第二章 平面力系和平面力偶系
- 格式:ppt
- 大小:1.22 MB
- 文档页数:38
第二章平面汇交力系与平面力偶系一、要求1、掌握平面汇交力系合成(分解)的几何法。
能应用平衡的几何条件求解平面汇交力系的平衡问题。
2、能正确地将力沿坐标轴分解和求力在坐标轴上的投影。
对合力投影定理应有清晰的理解。
3、能熟练地运用平衡方程求解平面汇交力系的平衡问题。
4、对于力对点的矩应有清晰的理解,并能熟练地计算。
5、深入理解力偶和力偶矩的概念。
明确平面力偶的性质和平面力偶的等效条件。
6、掌握平面力偶系的合成方法,能应用平衡条件求解力偶系的平衡问题。
二、重点、难点1、 力在坐标轴上的投影,合力投影定理,平面汇交力系的平衡条件及求解平衡问题的解析法。
2、 力对点之矩的计算,力偶矩的概念,平面力偶性质和力偶等效条件。
三、学习指导平面汇交力系合成的结果是一个合力,合力作用线通过力系的汇交点,合力的大小和方向等于力系的矢量和,即∑==+⋅⋅⋅⋅⋅⋅++=ni i n F F F F R 121或简化为∑=F R上式是平面矢量方程,只可以求解两个未知数。
每一个力都有大小和方向两个要素(因为力的汇交点是已知的),因此,方程中只能有两个要素是未知的。
矢量方程的解法有:几何法和解析法。
只有力沿直角坐标轴分解的平行四边形才是矩形。
力在轴上投影的大小等于分力的大小,投影的正负表示分力沿坐标轴的方向。
平面汇交力系平衡的必要和充分条件是力系的合力为零。
即∑R=F这个平面的矢量方程可解两个未知数,解法有几何法和解析法。
(1)平衡的几何条件:平面汇交力系的力多边形封闭。
(2)平衡的解析条件:平面汇交力系的各分力在两个坐标轴上投影的代数和分别等于零即:∑=0YX;∑=0对于平衡方程,和平面汇交力系合成与分解的解析法一样,一般也选直角坐标系。
但在特殊情况下,有时选两个相交的相互不垂直的坐标轴,可使问题的求解简化。
这是因为平衡时合力恒等于零,合力在任一坐标轴的投影也恒等于零,所以,不一定局限在直角坐标系。
合力投影定理与合力矩定理是结构静力计算经常要用到的两个定理。
①掌握力偶、力偶矩的基本概念及其力偶的基本性质。
力沿坐标轴的分力是一矢量,其合力和分力之间应满足力的平行四边形规则。
一般情况下,力在坐标轴上投
影的大小不等于力沿坐标轴分解的分力的大小。
只有当α(由平行四边形面积表达式证出)平面力对点之矩简称力矩,是一代数量,其绝对值等于力的大小与力臂的乘
积,正负号表示力矩的转向,一般以逆时针转向为正,反之为负
平面力对点之矩还可应用合力矩定理求解。
特别是在力臂计算不方便时,若将其分解
为两个正交分力并用合力矩定理计算则较方便,注意表达中的负号。
由等值、反向、不共线的两个平行力组成的力系效应用力偶矩来度量。
力偶没有合力,力偶只能用力偶来平衡力偶力偶矩
在平面问题中,力偶矩是一个代数量,其绝对值等于力的大小与力偶臂的乘积
解析法根据合力投影定理求出合力在
合力的大小和方向余弦
平衡的几何条件:力多边形自行封闭
平衡的解析条件:力系中各分力在两个坐标轴上的投影的代数和分
别等于零
平面力偶系可合成为一个力偶,称为合力偶。
合力偶矩等于各分力偶矩的代数和
(注意区分转向,即正负号)
平面力偶系平衡的充分和必要条件是:所有各分力偶矩的代数和等于零。
第二章平面力系第1节平面汇交力系合成与平衡的几何法若作用在物体上的力,其作用线均分布在同一平面内,则该力系称为平面力系。
若作用在同一平面内的各力作用线均汇交于一点,则该力系称为平面汇交力系。
一、合成的几何法应用力多边形法则,合力矢即是力多边形的封闭边,合力作用线通过力系的汇交点。
如图2-1-1-1所示。
图2-1-1-1若有n个力,则合力矢可以表示为F R = F 1 + F 2 +⋯+ F n = ∑ i=1 n F i二、平衡的几何法平面汇交力系平衡的充要条件是:力多边形自行封闭。
如图2-1-1-2所示。
若矢量表示即为F R =0图2-1-1-2第2节平面汇交力系合成与平衡的解析法一、力在坐标轴上的投影力在坐标轴上的投影等于力的模乘以力与投影轴正向间夹角的余弦,如图2-2-1-1所示,它是一标量,即F x =Fcosθ; F y =Fcosβ力沿坐标轴的分力是一矢量,其合力与分力之间应满足力的平行四边形法则。
如图2-2-1-2所示。
当坐标轴为直角坐标轴时,力沿坐标轴分解的分力可以表示为F x = F x i; F y = F y i合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和,即F x = ∑ i=1 n F xi ; F y = ∑ i=1 n F yi当投影轴x与y垂直时,其合力的大小与方向为F R = F x 2 + F y 2 , cos( F R ,i)= F x F R ; cos( F R ,j)= F y F R二、合成的解析法当为直角坐标轴时,可按以下方法来合成F R = F x 2 + F y 2 = ( ∑ F xi ) 2 + ( ∑ F yi ) 2cos( F R ,i)= F x F R = ∑ F xi F R ; cos( F R ,j)= F y F R = ∑ F yi F R三、平衡的解析法力系中各力在两个坐标轴上投影的代数和分别等于零,即∑ F x =0; ∑ F y =0上式称为平面汇交力系的平衡方程。