控制回路PID参数整定方法精
- 格式:doc
- 大小:838.50 KB
- 文档页数:9
PID控制器的参数整定PID控制器是一种常用的闭环控制器,可以根据系统的输入和输出之间的误差来调整控制器的参数,从而实现对系统的稳定控制。
PID控制器的参数整定是指确定控制器的比例系数Kp、积分时间Ti和微分时间Td的过程。
下面将详细介绍PID控制器的参数整定方法和相关的考虑因素。
一、参数整定方法:1.经验整定法:根据经验将控制器的参数进行初步设定。
经验整定法通常通过试验或先验知识来确定参数,根据具体的应用场景不断调整,以达到较好的控制效果。
该方法常用与简单的控制系统或者无法获得系统数学模型的情况下。
2. Ziegler-Nichols整定法:Ziegler-Nichols整定法是一种基于试验的整定方法。
该方法首先暂时关闭积分和微分控制,只调整比例控制系数Kp,使系统达到临界稳定状态。
然后测量临界增益Ku和临界周期Pu,根据不同类型的控制系统(比例型、积分型和微分型),采用不同的参数整定公式确定Kp、Ti和Td的初始值,再根据系统的实际响应实时调整。
3. Ziegler-Nichols改进整定法(Chien-Hrones-Reswich法):该方法是对Ziegler-Nichols整定法的改进,可以更精确地测定控制器参数。
该方法同样通过测量系统的临界增益Ku和临界周期Pu,但是对参数的计算公式进行了修正,提高了参数整定的准确性。
4. 极点配置法(Pole Placement):极点配置法是一种基于系统数学模型的整定方法。
通过分析系统的传递函数,确定控制器的极点位置,从而使系统的闭环响应满足所需的性能指标。
该方法需要对系统的数学模型有较详细的了解,适用于相对复杂的控制系统。
5.自整定法:自整定法是一种自动寻优的整定方法,常用于智能控制器中。
该方法通过观察系统的动态性能,通过迭代寻找最优的参数组合。
自整定法通常采用优化算法(如遗传算法、粒子群算法等)来最优参数,在一定的性能和收敛速度之间进行权衡。
二、参数整定的考虑因素:1.系统的稳定性:控制器的参数整定应确保系统的闭环响应稳定。
pid控制器参数整定方法及应用PID控制器是工业自动化中常用的一种控制器,其参数整定方法及应用对于控制系统的稳定性和性能有着至关重要的作用。
本文将详细介绍PID控制器参数整定方法及应用。
一、PID控制器概述PID控制器是由比例控制器、积分控制器和微分控制器三部分组成的,利用反馈信号进行控制。
其中比例控制器通过测量误差的大小,对被控制对象进行控制,积分控制器通过测量误差的积分,对被控制对象进行控制,微分控制器通过测量误差的微分,对被控制对象进行控制。
PID控制器通过组合三个控制方式,可以对被控制对象进行更加精确的控制。
二、PID控制器参数整定方法1. 经验法PID控制器参数整定的第一步是通过经验法确定参数初值。
经验法是根据实际经验和实验数据得出的整定参数,是参数初值的基础。
经验法的参数初值如下:比例系数Kp取值为被控对象动态响应曲线的最大斜率处的斜率倒数;积分时间Ti取值为被控对象动态响应曲线从起点到终点的时间长度;微分时间Td取值为被控对象动态响应曲线的最大曲率处的时间。
2. Ziegler-Nichols法Ziegler-Nichols法是广泛应用的PID控制器参数整定方法之一,其步骤如下:a.将比例系数Kp调至临界增益Kcr处,此时系统开始振荡;b.测量振荡周期Tu;c.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5Kcr ——PI型系统 0.45Kcr Tu/1.2 —PD型系统 0.8Kcr — Tu/8PID型系统 0.6Kcr 0.5Tu Tu/83. Chien-Hrones-Reswick法Chien-Hrones-Reswick法是另一种常用的PID控制器参数整定方法,其步骤如下:a.测量被控对象的动态响应曲线,并计算出其惯性时间常数L、时延时间T和时间常数K;b.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5K ——PI型系统 0.45K L —PD型系统 0.8K — TPID型系统 0.6K 0.5L 0.125T三、PID控制器应用PID控制器广泛应用于工业自动化中,例如温度控制、压力控制、流量控制等。
PID控制算法精华和参数整定三大招PID是闭环控制算法在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器是应用最为广泛的一种自动控制器。
它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。
PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。
因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。
比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。
PID是比例(P)、积分(I)、微分(D)控制算法但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。
我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。
现在知道这只是最简单的闭环控制算法。
PID控制器结构PID控制系统原理结构框图对偏差信号进行比例、积分和微分运算变换后形成一种控制规律。
“利用偏差,纠正偏差”。
模拟PID控制器模拟PID控制器结构图PID控制器的输入输出关系为:比例(P)、积分(I)、微分(D)控制算法各有作用比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。
Honeywell PKS系统控制回路PID参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。
修改PID参数必须有“SUPV(班长)”及以上权限权限,具体权限设置切换方法如下;一、打开要修改的控制回路细目画面,翻到下图所示的页面(Loop Tune),修改PID控制回路整定的三个参数K,T1,T2;二、PID参数代表的含义Control Action:控制器的作用方式,正作用(DIRECT),反作用(REVERSE);Overal Gain(K):比例增益(放大倍数),范围为0.0~240.0;T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用;T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。
三、PID参数的作用(1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。
K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。
(2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。
(3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。
四、控制器的选择方法(1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统;(2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;(3)PID控制器的选择:它适用于负荷变化大,容量滞后较大,控制质量要求又很高的控制系统,比如温度控制系统。
PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。
它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。
PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。
下面将详细介绍PID控制的原理和参数整定方法。
一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。
当偏差较大时,调节量增大;当偏差较小时,调节量减小。
此项控制可以使系统快速响应,并减小系统稳态误差。
2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。
积分控制的作用主要是消除系统的稳态误差。
当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。
3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。
当偏差的变化率较大时,微分量会增大,以提前调整控制量。
微分控制可以减小系统的超调和振荡。
综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。
二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。
它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。
2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。
在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。
根据振荡周期和振荡增益的比值来确定P、I和D的参数值。
3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。
通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。
4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。
该方法可以通过在线自整定或离线自整定来实现。
PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。
一般可以通过理论计算来确定,但误差太大。
目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。
各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。
若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti 就是最佳值。
如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。
由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。
显然用经验法整定的参数是准确的。
但花时间较多。
为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。
可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。
这样可大大减少现场凑试的次数。
②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB 过大,曲线漂浮较大,变化不规则,Ti 过长,曲线带有振荡分量,接近给定值很缓慢。
这样可根据曲线形状来改变PB或Ti。
③PB 过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。
④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。
这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。
(2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。
仪表控制说明及PID整定方法化工乙烯仪表-李恒超主要内容一、仪表控制说明1、单回路控制说明2、复杂控制说明二、PID整定方法1、PID整定方法2、PID整定举例三、自动控制回路参数波动原因分析1、工艺操作系统引起参数波动分析2、仪表和调节阀的特性引起参数波动分析3、机泵控制的波动原因分析主要内容一、仪表控制说明1、单回路控制说明1.1 单回路的结构与组成1.2 明确自动控制的目的1.3 被控变量的选择1.4 控制变量的选择1.5 控制质量1.6 滞后1.7 举例与仿真1.8PID的正反作用2、复杂控制说明2.1 前馈控制2.2 串级控制2.3 均匀控制2.4 分程控制2.5 比值控制2.6 选择控制2.7 三冲量控制2.8 耦合控制二、PID整定方法1、PID整定说明1.1 PID回路阶跃响应性能指标1.2PID设置面板1.3 PID参数功能1.3.1 增益K作用对调节过程的影响1.3.2 积分作用对调节过程的影响1.3.3 微分调节D说明1.4 PID参数的整定1.4.1 测试阶跃响应法1.4.2 PID参数的整定步骤说明1.4.3 PID参数整定经验说明1.4.4 PID参数整定方法二2、PID整定举例2.1 PID参数的形象说明2.2 PID参数仿真曲线举例说明2.3 PID整定参数举例分析说明2.4 PID参数整定总结三、自动控制回路参数波动原因分析1、工艺操作系统引起参数波动分析1.1 精馏塔的典型控制1.2 反应器的控制2、仪表和调节阀的特性引起参数波动分析2.1 流量计的量程比、流速,对测量的影响2.2 调节阀的流量特性和可调比2.3 提高调节阀使用寿命的常见方法3、机泵控制的波动原因分析3.1 对离心泵的控制3.2 对计量泵的控制3.3 对变频泵的控制一、仪表控制说明\1.单回路控制说明1.1 单回路的结构与组成由一个被控对象、一个测量变送器、一个控制器和一个执行机构(控制阀)所组成的闭环控制系统。
PID参数的整定方法PID控制器是目前最常用的控制算法之一,其调节参数(也称为PID 参数)的合理设置对控制系统的性能起着关键作用。
下面将介绍几种常用的PID参数整定方法。
1.经验法:经验法是最为简单直接的方法,通常由经验工程师根据自身经验来设定PID参数。
这种方法适用于一些简单的控制系统,但是对于复杂的系统来说,由于经验法不能提供具体的参数值,容易出现性能较差的情况。
2. Ziegler-Nichols 整定法:Ziegler-Nichols 整定法是PID参数整定中较为经典的方法,其步骤如下:-首先将PID控制器的I和D参数设置为零。
-逐渐增大比例参数(P)直到系统出现持续且稳定的振荡。
-记录此时的比例参数为Ku。
- 根据不同的控制对象类型,Ziegler-Nichols方法会有不同的参数整定公式,常见的有:-P型系统:Kp=0.50Ku,Ti=0.50Tu,Td=0.125Tu-PI型系统:Kp=0.45Ku,Ti=0.83Tu,Td=0.125Tu-PID型系统:Kp=0.60Ku,Ti=0.50Tu,Td=0.125Tu其中Ku为临界增益值,Tu为临界周期。
3. Chien-Hrones-Reswick (CHR) 整定法:CHR整定法基于频域设计方法,通过系统的频率响应曲线来确定PID参数。
其步骤如下:-绘制系统的频率响应曲线(一些软件和仪器可以直接测量)。
-根据曲线的特征,确定比较慢的过程的时间常数τ和极点频率ωp。
-根据以下公式得到PID参数:-P参数:Kp=2/(ωpτ)-I参数:Ti=τ/2-D参数:Td=τ/8不能掉进方法的误区,如超调范围不合适,调节周期过大或周期过小时,传递函数为微分型等。
4.设计优化法:设计优化法是基于性能指标的优化算法,通过对系统的模型进行优化,得出最佳的PID参数。
这种方法较复杂,通常使用数学工具或计算机软件进行参数优化。
常见的优化算法有遗传算法、粒子群算法等。
基于dcs系统的控制回路和pid参数整定方法文章主题:基于DCS系统的控制回路和PID参数整定方法在工业控制领域,DCS(分散控制系统)被广泛应用于监控和管理生产过程,其中控制回路和PID参数的设置对系统稳定性和性能至关重要。
本文将从简单到复杂的角度,探讨基于DCS系统的控制回路和PID参数整定方法,帮助读者更深入地理解这一关键主题。
1. 了解控制回路的基本原理控制回路是工业自动化中常见的一种控制系统结构,其基本原理是通过传感器采集过程变量,经过控制器处理后输出控制信号,最终实现对被控对象的自动调节。
在DCS系统中,控制回路的联动控制能力对于多个被控对象的同步调节至关重要,因此在设计和实施控制回路时需考虑系统的整体性能和稳定性。
2. 理解PID控制器的作用和参数调节PID控制器是控制回路中常用的控制算法之一,它包括比例(P)、积分(I)、微分(D)三个参数,分别对应控制器对误差的比例、积分和微分响应。
在DCS系统中,PID控制器的参数整定对于控制回路的稳定性和动态性能至关重要。
合理的PID参数设置可以有效抑制系统震荡,提高控制精度和响应速度。
3. DCS系统中的控制回路实践应用在实际工程中,基于DCS系统的控制回路和PID参数整定需要结合具体的生产过程和被控对象特性进行综合考虑。
通过实际案例分析和调试经验共享,可以更好地帮助工程师理解控制回路调试的关键技术和注意事项。
在DCS系统中,控制回路的实践应用需要充分考虑系统的稳定性、鲁棒性和调节的灵活性。
总结与展望:通过本文的深入探讨,读者可以更全面地了解基于DCS系统的控制回路和PID参数整定方法。
在工业控制领域,控制回路的合理设计和PID参数的有效调节对于系统性能的优化至关重要。
未来,随着智能控制技术和工业互联网的发展,控制回路调节的研究和应用将迎来新的挑战和机遇。
个人观点:作为工业控制领域的专家,我深知控制回路和PID参数在DCS系统中的重要性。
PID参数整定方式为了使PID控制器能够在实际控制过程中具有较好的性能,需要对PID参数进行合理的整定。
PID参数整定方法有很多种,下面将介绍几种常见的整定方法。
1.试-误整定法:试-误整定法是最常见的整定方法之一,通过不断试验和观察系统的响应,调整PID参数,直到满足控制要求。
这种方法的优点是简单易行,但由于需要进行大量试验,整定过程较为繁琐,而且可能造成系统过度振荡或不稳定。
2.经验法整定:经验法是基于经验公式进行PID参数整定的方法。
常用的经验公式有:Ziegler-Nichols方法、Chien-Hrones-Reswick方法等。
这些公式通过对系统的开环和闭环响应进行分析,得出相应的参数整定公式。
这种方法的优点是较为简单和直观,缺点是不适用于不同的系统和工况。
3.频率响应法整定:频率响应法是通过对系统的频率特性进行分析,来确定PID参数的方法。
常用的方法有:奈奎斯特曲线法、波特曼图法等。
这些方法借助于系统的频率特性图形,通过观察曲线的形状和特点,确定PID参数。
这种方法的优点是适用范围广,适用于不同的系统类型和工况,但缺点是需要一定的专业知识和技巧。
4.优化算法整定:优化算法包括遗传算法、粒子群算法、模拟退火算法等。
这些算法通过不断优化PID参数,使系统响应达到最优或接近最优。
这种方法的优点是较为灵活和智能化,能够得到较好的参数整定结果,但缺点是计算复杂度较大,需要较高的计算资源和时间。
综上所述,PID参数整定是针对特定系统和工况而进行的调整过程,不同的整定方法适用于不同的控制要求和应用场景。
在实际应用过程中,可以根据系统特点和控制要求选择合适的整定方法,并通过试验和优化来调整PID参数,以实现最佳控制效果。
PID控制中如何整定PID参数PID控制器是一种常用的自动控制算法,它根据被控对象的误差和误差的变化率来调整控制量,以实现对被控对象的稳定控制。
PID参数的选择对控制系统的性能和稳定性至关重要。
在本文中,将介绍PID参数整定的基本方法和几种常用的整定方法。
1. 要素模型法(Ziegler-Nichols法)要素模型法是一种基于试控法的PID参数整定方法。
该方法通过微调比例增益Kp,使系统产生持续且稳定的振荡,然后根据振荡的周期和幅值来计算PID参数。
具体步骤如下:步骤1:将积分时间Ti和微分时间Td先设为0。
步骤2:增加比例增益Kp,直至系统开始产生持续的振荡。
步骤3:记录振荡的周期P,以及振荡的峰值值(或两个连续峰值之间的差值)A。
步骤4:根据P和A计算出合适的PID参数:-比例增益Kp=0.6*(A/P)-积分时间Ti=0.5*P-微分时间Td=0.125*P要素模型法整定PID参数的优点是简单易行,但是该方法只适用于二阶系统,对于高阶系统或非线性系统不适用。
2.建模法(模型整定法)建模法是一种基于模型的PID参数整定方法。
该方法需要对被控对象进行实验或建立数学模型,并根据模型参数来选择合适的PID参数。
具体步骤如下:步骤1:通过实验或数学建模,得到被控对象的数学模型。
步骤2:分析模型的稳定裕度和相应性能要求,如超调量、调节时间等。
步骤3:根据模型参数,选择合适的PID参数。
常用的方法有经验法、频域法和根轨迹法等。
经验法是基于经验或规则的PID参数整定方法,根据系统的动态特性、稳定性要求和超调量要求等,选择合适的PID参数。
例如,对于快速响应的系统,通常选用较大的比例增益和积分时间,较小的微分时间;对于需要减小超调量的系统,通常减小比例增益和微分时间,增大积分时间。
频域法是基于频率响应的PID参数整定方法,通过分析系统的开环频率响应曲线,选择合适的相位裕度和增益裕度,从而得到合适的PID参数。
PID控制中如何整定PID参数PID参数主要包括比例系数(Kp)、积分系数(Ki)和微分系数(Kd)。
这些参数的选择可以通过试错法、经验法、模拟法和优化算法等多种方法来进行。
1. 试错法(Ziegler-Nichols法):这种方法是PID参数整定中最常用的方法之一、它通过改变比例系数、积分系数和微分系数,观察系统的响应曲线并进行调整,直到获得最佳的性能指标。
-首先,将积分和微分系数设为0,增大比例系数,观察系统的响应曲线。
如果系统出现震荡并且周期明显,则比例系数选取为临界增益(Ku)。
-然后,根据比例系数的大小,选择合适的积分时间(Tu/2)和微分时间(Tu/8),其中Tu为周期。
- 最后,根据Ziegler-Nichols公式计算PID参数,比例系数为Kp=0.6Ku,积分系数为Ki=1.2Ku/Tu,微分系数为Kd=0.075KuTu。
2.经验法:这种方法是基于经验公式进行参数整定的方法。
根据系统的特性和经验公式,选择合适的参数。
-对于比例系数,可以根据系统类型进行选择。
常用的经验值如下:-传统型控制系统:Kp=0.1~0.2;-开环较稳定系统:Kp=0.2~0.4;-开环不稳定系统:Kp=0.4~0.7-对于积分系数,可以根据系统的稳定性进行选择。
如果系统相对较稳定,可以选择较小的Ki值;如果系统相对不稳定,则可以选择较大的Ki值。
-对于微分系数,可以根据系统的时间响应进行选择。
如果系统响应较快,则可以选择较小的Kd值;如果系统响应较慢,则可以选择较大的Kd值。
3.模拟法:这种方法使用数学模型来模拟系统的动态特性,并通过模拟结果来选择合适的参数。
-首先,通过系统的数学模型得到系统传递函数,根据传递函数进行模拟。
-然后,通过观察模拟结果,选择合适的PID参数,使系统的响应曲线尽量接近期望曲线。
4.优化算法:这种方法基于优化算法来自动选择合适的PID参数,以最大化系统的性能指标。
-首先,定义性能指标,如超调量、稳态误差、响应时间等。
H o n e y w e l l D C S控制回路P I D参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。
一、修改PID参数必须有“SUPPERVISOR”及以上权限权限,用键盘钥匙可以切换权限,钥匙已送交一联合主任陈胜手中;二、打开要修改的控制回路细目画面,翻到下图所示的页面,修改PID控制回路整定的三个参数K,T1,T2;三、PID参数代表的含义K:比例增益(放大倍数),范围为0.0~240.0;T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用;T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。
四、PID参数的作用(1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。
K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。
(2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。
(3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。
五、如果要知道控制回路的作用方式,可以进入控制回路的细目画面,进入下图所示页面:其中“CTLACTN”代表控制器作用方式,“REVERSE”表示反作用,“DIRECT”代表正作用。
六、控制器的选择方法(1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统;(2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;(3)PID控制器的选择:它适用于负荷变化大,容量滞后较大,控制质量要求又很高的控制系统,比如温度控制系统。
PID控制器参数整定的方法很多,概括起来有两大类
一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
现在一般采用的是临界比例法。
利用该方法进行PID控制器参数的整定步骤如下:(1首先预选择一个足够短的采样周期让系统工作;(2仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3在一定的控制度下通过公式计算得到PID控制器的参数。
PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。
PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:
温度T: P=20~60%,T=180~600s,D=3-180s
压力P: P=30~70%,T=24~180s,
液位L: P=20~80%,T=60~300s,
流量L: P=40~100%,T=6~60so
常用口诀:
参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很
频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。
微分时间应加长理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低。
Honeywell DCS 控制回路PID参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。
一、修改PID参数必须有“SUPPERVISOR”及以上权限权限,用键盘钥匙可以切换权限,钥匙已送交一联合主任陈胜手中;二、打开要修改的控制回路细目画面,翻到下图所示的页面,修改PID控制回路整定的三个参数K,T1,T2;三、PID参数代表的含义K:比例增益(放大倍数),范围为0.0~240.0;T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用;T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。
四、PID参数的作用(1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。
K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。
(2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。
(3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。
五、如果要知道控制回路的作用方式,可以进入控制回路的细目画面,进入下图所示页面:其中“CTLACTN”代表控制器作用方式,“REVERSE”表示反作用,“DIRECT”代表正作用。
六、控制器的选择方法(1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统;(2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;(3)PID控制器的选择:它适用于负荷变化大,容量滞后较大,控制质量要求又很高的控制系统,比如温度控制系统。
七、PID参数整定的方法一般在工程应用中采用经验凑试法。
经验凑试法在实践中最为实用。
在整定参数时,必须认真观察系统响应情况,根据系统的响应情况决定调整那些参数。
观察系统响应效果,可以通过查看控制回路细目画面中的实时趋势曲线,衰减曲线最好是4:1,即前一个峰值与后一个峰值的比值为4:1。
经验值:在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改,这里的P代表比例度,P=1/K。
总之,在整定时不能让系统出现发散振荡,如出现发散振荡,应立即切为手动,等系统稳定后减小放大倍数、增大积分时间或减小微分时间,重新切换到自动控制。
放大倍数越小,过渡过程越平稳,但余差越大。
放大倍数越大,过渡过程容易发生振荡。
积分时间越小,消除余差就越快,但系统振荡会较大,积分时间越大,系统消除余差的速度较慢。
微分时间太大,系统振荡次数增加,调节时间增加,微分太小,系统调节缓慢。
控制器参数凑试法的步骤:因为比例作用是基本的控制作用,因此,首先把比例度凑试好,待过渡过程已基本稳定,然后加积分作用消除余差,最后加入微分作用进一步提高控制质量,基本步骤如下:(A)对P控制器,将放大倍数放在较小的位置,逐渐增大K,观察被控量的过渡过程曲线,直到曲线满意为止;(B)对PI控制器,先置T1=0,按纯比例作用整定放大倍数使之达到4:1衰减曲线;然后将K缩小(10~20%),将积分时间T1由大到小逐步加入,直到获得4:1衰减过程;(C)对PID控制器,将T2=0;先按PI作用凑试程序整定K,T1参数,然后将放大倍数增大到比原值大(10~20%)位置,T1也适当减小之后,再把T2由小到大逐步加入,观察过渡曲线,直到获得满意的过渡过程。
一句话:整定参数时要认真观察系统输出及被调量的变化情况,再根据具体情况适当修改PID参数。
可以说,只要工艺技术员多花点时间,大多数控制系统采用PID调节都能满足要求。
八、串极控制回路整定串极控制回路的整定可以采用两步法,即先整定副回路,再整定主回路;也可以采用一步法,即同时整定主副回路。
(1)在采用一步法整定时副回路的经验值为以下值,一般副回路只采用比例控制:(2)将串极控制回路系统投入运行,然后按单回路控制系统参数整定方法,整定主控制器的参数;(3)如果在整定过程中出现“共振”,只需减小主、副控制器的放大倍数就可以消除,如果共振太剧烈,可先切换到手动,待生产稳定后,重新投运,重新整定。
总之:P作用是最基本的控制作用,加入I作用后可做到无差控制,提高控制精度,加入D作用能全面提高控制质量。
九、注意事项(1)参数整定前要先校验传感器和执行器,保证现场仪表是正常的,可以先手动控制试一下,手动状态测量参数应该是稳定可靠的。
(2)按经验值设定K参数,暂时关掉积分调节试着切换到自动观察阶跃响应,此时应特别注意控制器的输出,一定要判断一下回路是不是负反馈的(检查设计和接线是否有漏洞,新系统调试的时候会遇到这种情况,如:需要关开度的时候,调节器偏偏是放大开度);(3)在整定参数时要保证工艺稳定,当影响到产品质量和工艺参数时要立即切到手动控制,待工艺生产稳定后再投自动修改PID参数。
(4)如果是串级、比例控制回路,要先一个回路一个回路的整定,还应注意先内环后外环的原则。
(5)在手动切到自动的时候,要保证给定值与测量值近乎一致,但对于一联合Honeywell DCS不存在这个问题,在手动时给定值是自动跟踪测量值的。
十、PID参数整定速记法参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,放大倍数要放小曲线漂浮绕大湾,放大倍数往大扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢,微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低十一、典型控制回路1、单回路控制:给定值(1)控制阀作用方式选择原则:控制阀按作用方式分气开、气关两种。
气开阀即随着信号压力的增加而开度加大,无信号时,阀处于全关状态;反之,随着信号压力的增加,阀逐步关闭,无信号时,阀处于全开状态即为气关阀。
选择原则主要是:从生产的安全出发、从保证产品质量、从降低原料和动力的损耗、从介质特点这几方面考虑。
(2)控制器作用方式选择:选择原则:使整个单回路构成负反馈系统。
规定:控制阀:气开式为“+”,气关式为“-”;控制器:正作用为“+”,反作用为“-”;对象:当通过控制阀的物料或能量增加时,按工艺机理分析,若被控量随之增加为“+”,随之降低为“-”;变送器:一般视为正环节。
则控制器正、反作用选择判别式为:(控制器“±”)(控制阀“±”)(对象“±”)=“-”2、串级回路控制:给定值在单回路控制系统中已指出,控制器正、反作用方式的选择原则是使整个控制系统构成负反馈系统,并且给出了“乘积为负”的判别式。
这一判别式同样适用于串级控制系统主、副控制器正、反作用方式选择。
(1)主控制器作用方式选择:(主控制器±)(副对象±)(主对象±)=(—)因此:当主、副变量同向变化时,主控制器应选反作用方式,反向变化则应选正作用方式。
(2)副控制器作用方式选择:(副控制器±)(控制阀±)(副对象±)=(—)(3)串级控制回路投运:所谓投运,就是通过适当的步骤使主、副控制器从手动工作状态转到工作状态。
串级控制系统的投运方法,总的说来有两种:一是先投副环后投主环;另一种是先投主环后投副环。
目前普遍采用的投运方法是第一种,投运的时候要保证无扰动切换,由于Honeywell DCS带PV自动跟踪功能所以基本上可以做到无扰动切换,而且投运实现比较简单。
3、分程控制系统分程控制系统是一个控制器的输出信号去控制两台或以上的控制阀,每一个控制阀仅在输出信号整个范围的某段信号内工作。
即多阀而且分程。
实现方法主要用两种:一是通过每个控制阀上的阀门定位器实现,二是通过DCS软件实现,在采用DCS控制的情况下我们一般通过DCS组态实现。
给定值在分程控制系统中,按照控制阀的气开与气关作用方式可分为两类:一类是阀门同向动作,即随着控制阀输入信号的增大或减少,阀门都开大或都开小,另一类是阀门异向动作,即随着控制阀输入信号的增大或减少,阀门总是按一台阀关而另一台阀开的方向动作。
控制阀的同向或异向动作的选择全由工艺的需要来确定。
具体如下图:压力/Mpa 开度压力/Mpa 开度a、气开式b、气关式同向动作的分程控制阀压力/Mpa 开度压力/Mpa 开度a、气关-气开式b、气开-气关式异向动作的分程控制阀00004、比值控制回路比值控制回路是把两种或两种以上的物料量自动地保持一定比例的控制系 统,使从物料量随着主物料量按一定比值变化,比如余热锅炉的瓦斯和进风量成比例关系,使锅炉燃烧效果达到最佳。
(1)比值控制系统的类型:下图中:Q1为主物料量,Q2为从物料量,两变量满足Q2=K Q1的要求,即当Q1在某一时刻由于干扰作用而发生变化时,比值器通过运算,按比例发出信号使Q2重新与Q1保持原有的比例关系。
A、开环比值控制系统给定值开环比值控制系统B、单闭环比值控制系统单闭环比值控制系统C、双闭环比值控制系统给定值双闭环比值控制系统。