基于在线自适应遗传算法的PID参数整定和优化
- 格式:pdf
- 大小:267.09 KB
- 文档页数:4
曝气池溶解氧(DO)在污水处理中是一个重要运行参数,理论分析,当溶解氧达到0.3mg/L 就不会影响水中微生物的生理功能。
考虑到水质及水量变化波动情况,通常保证入口处为0.5-1mg/L ,出口处为2-3mg/L 。
按溶解氧数值控制风量是目前比较理想的控制方法。
在城市生活污水停留时间内需要氧气(或空气)数量与污水的水质指标有关,如SS(悬浮物)、COD(化学需氧量)、BOD (生物需氧量)、水量及水温等。
根据工艺理论分析,通过经验公式计算可以得到鼓风量的理论值。
在实际运行时,能够根据进水的水质和水量的变化对鼓风量作出调整。
实际工作中,需要通过实验得到污水水质指标。
测定一些指示需很多时间,如测量COD 需要数小时,测量BOD 甚至需要几天时间,这不利于进行实时控制。
实际工程应用中,对于连续流动的曝气池,只要污水在曝气池出口的溶解氧浓度保持在某一设定值,就可以不考虑水质、水量、水温等扰动的变化,从宏观上能较好地满足菌胶团繁殖和有机物分解的需要,从而保持污泥活性,保证污水的连续处理。
为达到可靠的控制,可参数间的关系是:污水中溶解氧含量的偏差与曝气量的增量(或减量)成反比,即当溶解氧值偏小时,向大调节气量;反之亦然。
当我们在实际中,曝气量值的设定是根据工艺理论值为参考的,经溶解氧反馈信号比较后,再根据偏差大小的结果随时对气量的多少进行调节,从而确保了污水的溶解氧值可以维持最初设定值内。
下面是国内污水处理厂设计当中常采用的控制方案。
图1溶解氧控制过程框图如图1所示的串级控制系统,副回路采用PI 控制策略,主回路一般采用PID 控制策略。
这样虽然比简单的单回路系统控制效果好,但是由于溶解氧控制过程是一个极其复杂的化学反应过程,非线性、大滞后。
传统的PID 参数整定方法很难确定合适的PID 参数,并且参数不具备在线调整功能,无法适应工况变化,难以取得良好的控制效果,因此本文主要研究溶解氧浓度PID 控制器参数自整定的方法进行研究。
基于遗传算法的PID控制器参数优化基于遗传算法的PID控制器参数优化是一种智能化调节方法,通过遗传算法的优化过程,可以自动得到最佳的PID参数组合,并实现对控制系统的自动调节。
以下将详细介绍基于遗传算法的PID控制器参数优化的原理、步骤和应用情况。
一、基于遗传算法的PID控制器参数优化原理遗传算法是一种模拟自然选择和遗传的数学模型,通过模拟生物进化的过程,利用优胜劣汰的原则逐步优化求解问题。
在PID控制器参数优化中,可以将PID参数看作个体(染色体),通过遗传算法的选择、交叉和变异等操作,不断优化个体的适应度,最终得到最佳的PID参数组合。
二、基于遗传算法的PID控制器参数优化步骤(1)初始化种群:随机生成一组PID参数作为初始种群,设置种群大小和迭代次数。
(2)适应度函数定义:根据所需控制效果,定义适应度函数来评估每个个体的优劣程度。
(3)选择操作:根据适应度函数的值选择优秀的个体,采用轮盘赌等选择策略,将优秀的个体复制并加入下一代种群中。
(4)交叉操作:从选择的个体中,选取两个个体进行交叉操作,通过交叉操作生成新的个体,并加入下一代种群中。
(5)变异操作:对下一代种群中的一些个体进行变异操作,改变其染色体的一些位,以保持种群的多样性。
(6)重复上述步骤:迭代执行选择、交叉和变异操作,直到达到预定的迭代次数或找到满意的PID参数组合。
(7)输出最佳解:最终输出具有最佳适应度的PID参数组合,作为优化后的参数。
三、基于遗传算法的PID控制器参数优化应用情况(1)机械控制系统:如电机驱动、自动化装配线等,通过优化PID 参数可以提高系统的控制精度和动态性能。
(2)能源系统:如电力系统、风力发电等,通过优化PID参数可以实现能源的高效利用和稳定运行。
(3)化工过程控制:如温度控制、压力控制等,通过优化PID参数可以提高产品质量和生产效率。
(4)交通管理系统:如城市交通信号控制、车辆行驶控制等,通过优化PID参数可以实现交通流畅和事故减少。
基于遗传算法的PID 控制器参数整定报告一、 遗传算法。
遗传算法(GAs )是基于自然界生物进化机制的搜索寻优技术。
用遗传算法来整定PID 参数,可以提高优化性能,对控制系统有良好的控制精度、动态性能和鲁棒性。
一般的,Gas 包括三个基本要素:复制、交叉和突变。
二、PID Optimal-TuningPID 控制:对偏差信号e(t)进行比例、积分和微分运算变换后形成的一种控制规律。
(1)可调参数:比例度δ(P )、 积分时间Ti (I )、微分时间Td (D )。
通常,PID 控制准则可以写成下面传递函数的形式: )1()(s T T s K s G d ip ++= (2) Kp 、Ti 和Td 分别是比例放大率、积分时间常量和微分时间常量。
1) 比例控制(P ):是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady state error ),比例度减小,稳态误差减小;2) 积分(I )控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
3) 微分(D )控制:在微分控制中,控制器的输出与输入误差信号()()()()⎥⎦⎤⎢⎣⎡++=⎰t e dt d T d e T t e K t u d t i p 01ττ的微分(即误差的变化率)成正比关系。
文中,性能指标是误差平方的时间加权积分,表示为:),,1,0(,02n k dt e t J it k ==⎰ (3)其中n 是非负整数,i t 是积分周期。
此外,其他标准项如超调量、上升时间和稳定时间也被一个合成性能指标选择:))(1(s s r r c t c t c os J ++= (4)s r os t t 、、分别代表超调量、上升时间和稳定时间。
s r c 、c 两个系数有用户定义或决定。
预期的性能指标的最下化可以认为是小的超调量、短的上升时间和稳定时间。
三个PID 参数的编码方式如下:10101011:S 1010100011100111p K i K d Kp K 、i K 和d K 都是八位二进制字符格式。
基于遗传算法的PID控制器参数优化遗传算法是一种模拟生物进化过程的智能算法,适用于解决优化问题。
在PID控制器设计中,参数的选择对控制系统的性能和稳定性有很大影响。
使用遗传算法对PID控制器参数进行优化,能够自动找到最优参数组合,提高系统的控制性能。
PID控制器由比例(P)、积分(I)、微分(D)三个部分组成,其输出是通过对误差的线性组合得到的。
参数的选择直接影响控制器的稳定性、动态响应和抗干扰能力。
传统的方法通常是通过试错法进行参数整定,这种方法的缺点是效率低、调试过程繁琐且容易出错。
遗传算法是一种模拟自然界进化过程的智能优化算法,其中每个个体代表一组可能的参数,通过适应度函数来衡量个体的适应度,并选择适应度较高的个体进行遗传和变异操作,最终找到适应度最优的个体。
将遗传算法应用于PID控制器参数优化的步骤如下:1.确定优化目标:通过设置适应度函数来度量控制系统的性能指标,如超调量、调整时间和稳定性。
2.初始化种群:随机生成一组初始参数作为初始种群,并利用适应度函数来评估每个个体的适应度。
3.选择操作:根据适应度选择一部分适应度较高的个体作为父代,通过选择操作进行选择。
4.交叉操作:将选中的父代进行交叉操作,生成新的子代个体。
5.变异操作:对子代进行变异操作,引入新的个体差异。
6.评估适应度:利用适应度函数评估新生成的子代个体的适应度。
7.判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满足条件的解。
8.更新种群:根据选择、交叉和变异操作的结果,更新种群。
9.重复步骤3-8,直到满足终止条件。
10.输出最优解:输出适应度最好的个体参数作为PID控制器的优化参数。
使用遗传算法进行PID控制器参数优化有如下优点:1.自动化:遗传算法能够自动寻找最优参数组合,减少了人工试错的过程。
2.全局:遗传算法具有全局的能力,能够参数空间的各个角落,找到更好的解决方案。
3.鲁棒性:遗传算法能够处理多变量、多模态和不连续的问题,具有较好的鲁棒性。
摘要:研究自动控制器参数整定问题,PID参数整定是自动控制领域研究的重要内容,系统参数选择决定控制的稳定性和快速性,也可保证系统的可靠性。
传统的PID参数多采用试验加试凑的方式由人工进行优化,往往费时而且难以满足控制的实时要求。
为了解决控制参数优化,改善系统性能,提出一种遗传算法的PID 参数整定策略。
在本文里,通过介绍了遗传算法的基本原理,并针对简单遗传算法在PID控制中存在的问题进行了分析,提出在不同情况下采用不同的变异概率的方法,并对其进行了实验仿真。
结果表明,用遗传算法来整定PID参数,可以提高优化性能,对控制系统具有良好的控制精度、动态性能和鲁棒性。
关键词:PID控制器;遗传算法;整定PID1 引言传统的比例、积分、微分控制,即PID控制具有算法简单、鲁棒性好和可靠性高等优点,已经被广泛用于工业生产过程。
但工程实际中,PID控制器的比例、积分和微分调节参数往往采用实验加试凑的方法由人工整定。
这不仅需要熟练的技巧,往往还相当费时。
更为重要的是,当被控对象特性发生变化,需要控制器参数作相应调整时,PID控制器没有自适应能力,只能依靠人工重新整定参数,由于经验缺乏,整定结果往往达不到最优值,难以满足实际控制的要求。
考虑生产过程的连续性以及参数整定费事费力,这种整定实际很难进行。
所以,人们从工业生产实际需要出发,基于常规PID控制器的基本原理,对其进行了各种各样的改进。
近年来许多学者提出了基于各种智能算法的PID整定策略,如模糊PID,神经元网络PID等…,但这些先进算法都要求对被控对象有很多的先验知识,在实际应用中往往难于做到。
随着计算技术的发展,遗传算法有了很大的发展。
将遗传算法用于控制器参数整定,已成为遗传算法的重要应用之一。
本文介绍基于遗传算法的PID参数整定设计方法。
这是一种寻求全局最优的控制器优化方法,且无需对目标函数微分,可提高参数优化效果,简化计算过程。
仿真实例表明该方法与其他传统寻优方法相比,在优化效果上具有一定的优势。
基于遗传优化算法对离散PID控制器参数的优化设计摘要PID控制作为一种经典的控制方法,从诞生至今,历经数十年的发展和完善,因其优越的控制性能业已成为过程控制领域最为广泛的控制方法;PID控制器具有结构简单、适应性强、不依赖于被控对象的精确模型、鲁棒性较强等优点,其控制性能直接关系到生产过程的平稳高效运行,因此对PID控制器设计和参数整定问题的研究不但具有理论价值更具有很大的实践意义,遗传算法是一种借鉴生物界自然选择和自然遗传学机理上的迭代自适应概率性搜索算法。
本论文主要应用遗传算法对PID调节器参数进行优化。
关键词:遗传优化算法PID控制器参数优化1.前言PID调节器是最早发展起来的控制策略之一,因为它所涉及的设计算法和控制结构都是简单的,并且十分适用于工程应用背景,此外PID控制方案并不要求精确的受控对象的数学模型,且采用PID控制的控制效果一般是比较令人满意的,所以在工业实际应用中,PID调节器是应用最为广泛的一种控制策略,也是历史最久、生命力最强的基本控制方式。
调查结果表明: 在当今使用的控制方式中,PID型占84. 5% ,优化PID型占68%,现代控制型占有15%,手动控制型66%,人工智能(AI)型占0.6% 。
如果把PID型和优化PID型二者加起来,则占90% 以上,这说明PID控制方式占绝大多数,如果把手动控制型再与上述两种加在一起,则占97.5% ,这说明古典控制占绝大多数。
就连科学技术高度发达的日本,PID控制的使用率也高达84.5%。
这是由于理论分析及实际运行经验已经证明了PID调节器对于相当多的工业过程能够起到较为满足的控制效果。
它结构简单、适用面广、鲁棒性强、参数易于调整、在实际中容易被理解和实现、在长期应用中己积累了丰富的经验。
特别在工业过程中,由于控制对象的精确数学模型难以建立,系统的参数又经常发生变化,运用现代控制理论分析综合要耗费很大的代价进行模型辨识,但往往不能达到预期的效果,所以不论常规调节仪表还是数字智能仪表都广泛采用这种调节方式。