河北省邯郸市肥乡县九年级数学上册2.2用配方法求解一元二次方程教案(新版)北师大版
- 格式:doc
- 大小:145.50 KB
- 文档页数:2
北师大版九年级数学上册说课稿:2.2 用配方法求解一元二次方程一. 教材分析北师大版九年级数学上册第二单元《用配方法求解一元二次方程》是学生在学习了方程、方程的解、一元二次方程等知识的基础上,进一步学习用配方法求解一元二次方程。
通过本节课的学习,学生能够掌握用配方法求解一元二次方程的方法和步骤,提高解题能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于方程、方程的解等概念有一定的了解。
但是,对于用配方法求解一元二次方程,部分学生可能还存在一定的困难。
因此,在教学过程中,我们需要关注这部分学生的学习情况,引导他们理解和掌握用配方法求解一元二次方程的方法。
三. 说教学目标1.知识与技能目标:学生能够掌握用配方法求解一元二次方程的方法和步骤。
2.过程与方法目标:学生通过自主学习、合作交流,培养解决问题的能力。
3.情感态度与价值观目标:学生体验数学学习的乐趣,提高对数学的兴趣。
四. 说教学重难点1.教学重点:用配方法求解一元二次方程的方法和步骤。
2.教学难点:理解配方法的原理,熟练运用配方法求解一元二次方程。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具。
六. 说教学过程1.导入新课:通过复习一元二次方程的定义和求解方法,引出用配方法求解一元二次方程。
2.自主学习:学生自主探究用配方法求解一元二次方程的方法和步骤。
3.合作交流:学生分组讨论,分享各自的解题思路和方法。
4.教师讲解:教师讲解配方法的原理和步骤,引导学生理解和掌握。
5.课堂练习:学生独立完成练习题,巩固所学知识。
6.总结提升:教师引导学生总结用配方法求解一元二次方程的步骤和注意事项。
7.课后作业:布置相关作业,巩固所学知识。
七. 说板书设计板书设计如下:用配方法求解一元二次方程1.确定a、b、c的值2.移项,使方程左边成为完全平方式3.配方,求解方程4.检验解是否符合原方程八. 说教学评价教学评价主要包括以下几个方面:1.学生对用配方法求解一元二次方程的方法和步骤的掌握程度。
配方法解一元二次方程教学设计共同目标:1. 会用开平方法解形如)0()(2>=+n n m x 的方程2. 理解配方法,会用配方法解简单的数字系数的一元二次方程通过自主探索和小组合作达到如下分层学习目标1.C 层理解配方的概念,能用开平方法、配方法解简单的一元二次方程2 B 层会用开平方法、配方法解一元二次方程;并掌握配方的技巧;体会转化的数学思想3. A 层除熟练掌握1.2目标.增强数学的应用意识和能力,在不断的探索中提升自己享受学习的快乐。
【使用说明和学法指导】1.用15分钟左右的时间认真阅读、探究课本基础知识,理解配方的概念并掌握配方的技巧。
2.认真完成导学案的问题;3.初步评价自己完成学习目标情况,并把自己的疑问写出来,以求课堂上解决。
【课前导学】探究新知:知识点1 直接开平方法解一元二次方程:(C 层)1、 求一个非负数的平方根:如果92=x ,则x =_______;如果52=x ,则x =_______;2、 如果02=x ,则x =_______。
设计意图:第一题为填空题,C 层学生回答,但要求全体学生思考复习开方,旨在引出配方法,培养学生探究的兴趣。
3试求下列方程的根:(A 、B 、C 层) (1) 092=-x (2)052=-x【提示】当满足方程的根不止一个时,为了区分,应把方程的根写为1x 、2x 的形式。
一般情况下,方程根的个数与其次数一样。
【探究一】1、对于方程4)3(2=+x ,你能用上面的方法来求解吗?你是如何解的 (B 层回答)2、你能把方程0562=++x x 转化成4)3(2=+x 吗?你是如何转化的?(A 层回答)知识点2 配方法解一元二次方程1、完全平方式——运算形式形如222b ab a +±的二次三项式。
试着写出两个完全平方式:___________________,_____________________。
(B 、C 层回答)(A 层补充)2、配方——对二次三项式q px x ++2,配上适当的数(不改变式子的值),使得式子中的一部分是一个完全平方式,如342++x x ,将式子加1,再减1(不改变式子的值),即可得1)44(2-++x x ,从而得到1)2(2-+x 。
《22配方法公式法解一元二次方程》教案姓名年级性别教材第课教学课题教学目标1、利用配方法解数字系数的一般一元二次方程。
2、进一步理解配方法的解题思路。
课前检查作业完成情况:优□良□中□差□建议__________________________________________过程一.教学内容:用配方法和公式法解一元二次方程1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系.3.能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:用配方法解一元二次方程ax²+bx+c=0(a≠0)的一般步骤:(1)移项:将常数项移到方程右边;(2)把二次项系数化为1:方程左右两边同时除以二次项系数(3)配方:方程左右两边同时加上一次项系数一半的平方,把原方程化为2()x m n+=的形式即将2x mx±的式子加上2()2m,可得到完全平方式⇒222()()22m mx mx x±+=±(4)当0n≥时,用直接开方法解变形后方程三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.【例题剖析】【衔接训练】1、一元二次方程230x -=的解是 ( )A 、3x =B 、3x =-C 、123,3x x ==-D 、123,3x x ==- 2、一元二次方程21090x x ++=可变形为 ( )A 、2(5)16x +=B 、2(5)34x +=C 、2(5)16x -=D 、2(5)25x +=5、用配方法解下列方程时,配方有错误的是 ( )A 、22430(2)7x x x --=-=化为 B 、227252730()416x x x -+=-=化为 C 、22525490()33636x x x --=-=化为 D 、22517215()416y y y +=+=化为 6、将二次三项式241x x -+配方后得 ( )A 、2(2)3x -+B 、2(2)3x --C 、2(2)3x ++D 、2(2)3x +-7、(1)226___(__)x x x ++=+; (2)224___(__)3x x x -+=-; (3)228___(__)x x x ++=+ (4)2214___(__)x x x -+=-(5)227___(__)x x x ++=+ (6)223___(__)5x x x -+=- (7)22___(__)x px x ++=+; (8)22___(__)b x x x a++=+;(9)222()___(__)x m n x x -++=- (10)22___(__)x ax x -+=- 8、用配方法解一元二次方程225033x x +-=时,此方程可变形为_____________,解得:12____,____x x == 9、解下列方程:(1)x 2=2 (2)4x 2-1=0 (3)(x +1)2= 2(4)22350x x --= (5) 22410x x --=(6)23(1)50x x +-= (7)(1)(2)12t t --=10、已知三角形两边长分别为2和4,第三边是方程2430x x -+=的解,求这个三角形的周长。
2.2 用配方法求解一元二次方程学习内容:配方法学习目标:1、会用开方法解形如n m x =+2)()0(≥n 的方程,理解配方法;2、会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程;3、体会转化的数学思想方法.学习重点:利用配方法解一元二次方程.学习难点:把一元二次方程通过配方转化为(x 十m)2=n(n ≥0)的形式.学习过程:一、 复习旧知,引入新课 1、解下列方程:(1)x 2=4 (2)(x+3)2=9 2、什么是完全平方式?利用公式计算:(1)(x+6)2 (2)(x -12)2 注意:它们的常数项等于一次项系数一半的平方。
3、解方程:(梯子滑动问题)x 2+12x -15=0目的:以三种不同类型的题目引导学生逐步深入地思考,通过前两个问题,引导学生复习开平方和完全平方公式,通过后一个问题的回答让学生进一步体会上节课中用估计法解一元二次方程较麻烦,激发学生的求知欲,为学习后面配方法作好铺垫。
二、 探究新知 1、尝试练习:(1)如果一个正方形的边长增加3cm 后,它的面积变为264cm ,则原来的正方形的边长为 。
若变化后的面积为248cm 呢?(小组合作交流)(2)你会解下列一元二次方程吗?(独立练习) 52=x ; 5)2(2=+x ; 036122=++x x目的:让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫.2、填上适当的数,使下列等式成立。
(选4个学生口答)(1)x 2+12x+ =(x+6)2(2)x 2―12x+ =(x ― )2(3)x 2+8x+ =(x+ )2问题:上面等式的左边常数项和一次项系数有什么关系?对于形如ax x +2的式子如何配成完全平方式?(小组合作交流)目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。
2.2配方法课题 2.2配方法课型新授课教学目标1.利用方程解决实际问题.2.训练用配方法解题的技能.教学重点利用方程解决实际问题教学难点对于开放性问题的解决,即如何设计方案教学方法分组讨论法教学后记教学内容及过程学生活动一、复习:1、配方:(1)x2―3x+ =(x― )2(2)x2―5x+ =(x― )22、用配方法解一元二次方程的步骤是什么?3、用配方法解下列一元二次方程?(1)3x2―1=2x (2)x2―5x+4=0 二、引入课题:我们已经学习了用配方法解一元二次方程,在生产生活中常遇到一些问题,需要用一元二次方程来解答,请同学们将课本翻到54页,阅读课本,并思考:三、出示思考题:1、如图所示:(1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程?(2)一元二次方程的解是什么?(3)这两个解都合要求吗?为什么?1、2学生口答学生演板阅读课本观察与思考(16-2x) (12-2x)=12×16×12x1=2 x2=12x1=2合要求, x2=12不合要求,因荒地的宽为12m,小路的宽不可能为12m,2、设花园四角的扇形半径均为x m,可列怎样的一元二次方程?(2)一元二次方程的解是什么?(3)合符条件的解是多少?3、你还有其他设计方案吗?请设计出来与同伴交流。
四、练习:P56随堂练习看课本P53~P54,然后小结五、小结:1、本节内容的设计方案不只一种,只要合符条件即可。
2、设计方案时,关键是列一元二次方程。
3、一元二次方程的解一般有两个,要根据实际情况舍去不合题意的解。
六、作业:(一)P56,习题2.5,1、2(二)预习内容:P56~P57板书设计:它必须小于荒地宽的一半。
x2π=12×12×16X1=96π≈5.5X2≈-5.5X1=5.51)花园为菱形(2)花园为圆形?(3)花园为三角形(4)花园为梯形本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性。
用配方法求解一元二次方程【知识与技能】理解配方法的意义,会用配方法解二次项系数为1的一元二次方程.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.【教学重点】运用配方法解二次项系数为1的一元二次方程.【教学难点】了解并掌握用配方求解一元二次方程.一、情境导入,初步认识1.根据完全平方公式填空:(1)x2+6x+9=()2(2)x2-8x+16=()2(3)x2+10x+()2=()2(4)x2-3x+()2=()22.解下列方程:(1)(x+3)2=25;(2)12(x-2)2-9=0.3.你会解方程x2+6x-16=0吗?你会将它变成(x+m)2=n(n为非负数)的形式吗?试试看,如果是方程2x2+1=3x呢?【教学说明】利用完全平方知识填空,为后面学习打下基础.二、思考探究,获取新知思考:怎样解方程x2+6x-16=0?x2+6x-16=0移项:x2+6x=16两边都加上9,即262⎛⎫⎪⎝⎭,使左边配成x2+2bx+b2的形式:x2+6x+9,右边为:16+9;写成平方形式:(x+3)2=25降次:x+3=±5解一次方程:x+3=5,x+3=-5,∴x1=2,x2=-8【教学说明】通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能逆向转化为可以直接开平方的形式,所以总结出解一元二次方程的基本思路是将x2+px+q=0形式转化为(x+m)2=n(n≥0)的形式.【归纳结论】通过配成完全平方式的方法得到一元二次方程的根,这种方法称为配方法.三、运用新知,深化理解1.解方程(注:学生练习,教师巡视,适当辅导).(1)x2-10x+24=0;(2)(2x-1)(x+3)=5;(3)3x2-6x+4=0.解:(1)移项,得x2-10x=-24配方,得x2-10x+25=-24+25,由此可得(x-5)2=1,x-5=±1,∴x1=6,x2=4(2)整理,得2x2+5x-8=0.移项,得2x2+5x=8二次项系数化为1得x2+52x=4配方,得 x2+52x+(54)2=4+(54)2由此可得(x+54)2=8916x+54=89∴x1-5+89x2-5-89(3)移项,得3x2-6x=-4二次项系数化为1,得x2-2x=4 -3配方,得x2-2x+12=4-3+12(x-1)2=1 -3因为实数的平方不会是负数,所以x取任何实数时,(x-1)2都是非负数,上式不成立,即原方程无实数根.2.用配方法将下列各式化为a(x+h)2+k的形式.(1)-3x2-6x+1;(2)23y2+13y-2;(3)0.4x-0.8x-1.【教学说明】化二次三项式ax2+bx+c(a≠0)为a(x+h)2+k形式分以下几个步骤:(1)提取二次项系数使括号内的二次项系数为1;(2)配方:在括号内加上一次项系数一半的平方,同时减去一次项系数一半的平方;(3)化简、整理.本题既让学生巩固配方法,又为后面学习二次函数打下基础.四、师生互动,课堂小结1.本节课学习的数学知识是用配方法解一元二次方程;2.本节课学习的数学方法是:①转化思想,②根据实际问题建立数学模型;3.用配方法求解一元二次方程的一般步骤是什么?(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x+h)2=k的形式;(4)用直接开平方法解变形后的方程.【教学说明】使学生在直观的基础上学习归纳,促进学生形成科学的、系统的数学知识体系.1.布置作业:教材“习题2.4”中第1题.2.完成创优作业中本课时“课时作业”部分.在教学过程中,由简单到复杂,由特殊到一般的原则,采用了观察对比,合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究并发现结论,教师做学生学习的引导者、合作者、促进者,要适时鼓励学生,实现师生互动.同时,我认识到教师不仅仅要教给学生知识,更要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习.。
2.2用配方法求解一元二次方程第1课时用配方法解二次项系数为1的一元二次方程【学习目标】1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.【学习重点】会用配方法解二次项系数为1的一元二次方程.【学习难点】用配方法解二次项系数为1的一元二次方程的一般步骤.一、情景导入生成问题1.如果一个数的平方等于4,则这个数是±2.2.已知x2=9,则x=±3.3.填上适当的数,使下列等式成立.(1)x2+12x+36=(x+6)2;x2-6x+9=(x-3)2.二、自学互研生成能力知识模块一探索用配方法解二次项系数为1的一元二次方程的方法先阅读教材P36“议一议”的内容.然后完成下列问题:1.一元二次方程x2=5的解是x1=5,x2=-5.2.一元二次方程2x2+3=5的解是x1=1,x2=-1.3.一元二次方程x2+2x+1=5,左边配方后得(x+1)2=5,此方程两边开平方,得x+1=±5,方程的两个根为x1=-1+5,x2=-1-5.用配方法解二次项系数为1的一元二次方程的一般步骤是:(以解方程x2-2x-3=0为例) 1.移项:将常数项移到右边,得:x2-2x=3;2.配方:两边同时加上一次项系数的一半的平方,得:x2-2x+12=3+12,再将左边化为完全平方形式,得:(x-1)2=4;3.开平方:当方程右边为正数时,两边开平方,得:x-1=±2(注意:当方程右边为负数时,则原方程无解);4.化为一元一次方程:将原方程化为两个一元一次方程,得:x-1=2或x-1=-2;5.解一元一次方程,写出原方程的解:x1=__3__,x2=-1.归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.知识模块二应用配方法求解二次项系数为1的一元二次方程解答下列各题:1.填上适当的数,使等式成立.(1)x2+4x+4=(x+2)2;(2)x2-10x+25=(x-5)2.2.用配方法解方程:x2+2x-1=0.解:①移项,得x2+2x=1;②配方,得x2+2x+1=1+1,即(x+1)2=2;③开平方,得x+1=±2,即x+1=2或x+1=-2;④所以x1=-1+2;x2=-1-2.典例讲解:解方程:x2+8x-9=0.解:可以把常数项移到方程的右边,得:x2+8x=9.两边都加42(一次项系数8的一半的平方),得:即x2+8x+42=9+42,即(x+4)2=25.两边开平方,得:x+4=±5,即x+4=5,或x+4=-5.所以x1=1,x2=-9.对应练习:1.解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1; (4)x2+2x+2=8x+4.2.用配方法解方程x2-2x-1=0时,配方后得的方程为(D)A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=23.方程(x-2)2=9的解是(A)A.x1=5,x2=-1 B.x1=-5,x2=1C.x1=11,x2=-7 D.x1=-11,x2=7三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索用配方法解二次项系数为1的一元二次方程的方法知识模块二应用配方法求解二次项系数为1的一元二次方程四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_________________________________________2.存在困惑:_____________________________________第2课时用配方法解二次项系数不为1的一元二次方程【学习目标】1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣. 【学习重点】 用配方法解一般一元二次方程. 【学习难点】 用配方法解一元二次方程的一般步骤. 一、情景导入 生成问题1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( B ) A .加上32 B .加上94 C .减去32 D .减去942.解方程(x -3)2=8,得方程的根是( D )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±2 23.方程x 2-3x -4=0的两个根是x 1=4,x 2=-1.二、自学互研 生成能力知识模块一 探索用配方法解一般一元二次方程的方法先阅读教材P 38例2,然后完成下面的填空:用配方法解二次项系数不为1的一元二次方程的一般步骤是:(以解方程2x 2-6x +1=0为例)①系数化1:把二次项系数化为1,得x 2-3x +12=0;②移项:将常数项移到右边,得x 2-3x=-12;③配方:两边同时加上一次项系数的一半的平方,得:x 2-3x +⎝ ⎛⎭⎪⎫322=-12+94.再将左边化为完全平方形式,得:⎝ ⎛⎭⎪⎫x -322=74;;④开平方:当方程右边为正数时,两边开平方,得:x -32=±72(注意:当方程右边为负数时,则原方程无解);⑤解一次方程:得x =32±72,∴x 1=32+72,x 2=32-72.用配方法求解一般一元二次方程的步骤是什么?师生共同归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.知识模块二 应用配方法解一般一元二次方程解答下列各题:1.用配方法解方程3x 2-9x -32=0,先把方程化为x 2+bx +c =0的形式,则下列变形正确的是( D )A .x 2-9x -32=0B .x 2-3x -32=0C .x 2-9x -12=0D .x 2-3x -12=02.方程2x 2-4x -6=0的两个根是x 1=3,x 2=-1.典例讲解:1.解方程3x 2-6x +4=0.解:移项,得3x 2-6x =-4;二次项系数化为1,得x 2-2x =-43;配方,得x 2-2x +12=-43+12;(x -1)2=-13.因为实数的平方不会是负数,所以x 取任何实数时,(x -1)2都是非负数,上式不成立,即原方程无实数根.2.做一做:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?解:根据题意得15t -5t 2=10;方程两边都除以-5,得t 2-3t =-2;配方,得t 2-3t +⎝ ⎛⎭⎪⎫322=-2+⎝ ⎛⎭⎪⎫322;⎝ ⎛⎭⎪⎫t -322=14;t -32=±12;t =2,t 2=1;答:当t =2s 或t =1s 时,小球达到10米的高度. 对应练习:1.解下列方程:(1)3x 2-9x +2=0; (2)2x 2+6=7x ; (3)4x 2-8x -3=0.2.方程3x 2-1=2x 的两个根是x 1=-13,x 2=1.3.方程2x 2-4x +8=0的解是无实数解.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索用配方法解一般一元二次方程的方法知识模块二 应用配方法解一般一元二次方程四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________2.存在困惑:____________________________________________。
用配方法求解一元二次方程
教学目标
1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.
重点用配方法求解一元二次方程.
难点理解配方法。
教学
用具
课件、多媒体
教学
环节
说明二次备课
复习1、什么叫配方法?
2、怎样配方?方程两边同加上一次项系数一半的平方。
新课导入3、解方程:
(1)x2+4x+3=0 (2)x2―4x+2=0、
学生上黑板演示解题过程,其余学生在练习本上做这两道题。
看学生解题过程是否正确,共同讨论,增强记忆。
课程讲授二、新授:
1、例题讲析:
例3:解方程:3x2+8x―3=0
分析:将二次项系数化为1后,用配方法解此方程。
解:两边都除以3,得: x2+
8
3
x―1=0
移项,得:x2+
8
3
x = 1
配方,得:x2+
8
3
x+(
4
3
)2= 1+(
4
3
)2(方程两边都加上一次项系数一半的平方)
(x+
4
3
)2=(
5
3
)2
即:x+
4
3
=±
5
3
所以x1=
1
3
,x2=―3
2、用配方法解一元二次方程的步骤:
(1)把二次项系数化为1;
(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根。
3、做一做:
一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系: h=15 t―5t2
小球何时能达到10m高?
三、巩固:
练习:P39随堂练习
小结四、小结:
1、用配方法解一元二次方程的步骤:(1)化二次项系数为1;
(2)移项;
(3)配方:
(4)求根。
作业
布置
习题2.4 1、3、题
板书设计1、用配方法解一元二次方程的步骤:(1)化二次项系数为1;
(2)移项;
(3)配方:
(4)求根。
2、例2
课后反思。