基本调节规律及PID参数整定
- 格式:ppt
- 大小:205.00 KB
- 文档页数:18
一、绪论PID 参数的整定就是合理的选取PID 三个参数。
从系统的稳定性、响应速度、超调量和稳态误差等方面考虑问题,三参数作用如下:比例调节作用:成比例地反映系统的偏差信号,系统一旦出现了偏差,比例调节立即产生与其成比例的调节作用,以减小偏差。
随着P K 增大,系统的响应速度加快,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大P K 只能减小稳态误差,却不能消除稳态误差。
比例调节的显著特点是有差调节。
积分调节作用:消除系统的稳态误差,提高系统的误差度。
积分作用的强弱取决于积分时间常数i T ,i T 越小,积分速度越快,积分作用就越强,系统震荡次数较多。
当然i T 也不能过小。
积分调节的特点是误差调节。
微分调节作用:微分作用参数d T 的作用是改善系统的动态性能,在d T 选择合适情况下,可以减小超调,减小调节时间,允许加大比例控制,使稳态误差减小,提高控制精度。
因此,可以改善系统的动态性能,得到比较满意的过渡过程。
微分作用特点是不能单独使用,通常与另外两种调节规律相结合组成PD 或PID 控制器。
二、设计内容1. 设计P 控制器控制器为P 控制器时,改变比例系数p K 大小。
P 控制器的传递函数为:()P P K s G =,改变比例系数p K 大小,得到系统的阶跃响应曲线当K=1时,P当K=10时,PK=50时,当P当P K =100时,p K 超调量σ% 峰值时间p T 上升时间r T 稳定时间s T 稳态误差ss e 1 49.8044 0.5582 0.2702 3.7870 0.9615 10 56.5638 0.5809 0.1229 3.6983 0.7143 50 66.4205 0.3317 0.1689 3.6652 0.3333 10070.71480.25060.07443.64100.2002仿真结果表明:随着P K 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。
PID参数设置及调节方法方法一:PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。
PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。
我在手册上查到的,并已实际的测试过,方便且比较准确应用于传统的PID1。
首先将I,D设置为0,即只用纯比例控制,最好是有曲线图,调整P值在控制范围内成临界振荡状态。
记录下临界振荡的同期Ts2。
将Kp值=纯比例时的P值3。
如果控制精度=1.05%,则设置Ti=0.49Ts ; Td=0.14Ts ;T=0.014 控制精度=1.2%,则设置Ti=0.47Ts ; Td=0.16Ts ;T=0.043控制精度=1.5%,则设置Ti=0.43Ts ; Td=0.20Ts ;T=0.09朋友,你试一下,应该不错,而且调试时间大大缩短我认为问题是,再加长积分时间,再减小放大倍数。
获得的是1000rpm以上的稳定,牺牲的是系统突加给定以后系统调节的快速性,根据兼顾原则,自己掌握调节指标吧。
方法二:1.PID调试一般原则a.在输出不振荡时,增大比例增益P。
b.在输出不振荡时,减小积分时间常数Ti。
c.在输出不振荡时,增大微分时间常数Td。
2.一般步骤a.确定比例增益P确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。
输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。
比例增益P调试完成。
温控器PID调节方法比例(proportion)调节:是按比例反应系统的偏差,比例(P值)越小引发同样调节的所需的偏差越小,(即同样偏差引起的调节越大,即P值与调节作用成反比)可以加快调节,减少误差,但可使系统的稳定性下降,甚至不稳定。
比例越大,所需偏差越大,系统反应越迟钝。
积分(integral)调节:是使系统消除稳态误差,提高无差度。
只要有误差,积分调节就进行,直至无差,积分调节停止。
积分作用的强弱与积分时间常数(完成一次积分所需的时间)I值成反比。
积分时间短,调节作用强。
积分时间长,动态响应慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分(differential)调节:微分反映系统偏差信号的变化率。
能预见偏差变化的趋势,产生超前的控制作用,,减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此D值太大,对系统抗干扰不利。
微分调节作用的大小与微分时间成正比。
微分作用需要与另外两种调节相结合,组成PD或PID控制器。
PID参数整定顺口溜参数整定斩乱麻,P I D 值顺序查调节作用反反正,小步试验找最佳曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动摆得快,积分时间再加长,曲线振荡频率快,先把微分降下来动差大来波动慢。
微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低。
比例:,加热电流与偏差(即实际值和设定值之差)成比例。
P的大小,在数量上是调节器闭环放大倍数的倒数。
P = 偏差电压∕调节器输出电压比例带越小(P越小),开始时调节电压上升越快,但易过冲。
当温差变小,实际比例越接近P,电压越小。
例如:设定温控于60度,在实际温度为20和40度时,加热的功率就不一样。
积分:如果长时间达不到设定值,积分器起作用,进行修正。
加热电流与偏差的累积(积分)成比例。
因此,只要有偏差存在,尽管偏差极微小,但经过长时间的累积,就会有足够的输出去控制炉丝加热电流,去消除偏差,减少小静态误差。
PID控制原理与参数整定方法一、概述PID是比例-积分-微分控制的简称,也是一种控制算法,其特点是结构改变灵活、技术成熟、适应性强。
对一个控制系统而言,由于控制对象的精确数学模型难以建立,系统的参数经常发生变化,运用控制理论综合分析要耗费很大的代价,却不能得到预期的效果,所以人们往往采用PID调节器,根据经验在线整定参数,以便得到满意的控制效果。
随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现,由于软件系统的灵活性,PID算法可以得到修正而更加完善。
我们阳江基地有数以千计的采用PID控制的调节器,用于温度控制、压力控制、流量控制,在塑杯及灌装生产过程中,发挥着重要的作用。
因此,学习PID控制的基本原理,合理的设计PID控制系统,用好、维护好这些调节器,对提高产品质量,降低废品率,节约能源具有十分重要的意义。
本课程从系统的角度,采用多种分析方法,详细讲解经典PID控制的基本原理和PID参数的整定方法,简介现代数字PID控制思想,希望对大家使用PID调节器有所帮助。
二、调节系统的品质和特性一个调节系统的品质可以用静态品质和动态品质来衡量。
所谓静态品质就是系统稳定后,被控参数与给定值间的差值的大小。
偏差愈大则静差愈大,静差愈小静态品质愈好。
当系统受到扰动后或整定在一个新值时需要在较短时间内过渡到稳定,不发生振荡和发散,这便是衡量系统动态特性的指标。
一个好的调节系统应该二个品质都好。
但动静态品质往往是相互矛盾的,要静差小,系统的放大倍数就要大,系统放大倍数愈大则系统愈不稳定,即动态品质不好。
图1-1收敛型1图1-2收敛型2图1-3发散型落图1-4振荡型图1-1至1-4是几种典型的控制曲线,只有图1-1表示动静态品质都好。
一般的调节系统都具有惯性和滞后两种特性/只是大小不同而已。
这两个特性应从控制对象,控制作用这两个方面去理解。
弄懂以上关于调节系统的几个基本概念,对于理解PID控制的原理有很大的帮助。
PID控制算法精华和参数整定三大招PID是闭环控制算法在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器是应用最为广泛的一种自动控制器。
它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。
PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。
因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。
比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。
PID是比例(P)、积分(I)、微分(D)控制算法但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。
我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。
现在知道这只是最简单的闭环控制算法。
PID控制器结构PID控制系统原理结构框图对偏差信号进行比例、积分和微分运算变换后形成一种控制规律。
“利用偏差,纠正偏差”。
模拟PID控制器模拟PID控制器结构图PID控制器的输入输出关系为:比例(P)、积分(I)、微分(D)控制算法各有作用比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。
实验三PID的参数整定及参数变化对系统的影响综合实验一、实验目的:1、掌握PID各校正环节的作用2、确定给定的系统PID的初始参数3、通过实验了解PID参数的变化对系统的影响二、实验原理(一)PID调节器的输入输出关系:⎥⎦⎤⎢⎣⎡++=⎰dt deTdtt eTt eKtMdtiC0)(1)()(式中:)(tM为调节器的输出;)(t e为误差输入;CK为比例增益;iT为积分时间;dT为微分时间(二)PID各校正环节的作用在模拟系统中,调节器最常用的调节规律是PID调节。
常规PID调节系统一般由PID调节器和被控对象组成,其原理图如下:PID调节是线性控制,将偏差的比例(P)、积分(I)、微分(D)通过线性组合构成调节量,对被控对象进行控制。
PID调节器各校正环节的作用如下:1、比例环节:及时成比例地反映调节系统的偏差信号,偏差一产生,调节器立即产生调节作用,以减少偏差。
2、积分环节:主要是为了消除系统的余差,提高系统的无差度。
积分作用的强弱取决于积分时间常数,越大,积分作用越弱,反之则越强。
3、微分环节:能反映偏差信号的变化趋势,并能在偏差信号变得太大之前,引入一个有图1 常规PID调节系统原理效的早期修正信号,从而加快系统的动作速度,减小调节时间。
(三)PID参数的变化对系统的影响一般情况下,PID调节器本着稳、准、快的控制原则须对三个参数进行初始设定,同时考虑对象特性的多样性,控制指标的不同进行整定、优化才能取得满意效果。
在PID调节参数中,比例系数KP增大,会使调节阀的动作灵敏,运行速度加快。
缺点是存在静差。
在系统稳定的情况下,增大KP值,有利于减小稳态误差,提高控制精度。
但随着KP 增大,系统响应过程中的振荡次数会增多,调节时间加长。
当KP值太大时,系统将趋于不稳定;若太小,会减低系统的响应速度。
引入积分的目的是为了消除静差,提高精度。
但积分时间TI太小,在过程的启动、结束或大幅度增减设定值时,短时间内系统输出有很大的偏差,会造成PID运算的积分积累,致使控制量超出极限控制量,最终引起系统较大的超调,甚至造成系统振荡。
设置PID参数口诀PID的参数设置可以参照以下来进行: 参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。
微分时间应加长理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低.在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。
具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象——“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。
PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。
PID参数整定:(1) 比例系数Kc对系统性能的影响:比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。
Kc偏大,振荡次数加多,调节时间加长。
Kc太大时,系统会趋于不稳定。
Kc太小,又会使系统的动作缓慢。
Kc可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。
如果Kc的符号选择不当对象状态(pv值)就会离控制目标的状态(sv值)越来越远,如果出现这样的情况Kc的符号就一定要取反。
(2) 积分控制Ti对系统性能的影响:积分作用使系统的稳定性下降,Ti小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度。
(3) 微分控制Td对系统性能的影响:微分作用可以改善动态特性,Td偏大时,超调量较大,调节时间较短。
Td偏小时,超调量也较大,调节时间也较长。
只有Td合适,才能使超调量较小,减短调节时间。
3.PID参数整定⑴采样周期T符合工程准则。
(2)K p/K i/K d调试:试凑法(先比例,后积分,再微分);扩充临界比例度法;扩充响应曲线法一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。
此时PID调节器的比例度为临界比例度6 k,被调参数的工作周期为为临界周期Tk。
O —■■值O -Utsu临界比例度法整定PID参数具体操作如下:1、被控系统稳定后,把PID调节器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。
2、通过外界干扰或使PID调节器设定值作一阶跃变化,观察由此而引起的测量值振荡。
3、从大到小逐步把PID调节器的比例度减小,看测量值振荡的变化是发散的还是衰减的,如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。
4、连续重复2和3步骤,直至测量值按恒定幅度和周期发生振荡,即持续4-5 次等幅振荡为止。
此时的比例度示值就是临界比例度6 k。
5、从振荡波形图来看,来回振荡1次的时间就是临界周期Tk,即从振荡波的第一个波的顶点到第二个波的顶点的时间。
如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰-峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk如果是DCS控制或使用无纸记录仪,在趋势记录曲线中可直接得出Tk。
临界比例度法PID参数整定经验公式调节规律调节器参数6、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。
多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。
衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。
纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度6s,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示4:1衰减曲线法整定PID参数具体操作如下:1、在闭合的控制系统中,将PID调节器变为纯比例作用,比例度放在较大的数值上。
PID控制器的控制规律及参数整定作者:李津来源:《科技资讯》 2012年第22期李津(河南工程学院数理科学系河南郑州 450000)摘要:温度控制在工农业生产中占据着及其重要的位置,PID控制器一起结构简单、性能成熟、智能调控等在温控领域得到广泛的应用。
本文对PID控制器的工作原理以及调控方法进行了介绍。
关键词:PID控制器控制规律参数整定中图分类号:TM57 文献标识码:A 文章编号:1672-3791(2012)08(a)-0088-01长期以来,国内外对温度控制进行了广泛而深入的研究,产生了各种温度控制器,其中PID控制器以其结构简单、性能成熟、智能调控及自适应控制等得到了广泛的应用。
本文对PID控制器的工作原理以及调控方法进行了介绍。
1 控制原理在当前的温度控制领域,PID的应用占了80%以上的比例,根据其控制输出量的特性可将其分为模拟PID控制和数字PID控制。
1.1 模拟PID控制PID调节器也被称为比例积分调节器,同时具有比例、积分、微分三种调节的作用,其表达为:温度PID调节器有比例放大系数Kp、积分时间常数Ti、微分时间常数Td三可以设定的参数,对于闭环控制系统来说,合理设置即可取得较好的控制效果。
对于比例放大系数来说:比例放大系数的改变会改变系统的响应速度:比例系数的增大可减少系统的稳态误差和动态偏差,但调解过程会出现振荡;比例系数的减小可以较少过程的振荡,当又回增加稳态误差。
对于积分时间常数来说,增大积分速度,可以减小动态偏差,却增大振荡;减小积分速度,虽然减少了振荡,但却会增大系统的动态误差。
微分调节器的输出和偏差变化的速度成正比关系。
1.2 数字PID控制计算机的控制采取的是一种采样控制,在处理时只能根据采样得到的数据进行逼近,因此对数字PID的算法进行了大量的研究。
(1)不完全微分PID算法。
虽然微分作用可以减小系统的超调和缩短调节的时间,提高系统的稳定性能,但面对高频的扰动容易引起控制过程的振荡。
PID控制器的参数整定(经验汇总)PID控制器的参数整定P ID控制规律为"(0 =你(e(0 + + *(。
刃 + T D讐)U(s} 1因此它的传递函数为;0(5-) = —— = A^(1 + ——+T D S)E(J)「T】s其中⼈)为⽐例系数;7}为积分时间常数;⼼为微分时间常数(DPID是⽐例,积分,微分的缩写.⽐例调节作⽤:是按⽐例反应系统的偏差,系统⼀旦出现了偏差,⽐例调节⽴即产⽣调节作⽤⽤以减少偏差。
⽐例作⽤⼤,可以加快调节,减少误差,但是过⼤的⽐例,使系统的稳定性下降,其⾄造成系统的不稳定。
积分调节作⽤:是使系统消除稳态误差,提⾼⽆差度。
因为有误差,积分调节就进⾏,直⾄⽆差,积分调节停⽌,积分调节输出⼀常值。
积分作⽤的强弱取决与积分时间常数Ti, Ti越⼩,积分作⽤就越强。
反之Ti⼤,则积分作⽤弱,加⼊积分调节可使系统稳定性下降,动态响应变慢。
积分作⽤常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作⽤:微分作⽤反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产⽣超前的控制作⽤,在偏差还没有形成之前,已被微分调节作⽤消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作⽤对噪声⼲扰有放⼤作⽤,因此过强的加微分调节, 对系统抗⼲扰不利。
此外,微分反应的是变化率,⽽当输⼊没有变化时,微分作⽤输出为零。
微分作⽤不能单独使⽤,需要与另外两种调节规律相结合,组成PD或PID控制器。
(2) PID具体调节⽅法①⽅法_确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整泄⽅法进⾏。
在选择数字PID参数之前,⾸先应该确⽴控制器结构。
对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。
对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。
⼀般来说,PI、PID和P控制器应⽤较多。