变频器的VF控制与矢量控制
- 格式:doc
- 大小:115.00 KB
- 文档页数:7
转矩控制、矢量控制和VF控制解析1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。
如皮带运输机提升机等机械负载2.VF控制就是变频器输出频率与输出电压比值为恒定值或正比。
例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值: E1=4.44f1N1Φm式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
那么要保证Φm不变,只要U1/f1始终为一定值即可。
这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。
基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。
在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。
3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。
它既可以控制电机的转速,也可以控制电机的扭矩。
矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
变频器的控制方式1 引言我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。
根据不同的变频控制理论,其模式主要有以下三种:(1)v/f=c的正弦脉宽调制模式(2)矢量控制(vc)模式(3)直接转矩控制(dtc)模式针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。
这些控制方式在变频器通电运行前必须首先设置。
2 v/f控制方式2.1 基本概念我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。
图1中所示就是变频器的基本运行v/f曲线。
由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。
也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。
在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。
同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。
当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。
基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。
因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。
变频器的V/F控制与矢量控制U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
因此人们又研究出矢量控制变频调速。
一、矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。
通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
矢量控制方法的提出具有划时代的意义。
然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
V/F控制与矢量都是恒转矩控制。
U/F相对转矩可能变化大一些。
而矢量是根据需要的转矩来调节的,相对不好控制一些。
对普通用途。
两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。
1、V/F控制指当频率F可变时,控制频率与电压的比率保持恒定。
2、先进磁通矢量控制指进行频率和电压的补偿,通过对变频器的输出电流实施矢量演算,分割为励磁电流和转矩电流,以便流过与负荷转相匹配的电机电流。
要点:将变频器输出电流分解为相互垂直励磁电流和转矩电流3、实时无传感器矢量控制通过推断电机速度,实现具备高度电流控制功能的速度控制和转矩控制。
有必要实施高精度、高响应的控制时请选择实时无传感器矢量控制,并实施离线自动调谐及在线自动调谐。
适用于所述的用途。
负荷的变动较剧烈但希望将速度的变动控制在最小范围;需要低速转矩时为防止转矩更大导致机械破损(转矩限制)想实施转矩控制4、矢量控制安装FR-A7AP(旋转编码器与变频器之间的连线),并与带有PLG的电机配合可实现真正意义上的矢量控制,可进行高响应、高精度的速度控制(零速控制、伺服锁定、)扭矩控制、位置控制。
何为矢量控制相对于V/F控制等其它控制方法,控制性能更加优越,可实现与直流电机同等的控制性能。
适用于下列用途;负荷的变动较剧烈但希望将速度变动控制在最小范围需要低速转矩时可防止转矩过大导致机械损伤(转矩限制)想实施转矩和位置控制在电机轴停止的状态下,对产生转矩的伺服锁定转矩进行控制..V/F控制与矢量控制的区别A V/F控制无速度反馈、而矢量控制有速度反馈;B V/F控制精度低,矢量控制精度高。
变频器对电机的控制我们以三菱FR-A700变频器为例进行讲解。
§1简单控制一、电路接线二、参数设置见表1-1所示。
表1-1 简单运行参数设置表三、运行1、PU控制2、外部控制§2 先进磁通矢量控制一、电路接线二、参数设置三、运行1、PU控制2、外部控制§4 实时无传感器矢量控制(速度控制)一、电路接线二、参数设置§5 带PLG电机的高精度运行控制(矢量控制)一、速度控制1、电路接线同前3、运行二、转矩控制1、电路接线同前3、运行。
变频器的四种控制方式详解一、V/f恒定控制:V/f控制是在改变电动机电源频率的同时改变电动机电源的电压,使电动机磁通保持一定,在较宽的调速范围内,电动机的效率,功率因数不下降。
因为是控制电压(Voltage)与频率(Frequency)之比,称为V/f控制。
恒定V/f控制存在的主要问题是低速性能较差,转速极低时,电磁转矩无法克服较大的静摩擦力,不能恰当的调整电动机的转矩补偿和适应负载转矩的变化; 其次是无法准确的控制电动机的实际转速。
由于恒V/f变频器是转速开环控制,由异步电动机的机械特性图可知,设定值为定子频率也就是理想空载转速,而电动机的实际转速由转差率所决定,所以V/f恒定控制方式存在的稳定误差不能控制,故无法准确控制电动机的实际转速。
二、转差频率控制:转差频率是施加于电动机的交流电源频率与电动机速度的差频率。
根据异步电动机稳定数学模型可知,当频率一定时,异步电动机的电磁转矩正比于转差率,机械特性为直线。
转差频率控制就是通过控制转差频率来控制转矩和电流。
转差频率控制需要检出电动机的转速,构成速度闭环,速度调节器的输出为转差频率,然后以电动机速度与转差频率之和作为变频器的给定频率。
与V/f控制相比,其加减速特性和限制过电流的能力得到提高。
另外,它有速度调节器,利用速度反馈构成闭环控制,速度的静态误差小。
然而要达到自动控制系统稳态控制,还达不到良好的动态性能。
三、矢量控制矢量控制,也称磁场定向控制它是70年代初由西德F.Blasschke等人首先提出,以直流电机和交流电机比较的方法阐述了这一原理。
由此开创了交流电动机和等效直流电动机的先河。
矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic。
通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流; It1相当于直流电动机的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。
变频器矢量控制与VF控制矢量控制概念:矢量控制目的是设法将交流电机等效为直流电机,从而获得较高的调速性能。
矢量控制方法就是将交流三相异步电机定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,这样即可等效于直流电机。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
矢量控制理论模型如下图矢量控制特点:变频器矢量控制,按照是否需要转速反馈环节,一般分为无反馈矢量控制和有反馈矢量控制。
1、无反馈矢量控制。
无反馈矢量控制方式优点是:a)、使用方便,用户不需要增加任何附加器件。
b)、机械特性较硬。
机械特性由于V/F控制方式,且不会发生电机磁路饱和问题,调试方便(个人观点,请大家批评指正) 缺点是 :调速范围和动态响应能力不及有反馈控制方式;2、有反馈矢量控制方式。
有反馈矢量控制方式的主要优点是: a)、调速性能优于无反馈矢量控制方式及V/F控制。
缺点: 需要在电机上安装测速装置(大多为旋转编码器),电机变频改造比较麻烦,成本也高。
故有反馈矢量控制一般应用场合为:a)、要求有较大调速范围的场合(如:具有铣、磨功能的龙门刨床) ; b)、对动态响应性能要求较高的场合 ;c)、对安全运行要求较高场合。
矢量控制的适用范围:a)、矢量控制只能用于一台变频器控制一台电机。
当一台变频器控制多台电机时,矢量控制无效;b)、电机容量与变频器要求配置的电机容量之间,最多只能相差一个档次。
(如:变频器要求配置电机容量为7.5KW,那么实际电机最小容量为5.5KW,对于3.7kw电机就不行了);c)、电机磁极数一般以2、4、6极为宜,极数较多时建议查阅变频器说明书;d)、力矩电机、深槽电机、双鼠笼电机等特殊电机不能用矢量控制功能。
//(个人观点,请大家批评指正)V/F控制:如果电机电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
变频器的V/F控制与矢量控制U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
因此人们又研究出矢量控制变频调速。
矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。
通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
矢量控制方法的提出具有划时代的意义。
然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
V/F控制与矢量都是恒转矩控制。
U/F相对转矩可能变化大一些。
而矢量是根据需要的转矩来调节的,相对不好控制一些。
对普通用途。
两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。
矢量控制概念:矢量控制目的是设法将交流电机等效为直流电机,从而获得较高的调速性能。
矢量控制方法就是将交流三相异步电机定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,这样即可等效于直流电机。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
矢量控制理论模型如下图矢量控制特点:变频器矢量控制,按照是否需要转速反馈环节,一般分为无反馈矢量控制和有反馈矢量控制。
1、无反馈矢量控制。
无反馈矢量控制方式优点是:a)、使用方便,用户不需要增加任何附加器件。
b)、机械特性较硬。
机械特性由于V/F控制方式,且不会发生电机磁路饱和问题,调试方便(个人观点,请大家批评指正)缺点是:调速范围和动态响应能力不及有反馈控制方式;2、有反馈矢量控制方式。
有反馈矢量控制方式的主要优点是: a)、调速性能优于无反馈矢量控制方式及V/F控制。
缺点:需要在电机上安装测速装置(大多为旋转编码器),电机变频改造比较麻烦,成本也高。
故有反馈矢量控制一般应用场合为:a)、要求有较大调速范围的场合(如:具有铣、磨功能的龙门刨床); b)、对动态响应性能要求较高的场合;c)、对安全运行要求较高场合。
矢量控制的适用范围:a)、矢量控制只能用于一台变频器控制一台电机。
当一台变频器控制多台电机时,矢量控制无效;b)、电机容量与变频器要求配置的电机容量之间,最多只能相差一个档次。
(如:变频器要求配置电机容量为7.5KW,那么实际电机最小容量为5.5KW,对于3.7kw电机就不行了);c)、电机磁极数一般以2、4、6极为宜,极数较多时建议查阅变频器说明书;d)、力矩电机、深槽电机、双鼠笼电机等特殊电机不能用矢量控制功能。
//(个人观点,请大家批评指正)V/F控制:如果电机电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
VF统造战矢量统造的一些辨别之阳早格格创做尔是搞变频器开垦的一线人员,有过完备的针对付三相同步电机战永磁共步电机变频器开垦经历,产品也正在商场上卖,教力圆里,正在海内正规书籍院拿到了电机工程的博士教位(无炫耀之意,不过证明正在那个范畴比较认识),陈伯真老先死的书籍基础翻烂过,也战陈老先死共桌吃过饭.瞅到计划比较热烈,也去收个止,道道对付变频器VF统造、矢量统造的认识.针对付同步电机,为了包管电机磁通战着力稳定,电机改变频次时,需保护电压V战频次F的比率近似稳定,所以那种办法称为恒压频比(VF)统造.VF统造-统造简朴,通用性强,经济性好,用于速度细度央供不格中庄重大概背载变动较小的场合.从真量上道,VF统造本量上统造的是三相接流电的电压大小战频次大小,然而接流电有三果素,便是除了电压大小战频次除中,还存留相位.VF统造不对付电压的相位举止统造,那便引导正在瞬态变更历程中,比圆突加背载的时间,电机转速受冲打会变缓,然而是电机供电频次也便是共步速仍旧脆持稳定,那样同步电机会爆收瞬时得步,进而引起转矩战转速振荡,通过一段时间后正在一个更大转好下脆持仄稳.那个瞬时历程中不对付相位举止统造,所以回复历程较缓,而且电机转速会随背载变更,那便是所谓VF统造细度不下战赞同较缓的本果.矢量统造海中也喊磁场定背统造,本去量是正在三相接流电的电压大小战频次大小统造的前提上,还加上了相位统造,那个相位正在简曲支配中体现为一个角度,简朴的道便是电机定子电流相对付于转子的位子角.咱们了解,电机定子三相对付称接流电的概括效验是一个转动磁铁,通电后那个转动磁场通过感触正在转子上死成三相接流电流,那个电流也等效成一个磁铁,那样便相称于定子磁铁拖着转子磁铁转动了,那个是电机转动的基根源基本理.那里有个问题,便是惟有定子磁铁战转子磁铁的相对付位子靠得迩去,爆收的力矩才最大,所以怎么样正在电机三相定子绕组上通电赢得最大转矩,本量上还战转子位子有闭的.矢量统造会通过真测回去的电流分离电机参数,真时估计出转子位子,那个历程便是所谓的“磁场定背”,而后真时决断三相定子绕组上电压的相位,那样表里上不妨搞到共样的电流下爆收的转矩最劣,进而减小电机背载变更时的瞬态历程.别的,矢量统造逆便还会根据转子位子供出转速,利用电机参数对付转速举止瞬时补偿,进一步劣化了统造本能.综上,尔感触矢量统造战VF统造的最真量的辨别便是加进了电压相位统造上.从支配层里上瞅,矢量统造普遍把电流收会成转矩电流战励磁电流,那里转矩电流战励磁电流的比率便是由转子位子角度(也便是定子电压相位)决断的,那时转矩电流战励磁电流共共爆收的转矩是最好.简曲真止不妨参照陈老先死的书籍战其余所有一本道矢量统造的书籍.宏瞅上瞅,矢量统造战VF统造的电压,电流,频次正在电机宁静运止时出进不大,皆是三相对付称接流,基础上皆谦脚压频比闭系,不过正在瞬态历程如突加、突减背载的情况下,矢量统造会随着速度的变更自动安排所加电压、频次的大小战相位,使那个瞬时历程更快回复仄稳.至于矢量统造内里那些坐标变更,是一种便于明白战形貌的脚法,不是真量问题.从电机表里去瞅,正在dq共步转动坐标系里,三相正弦接流量不妨变更成二相曲流量,那样不妨简化运算,便于数字处理,本量上真正在系统里本去不存留转矩电流战励磁电流的,那些是一种数教抽象,算完了统造完毕后最后仍旧要体目前本量三相接流电上.好比咱们数教里的推普推斯变更,不妨把微分圆程形成代数圆程简化运算,运算完了后再反变更回去是一个原理.刘志斌教授大概对付矢量统造明白有误,大概者大概书籍上出把物理真量道得很收会.刘志斌教授的第一面“1、电感的电流降后电压90度,您能统造那个角度吗?”那句话利害常细确,电感的电流降后电压90度,对付杂电感而止那个90角度是不可能统造的,然而是不克不迭推出“9、所谓对付定子电流解耦,对付有功电流、无功电流分别统造是句谎止,大概者是无知的笑话!”.对付电机而止,尔念那个论坛里很多人该当教过电机教,了解三相同步电机的等效电路,三相同步电机电感不妨认为是稳定的,然而是转子的等效电阻不妨瞅成二部分,一部分是转子自己的本量电阻r2,不思量温度什么的那个不妨认为稳定,另一个是背载等效电阻(1s)r2/s(s是转好率),那个本量上战转好有闭,也便是道跟电机的共步速、背载等果素有闭了,那样转子的等效电阻本量上是可变的,电机电感战电阻的比率闭系本去不是牢固的,那么通过改变共步速战相映的电压、相位,对付有功电流、无功电流的分别统造是可止的,而矢量统造便是提供了那样一种道路.那里尔要澄浑一下,“对付有功电流、无功电流的分别统造”,本去不是道您能把有功电流、无功电流统造到任性值,念怎么统造便怎么统造,对付同步电机而止,无功电流永近是感性,那是本理决断的,您不可能把它统造成容性无功,而且有功电流、无功电流的推拢爆收的转矩必须战背载仄稳,那个是拘束条件.矢量统造的目标,本量上是“通过对付有功电流、无功电流的分别统造真止劣化推拢”,达到瞬时转矩最劣,动背历程最短的脚法.而VF统造少了那样一个对付电流瞬时统造的历程,是细线条的统造,表里上便要好些.好比您让一个小弟搞活,VF统造便是“小弟,您把那个物品搞出去”,给出一个央供便止了;矢量统造便是您不不过报告小弟把那个物品搞出去,而且还要报告他,第一步怎么搞,第二步怎么搞,细节怎么处理,那样隐而后者得到的截止要细细些.上头是一些表里收会,从本量去瞅,VF统造是暂时变频器合流统造要收,辅以适合的补偿要收不妨普及其本能.暂时普及VF统造本能的主要要收有:矮频力矩补偿、死区补偿、动背磁通统造、追踪自开用等,不妨适用于80%以上的工况.正在某些对付动背央供很下的场合,则需要使用矢量统造,如伺服、印刷等.矢量统造是根据丈量到的电流、电压战磁通等数据,分离电机内里的电阻电感等参数估计出目前的转速战位子,并举止需要的建正,进而正在分歧频次下运止时,得到更好的统造模式.由于估计量较大,且需要了解电机内里参数,所需数据中的相称部分,普遍用户是很罕见到的.那给矢量统造的应用戴去了艰易.对付此,变频器皆必须摆设自动检测电效果参数的功能.总体而止,矢量统造不妨得到更好的本能,矮频转矩大,动背赞同好,然而应用比较不便当,如果参数分歧适大概还不克不迭宁静运止,使用范畴受到一些节造.本量中推荐用户能用VF统造便尽管不必矢量统造.究竟上大普遍情况减少了转矩提下、死区补偿、滑好补偿的下本能的VF能谦脚绝大部分央供,而且宁静性更好.暂时矢量统造的主要问题是适用性不如VF强,VF基础上什么同步电机皆能上,然而是矢量统造正在博用电机能达到的最下火仄让VF视尘莫及.尔到西门子瞅赏的时间,他们对付电机的统造到了令人震惊的程度,那便是用三台电机分别启动一台时钟的秒针、分针战时针!念念是什么观念:12小时转一圈啊,那种超矮速统造是尔念皆无法念的.那便是技能好同!那千万于代表了天下上电机统造的最下火仄,而基根源基本理便是矢量统造.至于ABB的间接转矩统造,天下上独此一家.老真道,尔简曲尝试过波形,是正在无法明白是怎么样真止的,特地是细节部分,体现出的波形跟教科书籍上的真足纷歧样.只可道自己孤陋鳏闻.。