教师用相似三角形导学案1--图形的相似2
- 格式:doc
- 大小:129.50 KB
- 文档页数:5
27.2.1相似三角形的判定(一)导学案一、学习目标(1) 会用符号“∽”表示相似三角形如△ABC ∽ △C B A ''';(2) 知道当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k .(3) 理解掌握平行线分线段成比例定理二、学习重点、难点教学重点: 理解掌握平行线分线段成比例定理及应用.教学难点: 掌握平行线分线段成比例定理应用.三、自主学习(一)、知识链接1、相似多边形的主要特征是什么?2、相似三角形有什么性质?(二)、合作探究1、在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中,如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且k A C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC ∽△A ′B ′C ′,则有∠A=_____, ∠B=_____, ∠C=____, 且A C CA C B BC B A AB ''=''=''. 2、问题:如果k=1,这两个三角形有怎样的关系?明确:(1)在相似多边形中,最简单的就是相似三角形。
(2)用符号“∽”表示相似三角形如△ABC ∽ △C B A ''';(3)当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k .3、活动1 (教材P40页 探究1)(1) 如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?(2) 问题,AB ︰AC=DE ︰( ),BC ︰AC=( )︰DF .强调“对应线段的比是否相等”(3) 归纳总结:平行线分线段成比例定理:三条_________截两条直线,所得的________线段的比________。
3.4.1 相似三角形的判定学习目标:1、了解相似三角形的判定方法:用平行法判定三角形相似;2、会用平行法判定两个三角形相似。
学习重点:用平行法判定两个三角形相似学习难点:平行法判定三角形相似定理的推导学习过程:一、问题导入:1、同学们,还记得什么是相似图形吗?相似的图形具有怎样的特征呢?2、在实际生活中你见过的哪些三角形是相似的?怎样判定两个三角形相似呢?二、出示目标:三、自主研读:学生自学教材77页至78页四、合作探究:如图,在△ABC中,D为AB任意一点,过点D作BC的平行线DE,交AC于点E。
(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?从而我们可以得出相似三角形的判定方法:平行于的直线与相交,截得的三角形与原三角形。
五、展示提升:1、如图,点D为△ABC的边AB的中点,过点D作DE∥BC,交AC于点E,延长DE至点F,使DE=EF,求证:△CFE∽△ABC.2、如图,在ABCD中AE=EB,AF=2,求FC的长。
3、书本78页第一个练习题4、书本79页第二个练习题六、达标检测:1、在ABCD中,AE=,连接BE交AC于点F,AC=12,则AF=_____。
2、如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B落在AD的F处,若四边形EFDC~四边形ABCD,则AD=_____。
3、已知Rt△ABC~Rt△BDC,且AB=3,AC=4,求CD的长。
4、矩形草坪的长为50m,宽为20m,沿草坪四周修等宽的小路,能否使小路内外边缘的两个矩形相似,说明理由。
相似三角形的判定定理1学习目标:1、了解相似三角形的判定定理1:两角分别相等的两个三角形相似;2、会用相似三角形的判定定理1判定两个三角形相似。
学习重点:运用相似三角形的判定定理1证明两个三角形相似学习难点:理角相似三角形判定定理1的推导过程学习过程:一、问题导入:观察你与老师的一个三角板(含30°,60°角的),这两个三角板的外围的三角形的三个内角有什么关系?它们所在的三角形相似吗?二、出示目标:三、自主研读:学生自学教材79页至80页四、合作探究:''',使∠A′=∠A,∠B′=∠B.任意画△ABC和△A B C(1)∠C=∠C′吗?(2)分别度量这两个三角形的边长,它们是否对应成比例?(3)把你的结果与同学交流,你们的结论相同吗?由此你有什么收获?如何证明上题中两个三角形相似呢?证明:由此我们可以得出相似三角形的判定定理1:此定理用数学式子表示为:五、展示提升:1、在△ABC中,∠C=900,从点D分别作边AB,BC的垂线,垂足分别为点E、F,DF与AB交于点H,求证:△DEH~△BCA。
图形的相似〔二〕教学目的:1探索相似图形的性质,知道相似图形的对应角相等,对应边的比相等.2探索相似图形的判定,知道“如果两个多边形满足对应角相等,对应边的比相等.那么这两个多边形相似〞3在探索相似图形的性质的探究过程中,让学生运用观察—猜测—思考—验证的数学思想,并体会由特殊到一般的思想方法.能运用相似图形的性质解决问题.4在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点:知道相似图形的对应角相等,对应边的比相等.教学难点:能运用相似图形的性质解决问题.一、创设情境活动1观察图片,体会相似图形性质1 图1中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?2对于图2中两个相似的正六边形,是否也能得到类似的结论?3什么叫成比例线段?阅读课本答复教师活动:教师出示图片,提出问题;学生活动:学生细心观察思考,小组讨论后答复下列问题:它们的对应角相等,对应边的比相等..教师活动:在活动中,教师应重点关注:1 学生参与活动的热情及语言归纳数学结论的能力;2 学生对正三角形和正六边形的图形性质的认识是否到位;3 对成比例线段的理解和掌握.活动2 探究:下列图1中是两个相似三角形, 它们的对应角有什么关系?对应边的比是否相等?对于图2中两个相似四边形,它们的对应角、对应边是否也有同样的结论?1 2图教师活动:教师出示图片,提出问题;为了验证学生自己的猜测,可以鼓励学生用刻度尺和量角器量一量.学生活动:学生猜测,小组讨论后答复下列问题:学生归纳总结:相似多边形的对应角相等,对应边的比相等;1如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似;2相似多边形的对应边的比称为相似比;3当相似比为1时,两个多边形全等.二、运用相似多边形的性质活动3 例教材P4页如图,四边形ABCD和EFGH相似,求角的大小和EH的长度.教师活动:教师出例如题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角的大小和EH的长度.2人板演活动4 教材P5页练习1.在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如下图的两个直角三角形相似吗?为什么?3.如下图的两个五边形相似,求未知边、、、的长度.教师活动:在活动中,教师应重点关注:〔1〕学生参与活动的热情及语言归纳数学结论的能力;〔2〕学生对于相似多边形的性质的掌握情况.三、回忆与反思.1谈谈本节课你有哪些收获.2布置课外作业:教材P5,第1、3题必做,第2、5题选做.。
4.5 《相似三角形》导学案一、教学目标1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.二、教学过程1.相似三角形的定义及记法如果△ABC ∽△DEF ,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?由前面相似多边形的性质可知,对应角应相等,对应边应成比例.所以∠A =∠D 、∠B =∠E 、∠C =∠F .EFBC DF AC DF AC DE AB ===. 2.(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?解:(1)两个全等三角形一定相似.因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.(2)两个直角三角形不一定相似.因为虽然都是直角三角形,但也只能确定有一对角即直角相等,其他的两对角可能相等,也可能不相等,对应边也不一定成比例,所以它们不一定相似.两个等腰直角三角形一定相似.因为两个等腰直角三角形Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,则∠A =∠B =∠D =∠E =45°,所以有∠A =∠D ,∠B =∠E ,∠C =∠F .再设△ABC 中AC =b ,△DEF 中DF =a ,则AC =BC =b ,AB =2bDF =EF =a ,DE =2a ∴DEAB EF BC DF AC == 所以两个等腰直角三角形一定相似.(3)两个等腰三角形不一定相似. 因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似.两个等边三角形一定相似.因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似.[师]由上可知,在特殊的三角形中,有的相似,有的不相似.两个全等三角形一定相似.两个等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.3.例题1.如图,有一块呈三角形形状的草坪,其中一边的长是20 m ,在这个草坪的图纸上,这条边长5 cm ,其他两边的长都是3.5 cm ,求该草坪其他两边的实际长度.解:草坪的形状与其图纸上相应的形状相似,它们的相似比是2000∶5=400∶1 如果设其他两边的实际长度都是x cm ,则14005.3 x x =3.5×400=1400(cm )=14(m )所以,草坪其他两边的实际长度都是14 m .2.如图,已知△ABC ∽△ADE ,AE =50 cm,EC =30 cm,BC =70 cm,∠BAC =45°,∠ACB =40°,求(1)∠AED 和∠ADE 的度数;(2)DE 的长.解:(1)因为△ABC ∽△ADE .所以由相似三角形对应角相等,得∠AED =∠ACB =40°在△ADE 中,∠AED +∠ADE +∠A =180°即40°+∠ADE +45°=180°,所以∠ADE =180°-40°-45°=95°.(2)因为△ABC ∽△ADE ,所以由相似三角形对应边成比例,得 BCDE AC AE = 即70305050DE =+ 所以 DE =30507050+⨯=43.75(cm ).。
第4课相似三角形、问题引领1理解相似三角形的定义和全等三角形的定义; 2、能运用相似的定义进行相关的计算。
、交流启发1、 两个相似多边形的特征:对应边 ____________ ,对应角 ___________ •2、 相似多边形识别方法:如果 ______________________________ , ______________ ,那么这两个多边形相似. 、自主探索 1相似三角形①在下图两个三角形中,那么,根据相似多边形的识别方法可知, 厂△ ABC 与厶 AB C _________ ,记作ABC ________ △ ABC ,读作“ __________________________________AB H BC CA H那么这个比值k 就表示这两个相似三角形的②做一做 如右图,△ ABC 中,D 为边AB 上任一点,作DE // BC ,交边AC 于E ,用刻度尺和量角器量一量 判断△ ADE 与厶ABC 是否相似.想一想③如果△ ADE 与厶ABC 相似可以得到多少组对应比例的线1段成h 3并分别写出来?④上题中,如果取点D 为边AB 的中点,那么△ ADE 和厶ABC 的相似比为k = ___________ . (此时,线段DE 叫做△ ABC 的中位线。
)2、当厶ABC 和厶ABC •的相似比为1时(即k = 1), 这两个三角形不仅形状相同,而且大小也相同,如果/A =Z A , =Z B ,/C =Z C ,CA厂CA这样的三角形我们就称为 ___________________ 记作ABC _________ △ A B C ,2、下列说法不正确的是( )A •如果两个三角形全等,那么这两个三角形相似。
B •如果两个三角形相似,且相似比为 1,那么这两个三角形全等。
C •如果两个三角形与第三个三角形相似,那么这两个三角形相似。
D •如果两个三角形相似,那么这两个三角形全等。
相似三角形的判定导学案一、学习目标1、经历两个三角形相似条件的探索过程,初步掌握“两角对应相等的两个三角形相似”的判定条件。
2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法的运用.三、教具准备1、学生每人制作△ABC纸片,使∠BAC=60°2、学生每人制作△ABC纸片,使∠BAC=60°,∠ABC==45°四、教学过程(一)复习导入1、是相似三角形2、相似三角形的判定方法方法一:方法二:(二)动手操作探索新知1拿出每人制作∠BAC=60°的△ABC,组内比较交流,你们所画三角形相似吗?结论:2拿出每人制作的∠BAC=60°,∠ABC=45°的△ABC,组内比较交流,你们所画三角形相似吗?结论:(三)严谨思维,推理论证思考:如果两个三角形有两组角对应相等,它们一定相似吗?请同学们试着证明。
已知,如图在∆ABC和∆A'B'C'中,∠A=∠A',∠B=∠B';求证:△ABC∽△A’B’C’证明:在A’B上截取A’D=AB,过点D作DE∥B’C’交A’C’于点E ∴△A’DE∽()∴∠A’DE=∠B'又∵∠B=∠B'∴∠A’DE=________ 在∆ABC和∆A'DE ∴△ABC≌△A’DE ( ) ∴△ABC∽△A’B’C’(四)【归纳】三角形相似的判定方法简称用数学符号表示:∵∴(五)新知运用如图,△ABC 中, DE ∥BC,EF ∥AB,试说明△ADE ∽△EFC .(六)课内练习1、如图,在矩形ABCD 中,DE ⊥AC ,垂足为E ,求证:△ADE ∽△ACD4.如图,在□ABCD 中,EF ∥AB ,DE:EA=2:3,EF=4,求CD 的长(七)课堂总结1、谈收获2、找对应角的方法(八)当堂检测1 、我会填如图,点D 在AB 上,当∠ =∠ 时, △ACD ∽△ABC 。
《相似三角形的性质1》说课稿说课的内容是初中数学九年级上册,第23章《相似三角形的性质》第一课时,下面我从教材分析、目标分析、教学与学法、教学设计、板书设计几个方面对本节课的教学设计进行说明。
一、教材分析:1、教材的地位与作用:《相似三角形的性质》的主要内容是相似三角形的性质。
本节是在相似三角形的概念及三角形相似的判定的基础上,进一步研究相似三角形的性质的。
根据定义,相似三角形的对应角相等,对应边成比例,相似三角形还有对应高、对应中线、对应角平分线的比等于相似比、周长比等于相似比、面积比等于相似比的平方的性质。
这些性质在几何研究中起着很重要的作用。
本节课主要介绍相似三角形对应高的比、对应中线的比,对应角平分线的比等于相似比的性质。
2、教学重点和难点:相似三角形性质定理的引入形成过程二、教学目标分析:根据《初中数学课程改革教学大纲》的要求和教学内容的特征,结合学生的现有实际水平,制定本节课的教学目标具体表现为以下四个方面:1、知识目标:(1)让学生进一步理解相似三角形的定义(2)掌握相似三角形对应高、对应中线、对应角平分线的比都等于相似比;2、能力目标:(1)数学思考目标: 通过相似三角形性质的探索过程培养学生分析问题的能力、探究问题能力、归纳和总结的能力等。
(2)问题解决目标:培养学生勇于探索,勤于思考的精神;培养学生合作学习和互相交流的能力;3、情感目标:让学生体验学习的乐趣以及获得成功的喜悦。
三、教学与学法:根据上述教材分析和目标分析,为体现以教师为主导,学生为主体的新的教学改革思想,进一步体现素质教育的重要性,本课主要运用我学校的五步尝试导学法。
根据教学内容和学生的特点,本节课的教学学生自主尝试贯穿始终。
经历了尝试导入目标定向—----尝试探究引导发现—--尝试练习引领提升—---尝试自结引导拓展的教学过程。
充分发挥教师的主导和学生的主体作用。
学生在尝试中发现新知,在交流合作中探索,在尝试练习中提高,在尝试自结中感悟。
相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。
年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(2)【学习目标】1. 探究平行相似.2. 会证明定理并灵活应用.【重点】三角形相似的判定方法----平行相似 .【难点】证明定理并灵活应用.预学案(回顾)1、相似三角形的定义:如果两个三角形的_________,__________________,那么这两个三角形相似.2、平行线分线段成比例定理:两条直线被 所截,所得的 线段成比例3、推论:平行于三角形一边的直线截其他两边(或两边延长线),所得的_______线段的比_______.探究案探究1:三角形相似的判定定理------平行相似:如图,在△ABC 中,D 为AB 上任意一点,过点D 作BC 的平行线DE ,交AC 于点E .问题1 △ADE 与△ABC 的三个内角分别相等吗?∠A ∠A , ∠ADE ∠B , ∠AED ∠C ,问题2 分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?______=_______=BCDE 问题3 你认为△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,你的结论还成立吗? △ADE △ABC猜想: ∵DE ∥BC∴______ = _______.而BCDE 中的DE 不在△ABC 的边BC 上,不能直接利用前面的结论,但从要证的AC AE =BC DE 可以看出,除DE 外,AE ,AC ,BC 都在△ABC 的边上,因此只需将DE _______到BC边上去,使得_____=DE,再证明ACAE=________就可以了.只要过点E作EF∥AB,交BC于点F,BF就是_____DE所得的线段.请你写出证明过程:结论:判定三角形相似的定理:,所构成的三角形与原三角形相似.三角形相似的两种常见类型:“A”型“X”型检测案1.已知在△ABC中,D,E分别是AB,BC的中点,ED:AC等于()A.1:2 B.1:3 C.2:3 D.2:52. 如图,在△ABC中,EF∥BC,AE= 2 cm,BE = 6 cm,BC=4 cm,则EF的长为()A.1 cm B.cmC.3 cm D.2 cm3.如图,在△ABC中,DE∥BC,则△____∽△____,对应边的比为=.4.如图,在平行四边形ABCD中,EF∥AB,DE:EA=2 :3,EF=4,求CD的长.34ABAD。