成物之间的转化将不断发生。
相反,如果反应速率较慢,平衡将更加稳定,转化速度较低。
二、化学平衡对化学反应速率的影响化学平衡的变化也会对化学反应速率产生影响,具体体现在以下几个方面:1. 平衡位置对反应速率的影响平衡位置的改变将直接影响反应速率。
当平衡位置偏向反应物时,反应速率较低;当平衡位置偏向生成物时,反应速率较高。
2. 平衡浓度对反应速率的影响平衡浓度的变化也会影响反应速率。
当反应物的浓度增加时,反应速率将增加。
反之,如果生成物的浓度增加,反应速率将减小。
3. 平衡稳定性对反应速率的影响平衡的稳定性也会对反应速率产生影响。
当平衡较不稳定时,反应速率将增加。
反之,当平衡较稳定时,反应速率将减小。
三、化学反应速率与化学平衡的关系原因化学反应速率与化学平衡之间存在相互影响的原因主要包括:1. 动态平衡化学平衡是一个动态平衡过程,反应物与生成物在达到平衡态后仍然发生着相互转化的过程。
这种相互转化使得反应速率与平衡位置之间存在着紧密的联系。
化学反应速率与化学平衡知识点归纳集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]化学反应速率与化学平衡考点归纳一、化学反应速率⑴. 化学反应速率的概念及表示方法:通过计算式: 来理解其概念: ①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的.但这些数值所表示的都是同一个反应速率.因此,表示反应速率时,必须说明用哪种物质作为标准.用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比.如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m ∶n ∶p ∶q③一般来说,化学反应速率随反应进行而逐渐减慢.因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率.⑵. 影响化学反应速率的因素:【注意】①化学反应速率的单位是由浓度的单位(mol ·L -1)和时间的单位(s 、min 或h)决定的,可以是mol ·L -1·s -1、mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位的一致性.②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应: mA + nB = pC + qD tc v ∆∆=qD v p C v n B v m A v )()()()(=== 有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q或: ③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.[有效碰撞] 化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞.[活化分子] 能量较高的、能够发生有效碰撞的分子叫做活化分子.说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越大,活化分子数越多,有效碰撞次数越多.[影响化学反应速率的因素]I. 决定因素(内因):反应物本身的性质Ⅱ. 条件因素(外因)压强对于有气体参与的化学反应,其他条件不变时(除体积),增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小.若体积不变,加压(加入不参加此化学反应的气体)反应速率就不变.因为浓度不变,单位体积内活化分子数就不变.但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加.温度只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大(主要原因).当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快(次要原因)催化剂使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之.浓度当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 .其他因素增大一定量固体的表面积(如粉碎),可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响.图表如下:二、化学平衡状态⑴前提——密闭容器中的可逆反应⑵条件——一定条件的T、P、c ——影响化学平衡的因素⑶本质——V(正)=V(逆)≠0⑷特征表现——各组分的质量分数不变化学平衡可以用五个字归纳:逆:研究对象是可逆反应动:动态平衡.平衡时v正=v逆≠0等:v(正)=v(逆)定:条件一定,平衡混合物中各组分的百分含量一定(不是相等);变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡.【说明】a.绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看O.实际上是朝着同方向进行的,例如NaOH + HCl = NaCl + H2b.有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO3CaO + CO2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO3CaO + CO2可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物.1.化学平衡状态①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.2.化学平衡的标志:(处于化学平衡时)①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化.【例1】在一定温度下,反应A2(g) + B2(g) 2AB(g)达到平衡的标志是( C )A. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B23.化学平衡状态的判断举例反应:mA(g)+nB(g)pC(g)+qD(g)混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定(其他条件一定)平衡②m+n=p+q时,总压力一定(其他条件一定)不一定平衡混合气体的平均分子量一定,①当m+n≠p+q时,平衡②当m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡判断可逆反应达到平衡状态的方法和依据图表4.化学平衡移动⑴勒夏特列原理:如果改变影响平衡的一个条件(如浓度、压强和温度等),平衡就向着能够减弱这种改变的方向移动.其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况(即温度或压强或一种物质的浓度),当多项条件同时发生变化时,情况比较复杂; ③平衡移动的结果:只能减弱(不可能抵消)外界条件的变化.⑵平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程.一定条件下的平衡体系,条件改变后,可能发生平衡移动.即总结如下: ⑶影响化学平衡移动的条件①浓度、温度的改变,都能引起化学平衡移动.而改变压强则不一定能引起化学平衡移动.强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动.催化剂不影响化学平衡.②速率与平衡移动的关系: I . v 正=v 逆,平衡不移动;II. v 正>v 逆,平衡向正反应方向移动;正<v 逆,平衡向逆反应方向移动.强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动.③平衡移动原理:(勒夏特列原理)⑷转化率变化的一般规律(用等效平衡原理来分析)①当温度、压强(造成浓度变化的压强变化)造成平衡正向移动时,反应物转化率一定增大②若反应物只有一种:aA(g)=bB(g)+cC(g),在恒温恒压状态下,若n(C):n(B)=c:b,充入A,转化率不变;在恒温恒容状态下,在不改变其他条件时,增加A的量,A的转化率与气体物质的计量数有关:①若a = b + c : A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c : A的转化率减小.③若反应物不只一种:aA(g)+bB(g)=cC(g)+dD(g)α在不改变其他条件时,只增加A的量,A的转化率减小,而B的转化率增大.β将C、D全部转化成A、B得到一个A、B的物质的量之比,按照这个比例加入A、B,恒温恒压时,转化率不变;恒温恒容时,反应物的转化率与气体物质的计量数有关:若a+b=c+d,A、B的转化率都不变;若a+b>c+d,A、B的转化率都增大;若a+b<c+d,A、B的转化率都减小.γ若n(A):n(B)=a:b,恒温恒压时,只要加入C、D的量之比符合C、D的化学计量数之比,转化率不变;恒温恒容时,若a+b=c+d,A、B的转化率都不变,若a+b>c+d,A、B的转化率都增大,若a+b<c+d,A、B的转化率都减小④同一个化学反应,等量加入反应物时,在恒压容器中的转化率总是大于等于在恒容容器中的转化率,当且仅当反应的Δn=0时转化率相等(此时就等效于恒压).对以上3种情况可分别举例,可加深对概念的理解:例1:某恒温恒容的容器中,建立如下平衡:2NO 2(g ) N 2O 4(g ),在相同条件下, 若分别向容器中通入一定量的NO 2气体或N 2O 4气体,重新达到平衡后,容器内N 2O 4的体积分数比原平衡时 ( ) A .都增大 B .都减小 C .前者增大后者减小 D .前者减小后者增大 解析:2NO 2(g )N 2O 4(g )是气体体积减小的可逆反应.反应达到平衡后,无论向密闭容器中加入N O 2还是N 2O 4气体,可视为加压,平衡都向右移动,达到新平衡时NO 2的转化率都增大.答案选A例2:一定温度下,将a mol PCl 5通入一个容积不变的反应器中,达到如下平衡:PCl 5(g )PCl 3(g )+Cl 2(g ),测得平衡混合气体压强为p 1,此时再向反应器中通入a mol PCl 5,在温度不变的条件下再度达到平衡,测得压强为p 2,下列判断正确的是( ) A. 2p 1>p 2 B. PCl 5的转化率增大 C. 2p 1<p 2 D. PCl 3%(体积含量)减少 解析:PCl 5(g )PCl 3(g )+Cl 2(g )是气体体积增大的可逆反应.如反应达到平衡后,再向密闭容器中加入PCl 5, PCl 3的物质的量会有增加,此时可视为加压,平衡向左移动,反应达到新的平衡时PCl 5在平衡混合物中的百分含量也较原平衡时有所增加,但PCl 5的转化率降低.答案选A 例3: 2HI (g )H 2(g )+I 2(g )是气体体积不变的可逆反应,反应达到平衡后,再向固定密闭容器中加入HI ,使c (HI )的浓度增大,HI 平衡转化率不变.对于气体体积不变的可逆反应,反应达到平衡后增加反应物,达到新的化学平衡时反应物的转化率不变.应注意的是,实际应用时,题目所给的条件并不向上面总结的那么理想化,因此应该利用等效平衡知识具体问题具体分析. ⑸压强变化对于转化率的影响对于可逆反应aA(g)+bB(g)cC(g)+dD(g),(a+b≠c+d)在压强变化导致平衡移动时,充入“惰性气体”化学平衡朝哪个方向移动转化率如何变化可归纳为以下两方面:1. 恒温恒容条件下充入“惰性气体”,化学平衡不移动.因平衡体系的各组分浓度均未发生变化,故各反应物转化率不变.2. 恒温恒压条件下充入“惰性气体”,化学平衡向气体体积增大的方向移动.因为此时容器容积必然增大,相当于对反应体系减压,继而可判断指定物质的转化率变化.变式训练:1、在一容积可变的密闭容器中,通入1molX和3molY,在一定条件下发生如下反应:X(g)+3Y(g) 2Z(g),到达平衡后,Y的转化率为a%,然后再向容器中通入2molZ,保持在恒温恒压下反应,当达到新的平衡时,Y的转化率为b%.则a与b的关系是()A.a=b B.a>b C.a<b D.不能确定2、两个体积相同的密闭容器A、B,在A中充入S O2和O2各1mol,在B中充入SO2和O2各2 mol,加热到相同温度,有如下反应2SO2(g)+ O2(g) 2SO3(g),对此反应,下述不正确的是()A.反应速率B>A B.SO2的转化率B>AC.平衡时各组分含量B = A D.平衡时容器的压强B>A3、一定量混合气体在密闭容器中发生如下反应:xA(气)+yB(气) nC(气),达到平衡后,测得A气体的浓度为L.保持温度不变将容器的容积扩大1倍,再达平衡时,测得A气体的浓度为L,则下列叙述中正确的是()A、x+y<nB、该化学平衡向右移动C、B的转化率增大D、C的体积分数减小4、一定温度下,在一个体积可变的密闭容器中加入2 molH2和2 molN2,建立如下平衡: N2(g)+3H2(g) 2NH3(g)相同条件下,若向容器中再通入1 mol H2和,1molN2又达到平衡.则下列说法正确的是()A.NH3的百分含量不变B.N2的体积分数增大C.N2的转化率增大 D.NH3的百分含量增大5、某温度下的密闭容器中发生如下反应:2M(g)+N(g) 2E(g),若开始时只充入2 mol E(g),达平衡时,混合气体的压强比起始时增大了20%;若开始时只充入2 mol M和1 mol N的混合气体,则达平衡时M的转化率为()A.20%% %% 参考答案: 1、 A 2、C 3、D 4、A 5、C总之,判断转化率的变化关键是正确判断平衡移动的方向,当增大物质的浓度难以判断平衡移动的方向时,可转化为压强问题进行讨论;当增大压强难以判断平衡移动的方向时,可转化为浓度问题进行讨论.5、等效平衡问题的解题思路⑴概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡.⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡.②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡.③等温且Δn=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡.【归纳】等效平衡规律对于可逆反应mA(g)+nB(g)pC(g)+qD(g),在两种不同起始状态下反应,达平衡后互为等效平衡的条件是:6、速率和平衡图像分析⑴分析反应速度图像①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点.②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应.升高温度时,△V 吸热>△V放热.③看终点:分清消耗浓度和增生浓度.反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比.④对于时间——速度图像,看清曲线是连续的,还是跳跃的.分清“渐变”和“突变”、“大变”和“小变”.增大反应物浓度V正突变,V逆渐变.升高温度,V 吸热大增,V放热小增.⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向.②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点.③先拐先平:对于可逆反应mA(g) + nB(g) pC(g) + qD(g) ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡.它所代表的温度高、压强大.这时如果转化率也较高,则反应中m+n>p+q.若转化率降低,则表示m+n<p+q.④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系. 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示.解化学平衡图像题的技巧1、弄清横坐标和纵坐标的意义.2、弄清图像上点的意义,特别是一些特殊点(如与坐标轴的交点、转折点、几条曲线的交叉点)的意义.3、弄清图像所示的增、减性.4、弄清图像斜率的大小.5、看是否需要辅助线.6、看清曲线的起点位置及曲线的变化趋势7、先出现拐点的曲线先平衡,所处的温度较高或压强较大;还可能是使用正催化剂8、定压看温度变化;定温看压强变化.7、化学平衡常数在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K表示.(1)平衡常数K的表达式:对于一般的可逆反应:mA(g) + nB(g) pC(g) + qD(g)当在一定温度下达到化学平衡时,该反应的平衡常数为:【注意】:a.在平衡常数表达式中,反应物A、B 和生成物C、D的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b.当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数1,不必写入平衡常数的表达式中.例如,反应在高温下 Fe3O4(s) + 4H23Fe(s) + 4H2O(g)的平衡常数表达式为:又如,在密闭容器中进行的可逆反应CaCO3(s) CaO(s) + CO2↑的平衡常数表达式为:K=c(CO2)c.平衡常数K的表达式与化学方程式的书写方式有关.例如:N2 + 3H22NH3)()()()(n BcAcDcCcKmqp⋅⋅=)()(2424HcOHcK=)()()(232321HcNcNHcK⋅=2NH 3N 2 + 3H 2 N 2 + H 2NH 3 显然,K 1、K 2、K 3具有如下关系: 2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同.②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K 值不同.因此,在使用平衡常数K 值时,必须指明反应温度. (3)平衡表达式K 值的意义:①判断可逆反应进行的方向.对于可逆反应:mA(g) + nB(g)pC(g) +qD(g),如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向.将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q C 表示.即:当Q C =K 时,体系达平衡状态;当Q C <K ,为使Q C 等于K ,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q C >K 时,则反应自右向左(逆反应方向)进行,直至到达平衡状态.②表示可逆反应进行的程度.)()()(22/322/133H c N c NH c K ⋅=)()()(322322NH c H c N c K ⋅=)()()()(n B c A c D c C c Q m qp c ⋅⋅=K 值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K 值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低.一般来说,当K>105时,反应可以认为进行完全.化学平衡计算题求解技巧1、化学平衡常数(1)化学平衡常数的数学表达式 (2)化学平衡常数表示的意义平衡常数数值的大小可以反映可逆反应进行的程度大小,K 值越大,反应进行越完全,反应物转化率越高,反之则越低. 2、有关化学平衡的基本计算 (1)物质浓度的变化关系反应物:平衡浓度=起始浓度-转化浓度 生成物:平衡浓度=起始浓度+转化浓度其中,各物质的转化浓度之比等于它们在化学方程式中物质的计量数之比.(2)反应的转化率(α): ×100% (3)在密闭容器中有气体参加的可逆反应,在计算时经常用到理想气体方程式: pV=nRT根据这个方程式可以定性甚至定量地比较气体的性质、参数 (4)计算模式(“三段式”) 浓度(或物质的量等) aA(g)+bB(g)cC(g)+dD(g)(或质量、浓度)反应物起始的物质的量(或质量、浓度)反应物转化的物质的量=α起始 m n 0 0 转化 ax bx cx dx 平衡 m-ax n-bx cx dx根据“三段式”可以求出关于这个可逆反应的某种物质的反应速率、转化率、质量(或体积等)分数以及反应的平衡常数等 技巧一:三步法三步是化学平衡计算的一般格式,根据题意和恰当的假设列出起始量、转化量、平衡量.但要注意计算的单位必须保持统一,可用mol 、mol/L ,也可用L.例1 X 、Y 、Z 为三种气体,把a mol X 和b mol Y 充入一密闭容器中,发生反应X + 2Y2Z ,达到平衡时,若它们的物质的量满足:n (X )+ n (Y )= n (Z ),则Y 的转化率为( )A 、B 、C 、D 、 解析:设Y 的转化率为αX + 2Y2Z起始(mol ) a b 0转化(mol ) αb αb平衡(mol )-a -b αb αb依题意有:-a + -b αb = αb , 解得:α= .故应选 B. 技巧二:差量法差量法用于化学平衡计算时,可以是体积差量、压强差量、物质的量差量等等.%1005⨯+b a %1005)(2⨯+b b a %1005)(2⨯+b a %1005)(2⨯+a b a αb 21αb 21αb 21%1005)(2⨯+b b a例2 某体积可变的密闭容器,盛有适量的A 和B 的混合气体,在一定条件下发生反应: A + 3B2C ,若维持温度和压强不变,当达到平衡时,容器的体积为VL ,其中C 气体的体积占10%,下列推断正确的是( ) ①原混合气体的体积为 L ②原混合气体的体积为 L ③反应达平衡时,气体A 消耗掉 L ④反应达平衡时,气体B 消耗掉 L A 、②③ B 、②④ C 、①③ D 、①④ 解析: A + 3B2C ΔV起始(L ) 1 3 2 2 平衡(L )所以原混合气体的体积为V L + L = L ,由此可得:气体A 消耗掉 L ,气体B 消耗掉 L.故本题选A.变式 某温度下,在密闭容器中发生如下反应,2A(g)2B(g)+C(g),若开始时只充入2 mol A 气体,达平衡时,混合气体的压强比起始时增大了20%,则平衡时A 的体积分数为 .解析:等温度、等体积时,压强增大了20%,也就是气体的物质的量增多了2 mol ×20%= mol ,即平衡时气体的物质的量变为 mol. 2A(g)2B(g) + C(g) Δn2 2 1 1 变化(mol )平衡时,n(A)=2 mol - mol = mol ,n(总)= mol ,故A 的体积分数为: ×100%=50%. 技巧三:守恒法2.4mol1.2mol1、质量守恒 例3、a mol N 2与b mol H 2混合,要一定条件下反应达到平衡,生成了c mol NH 3,则NH 3在平衡体系中质量分数为( ) A 、 B 、 C 、 D 、解析:由质量守恒定律可知:在平衡体系中的混合气体总质量应等于反应前N 2和H 2混合气的总质量.即NH 3在平衡体系中的质量分数为 .故本题应选B.2、原子个数守恒例4 加热时,N 2O 5可按下列分解:N 2O 5 N 2O 3 + O 2、N 2O 3又可按下列分解:N 2O 3N 2O + O 2.今将 4 molN 2O 5充入一升密闭容器中,加热至 t ℃时反应达到了平衡状态.平衡时,c (O 2)= mol/L, c (N 2O 3)= mol/L,c (N 2O )= _______ mol/L ,此时N 2O 5的分解率为 ________.解析:N 2O 5的起始浓度为c (N 2O 5)=4mol/L ,平衡时的气体成份及浓度为: 达平衡时的气体成份:N 2O 5 N 2O 3 N 2O O 2 平衡浓度(mol/L ) x y 由N 原子守恒:422262.12⨯=+⨯+y x 由O 原子守恒:4525.4362.15⨯=⨯++⨯+y x解得:x = mol/L ,y = mol/L ,所以,c (N 2O )= mol/L ,N 2O 5的分解率为: .变式 一定温度下,反应2SO 2(g)+O 2(g)2SO 3(g)达到平衡时,%1001722817⨯-+cb a c%100⨯++cb ac %10022817⨯+ba c%10022834⨯+ba c%5.76%100/4/94.0/4=⨯-Lmol Lmol L mol %10022817⨯+ba c。
三年真题二]4<08化肾反固速卑与化肾年衡昌字窖僵。
痹匆演考点三年考情(2022・2024)命题趋势考点1化学反应速率与化学平衡♦化学反应速率:2024安徽卷、2024江苏卷、2024甘肃卷、2023广东卷、2023山东卷、2023辽宁卷、2023浙江卷、2022广东卷、2022北京卷、2022河北卷、2022浙江卷♦化学平衡:2024黑吉辽卷、2024山东卷、2024江苏卷、2024浙江卷、2024湖南卷、2023北京卷、2023湖南卷、2023山东卷、2022天津卷、2022重庆卷、2022江苏卷、2022浙江卷、2022北京卷、2022辽宁卷、2022湖南卷选择题中对于化学反应速率和化学平衡内容的考查不算太多,这是因为在主观题中,化学反应速率和化学平衡才是考查的重头戏。
随着新高考单科卷的实行,选择题题量大增,有关化学反应速率和化学平衡试题的考查在选择题中开始有所增加,考查的核心知识还是有关化学反应速率的比较、计算和影响因素的判断,化学平衡常数、转化率、物质的浓度的计算,以及平衡移动原理的分析等,常结合坐标图像或表格进行考查。
考法01化学反应速率1.(2024.安徽卷)室温下,为探究纳米铁去除水样中SeO?-的影响因素,测得不同条件下SeC^-浓度随时间变化关系如下图。
"一。
点,0云下列说法正确的是A. 实验①中,。
〜2小时内平均反应速率v (SeO42-)=2.0mol ・L-i.h-i实验序号水样体积/mL纳米铁质量/mg 水样初始pH①5086②5026③5028B. 实验③中,反应的离子方程式为:2Fe+SeO 42+8H +=2Fe 3++Se+4H 2OC. 其他条件相同时,适当增加纳米铁质量可加快反应速率D. 其他条件相同时,水样初始pH 越小,SeCU2-的去除效果越好【答案】C【解析】A.实验①中,。
〜2小时内平均反应速率v (SeO ;)*5・0xl0 3-一3moi.L 』.h 」,A 不正确;B. 实验③中水样初始pH =8,溶液显弱碱性,发生反应的离子方程式中不能用H+配电荷守恒,B 不正确;C. 综合分析实验①和②可知,在相同时间内,实验①中SeO :浓度的变化量大,因此,其他条件相同时,适当增加纳米铁质量可加快反应速率,C 正确;D. 综合分析实验③和②可知,在相同时间内,实验②中Se 。
专题八化学反应速率与化学平衡1.(2020·浙江卷)5 mL 0。
1 mol·L-1KI溶液与1 mL 0.1 mol·L-1FeCl3溶液发生反应:2Fe3+(aq)+2I-(aq)2Fe2+(aq)+I2(aq),达到平衡。
下列说法不正确的是()A.加入苯,振荡,平衡正向移动B.经苯2次萃取分离后,在水溶液中加入KSCN,溶液呈血红色,表明该化学反应存在限度C.加入FeSO4固体,平衡逆向移动D.该反应的平衡常数K=错误!解析:A项,加入苯振荡,苯将I2萃取到苯层,水溶液中c(I2)减小,平衡正向移动,正确;B项,将5 mL 0.1 mol·L-1KI溶液与1 mL 0。
1 mol·L-1FeCl3溶液混合,参与反应的Fe3+与I-物质的量之比为1∶1,反应后I-一定过量,经苯2次萃取分离后,在水溶液中加入KSCN溶液呈血红色,说明水溶液中仍含有Fe3+,即Fe3+没有完全消耗,表明该化学反应存在限度,正确;C项,加入FeSO4固体溶于水电离出Fe2+,c(Fe2+)增大,平衡逆向移动,正确;D项,该反应的平衡常数K=错误!,错误。
答案:D2.(2020·浙江卷)一定条件下:2NO2(g)N2O4(g)ΔH 〈0。
在测定NO2的相对分子质量时,下列条件中,测定结果误差最小的是()A.温度0 ℃、压强50 kPaB.温度130 ℃、压强300 kPaC.温度25 ℃、压强100 kPaD.温度130 ℃、压强50 kPa解析:测定二氧化氮的相对分子质量,要使测定结果误差最小,应该使混合气体中NO2的含量越多越好,为了实现该目的,应该改变条件使平衡尽可以的逆向移动.该反应是一个反应前后气体分子数减小的放热反应,可以通过减小压强、升高温度使平衡逆向移动,则选项中,温度高的为130 ℃,压强低的为50 kPa,结合二者答案选D。
答案:D3.[2020·新高考卷Ⅰ(山东卷)]探究CH3OH合成反应化学平衡的影响因素,有利于提高CH3OH的产率.以CO2、H2为原料合成CH3OH涉及的主要反应如下:Ⅰ.CO2(g)+3H2(g)CH3OH(g)+H2O(g)ΔH1=-49。
专题八 化学反应速率与化学平衡高考试题考点一 化学反应速率及其影响因素1.(2013年福建理综,12,6分)NaHSO 3溶液在不同温度下均可被过量KIO 3氧化,当NaHSO 3完全消耗即有I 2析出,依据I 2析出所需时间可以求得NaHSO 3 的反应速率。
将浓度均为0.020 mol ·L -1的NaHSO 3溶液(含少量淀粉)10.0 mL 、KIO 3(过量)酸性溶液40.0 mL 混合,记录10~55 ℃间溶液变蓝时间,55 ℃时未观察到溶液变蓝,实验结果如图。
据图分析,下列判断不正确的是( )A.40 ℃之前与40 ℃之后溶液变蓝的时间随温度的变化趋势相反B.图中b 、c 两点对应的NaHSO 3反应速率相等C.图中a 点对应的NaHSO 3反应速率为5.0×10-5mol ·L -1·s -1D.温度高于40 ℃时,淀粉不宜用作该实验的指示剂解析:由图像可知,温度低于40 ℃时,随温度升高,溶液变蓝所需的时间缩短,但温度高于40 ℃时情况相反,所以A 项正确;因为b 、c 两点的温度不同,反应速率不可能相同,B 项错误;当溶液变蓝时发生反应I3O -+5I -+6H+3I 2+3H 2O,此时反应6HS 3O -+2I 3O -6S 24O -+2I -+6H +恰好结束,即溶液变蓝时NaHSO 3恰好完全反应,v(NaHSO 3)=-10.020mol L 10.0mL 8050.0mL s ⋅⨯⨯=5.0×10-5 mol ·L -1·s -1,C 项正确;温度高于40 ℃,随着温度升高,淀粉溶液与碘显色的灵敏度降低,因此有温度高于40 ℃ 时,淀粉不宜作该实验的指示剂,D 项 正确。
答案:B2.(2012年福建理综,12,6分)一定条件下,溶液的酸碱性对TiO 2光催化染料R 降解反应的影响如图所示。
下列判断正确的是( )A.在0~50 min 之间,pH=2和pH=7时R 的降解百分率相等B.溶液酸性越强,R 的降解速率越小C.R 的起始浓度越小,降解速率越大D.在20~25 min 之间,pH=10时R 的平均降解速率为0.04 mol ·L -1·min-1解析:由图像可看出,50 min 时,pH=2和pH=7时R 均完全降解,A 正确;斜率越大,降解速率越大,则pH=2时R 的降解速率明显大于pH=7和pH=10时的降解速率,B 错误;图像中出现了两个影响速率的条件:反应物起始浓度和pH,因pH 不同,不能由图像判断反应物浓度对反应速率的影响,C 错误;20~25 min 之间,pH=10时R 的平均降解速率为:()4-10.60.410mol L 5min--⨯⋅=4×10-6mol ·L -1·min -1,D 错误。
答案:A3.(双选题)(2012年上海化学,18,4分)为探究锌与稀硫酸的反应速率[以v(H 2)表示],向反应混合液中加入某些物质,下列判断正确的是( ) A.加入NH 4HSO 4固体,v(H 2)不变 B.加入少量水,v(H 2)减小 C.加入CH 3COONa 固体,v(H 2)减小 D.滴加少量CuSO 4溶液,v(H 2)减小 解析:反应实质为:Zn+2H+Zn 2++H 2↑。
A 项导致溶液中c(H +)增大,v(H 2)加快,A 项错误;B 项导致溶液中c(H +)减小,v(H 2)减小,B 项正确;C 项因发生CH 3COO -+H +CH 3COOH,导致溶液中c(H +)减小,v(H 2)减小,C 项正确;D项形成铜锌原电池,v(H 2)加快,D 项错误。
答案:BC4.(双选题)(2011年海南化学,8,4分)对于可逆反应H 2(g)+I 2(g)2HI(g),在温度一定下由H 2(g)和I 2(g)开始反应,下列说法正确的是( )A.H 2(g)的消耗速率与HI(g)的生成速率之比为2∶1B.反应进行的净速率是正、逆反应速率之差C.正、逆反应速率的比值是恒定的D.达到平衡时,正、逆反应速率相等解析:各物质的反应速率之比等于各物质化学计量数之比,H 2的消耗速率与HI 的生成速率之比为1∶2,A 错;该反应进行的净速率是指某一物质的正反应速率与逆反应速率之差,B 正确;随反应进行正反应速率在减小,逆反应速率在增大,两者之比逐渐减小,C 错;正、逆反应速率相等是平衡建立的特征,D 正确。
答案:BD5.(2010年福建理综,12,6分)化合物Bilirubin 在一定波长的光照射下发生分解反应,反应物浓度随反应时间变化如图所示,计算反应4~8 min 间的平均反应速率和推测反应16 min 时反应物的浓度,结果应是( )A.2.5 μmol ·L -1·min -1和2.0 μmol ·L-1B.2.5 μmol ·L -1·min -1和2.5 μmol ·L -1C.3.0 μmol ·L -1·min -1和3.0 μmol ·L -1D.5.0 μmol ·L -1·min -1和3.0 μmol ·L -1解析:由图可知,4 min 时化合物Bilirubin 的浓度为20 μmol ·L -1,8 min 时其浓度为10 μmol ·L -1,因此4~8 min 间的平均反应速率为()-12010mol L 4minμ-⋅=2.5 μmol ·L-1·min -1。
随着反应的进行,反应速率逐渐减慢,大致的变化规律是反应每进行4 min,反应速率降低一半,所以当反应进行到16 min 时,反应物的浓度降到大约2.5 μmol ·L -1。
答案:B6.(2012年广东理综,31,16分)碘在科研与生活中有重要应用。
某兴趣小组用0.50 mol ·L -1KI 、0.2%淀粉溶液、0.20 mol ·L -1K 2S 2O 8、0.10 mol ·L -1Na 2S 2O 3等试剂,探究反应条件对化学反应速率的影响。
已知:S 228O -+2I-2S 24O -+I 2 (慢)I2+2S 223O -2I -+S 426O -(快)(1)向KI 、Na 2S 2O 3与淀粉的混合溶液中加入一定量的K 2S 2O 8溶液,当溶液中的 耗尽后,溶液颜色将由无色变为蓝色。
为确保能观察到蓝色,S 223O -与S 228O -初始的物质的量需满足的关系为:n(S 223O -)∶n(S 228O -) 。
(2)为探究反应物浓度对化学反应速率的影响,设计的实验方案如下表:表中V x = ,理由是 。
(3)已知某条件下,浓度c(S 228O -)~反应时间t 的变化曲线如图所示,若保持其他条件不变,请在坐标图中,分别画出降低反应温度和加入催化剂时c(S 228O -)~t 的变化曲线示意图(进行相应的标注)。
(4)碘也可用作心脏起搏器电源—锂碘电池的材料。
该电池反应为:2Li(s)+I 2(s)2LiI(s) ΔH已知:4Li(s)+O 2(g)2Li 2O(s) ΔH 1 4LiI(s)+O 2(g)2I 2(s)+2Li 2O(s) ΔH 2则电池反应的ΔH= ;碘电极作为该电池的 极。
解析:(1)根据提供的2个反应可知,当S 223O -耗尽后,生成的I 2不再被转化为I -,溶液变为蓝色,若要保证能看到蓝色需有I 2剩余。
所以n(S 223O -)∶n(S 228O -)<2∶1。
(2)为确保只有S 228O -浓度一个因素变化,故溶液的总体积V 是定值,三次实验的总体积应该是20.0 mL,所以V x 应为2.0。
(3)降温会使反应速率减慢,反应所需时间长,加入催化剂会加快反应,反应所需时间短。
(4)4Li(s)+O 2(g)2Li 2O(s) ΔH 1① 4LiI(s)+O 2(g)2I 2(s)+2Li 2O(s) ΔH 2②由2①-②得: 2Li(s)+I 2(s)2LiI(s)ΔH=122H H ∆∆- I 2→I -发生还原反应,作正极。
答案:(1)Na 2S 2O 3 <2∶1(2)2.0 保持溶液总体积相等,仅改变S 228O -的浓度而保持其他物质浓度不变(3)如图(4)122H H ∆∆- 正 7.(2011年重庆理综,29,14分)臭氧是一种强氧化剂,常用于消毒、灭菌等。
(1)O 3与KI 溶液反应生成的两种单质是 和 (填分子式)。
(2)O 3在水中易分解,一定条件下,O 3的浓度减少一半所需的时间(t)如表所示。
已知:O 3的起始浓度为 0.021①pH 增大能加速O 3分解,表明对O 3分解起催化作用的是 。
②在30 ℃、pH=4.0条件下,O 3的分解速率为 mol/(L ·min)。
③据表中的递变规律,推测O 3在下列条件下分解速率依次增大的顺序为 (填字母代号)。
a.40 ℃、pH=3.0 b.10 ℃、pH=4.0c.30 ℃、pH=7.0(3)O 3可由臭氧发生器(原理如图)电解稀硫酸制得。
①图中阴极为 (填“A ”或“B ”),其电极反应式为。
②若C 处通入O 2,则A 极的电极反应式为 。
③若C 处不通入O 2,D 、E 处分别收集到x L 和y L 气体(标准状况),则E 处收集的气体中O 3所占的体积分数为 。
(忽略O 3的分解)解析:(1)O 3具有氧化性可把I -氧化为I 2同时生成O 2。
(2)①pH 增大,OH -浓度增大,加速了O 3分解,表明OH -对O 3分解具有催化作用。
②30 ℃、pH=4.0时,O 3分解的Δc=0.021 6mol /L2=0.010 8 mol/L,用时108 min,则O 3分解速率v=0.010 8 mol /L 108 min=1.00×10-4mol/(L ·min)。
③据表中递变规律,40 ℃、pH=3.0时,所用时间介于31 min ~158 min;10 ℃、pH=4.0时所用时间>231 min; 30 ℃、pH=7.0时所用时间<15 min,而浓度变化同为0.0108 mol/L,则分解速率依次增大顺序为:b<a<c 。
(3)①电解稀H 2SO 4生成O 3,转化原理为:H 2O 中氧失电子被氧化为O 3,所以生成O 3的电极为阳极,则阴极为A,电极反应为2H ++2e-H 2↑。