第3章 静电场及其边值问题的解法
- 格式:ppt
- 大小:968.00 KB
- 文档页数:40
oP adq′r′OP adq′r′为常数。
对于不接地的导体球,若引入镜像电荷 q' 后,为了满足电荷守 恒原理,必须再引入一个镜像电荷q",且必须令q ′′ = − q ′P a O d q′ r′ r q f而且,为了保证球面边界是 一个等位面,镜像电荷 q′′ 必须位 于球心。
事实上,由于导体球不接地,因此,其电位不等于零。
由q 及 q‘在球面边界上形成的电位为零,因此必须引入第二个镜像电荷 q“ 以提供一定的电位。
(思考:等位线的形状是否和以前一样?)(3)线电荷与带电的导体圆柱。
P a O d f -ρl已知线电荷为rr′ρl,导体圆柱单位ρl长度的电荷量为-ρl 。
在圆柱轴线与线电荷之间,离轴线的距离d 处,平行放置一根 镜像线电荷 − ρ l 。
求d 的大小。
已知无限长线电荷产生的电场强度为E=ρl er 2πε r因此,离线电荷 r 处,以 r0 为参考点的电位为ϕ=∫r0rEdr =ρl ⎛ r0 ⎞ ln⎜ ⎟ 2πε ⎝ r ⎠若令镜像线电荷 − ρ l 产生的电位也取相同的 r0 作为参考点, 则 ρ l 及 − ρ l 在圆柱面上 P 点共同产生的电位为P a O d f -ρlr′rρlϕP =ρl ⎛ r0 ⎞ ρl ⎛ r0 ⎞ ln⎜ ⎟ − ln⎜ ⎟ 2πε ⎝ r ⎠ 2πε ⎝ r ′ ⎠ ρl ⎛ r ′ ⎞ = ln⎜ ⎟ 2πε ⎝ r ⎠已知导体圆柱是一个等位体,即 ϕ p 是一个常数,因此,为了 满足这个边界条件,必须要求比值r′ r为常数。
2a r′ a d 与前同理,可令 = = ,由此得 d = r f a f可以想象与实际导体圆柱对称位置的右侧,也存在一个圆柱等位 面,如上图,则可计算两根平行导线间的电容(P79)。
(4)点电荷与无限大的介质平面。
qq′ Enr0r0′E'E t′ Etq"ε1 ε2et en=ε1 ε1q'θ+ε2 ε2r0′′θ′ E n′E t′′EnEE"为了求解上半空间的场可用镜像电荷 q' 等效边界上束缚电 荷的作用,将整个空间变为介电常数为ε1 的均匀空间。
静电场的边值问题
及求解
1.ϕ的微分方程
ϕ
∇=-E E D ε=0=⨯∇E ρ=⋅∇
D ρ
=⋅∇)(E ερϕ-=∇⋅∇)(ερ
ϕϕ-=∇⋅∇+∇⋅∇εερϕ-=∇⋅∇εερ
ϕ-
=∇202=∇ϕ⎯泊松方程⎯拉普拉斯方程
ρ=0的无源空间均匀介质0=∇ε
2.边界条件
(1)第一类边界条件:已知场域边界面上各点的电位值,即给定边界上的电位(2)第二类边界条件:已知场域边界面上各点的电位法向导数值,即给定边界上的电位法向导数
(3)第三类边界条件:一部分边界上给定每一点的电位,一部分边界上给定每一点的电位法向导数
3.唯一性定理
满足下述条件的电位函数的解,是给定场域静电场的唯一解:
(1)在给定场域电位满足泊松方程或拉普拉斯方程;
(2)在不同媒质分界面;
(3)在给定场域边界电位满足给定的边界条件。
4.静电场边值问题的求解
(1)直接法:直接求解电位的微分方程得到解析解,如直接积分法、分离变量法;(2)间接法:依据唯一性定理和物理概念间接求解,如镜象法;
(3)数值法:利用数值分析求近似解,如有限差分法、有限元法。
第3章 静电场及其边值问题的解法3.1 / 3.1-1 一个半径为a ,壁厚d 极薄的肥皂泡对无穷远点的电位为U 0。
当它破灭时假定全部泡沫集中形成一个球形水滴。
试求此水滴(drop )对无穷远处的电位U d 。
若U 0=20V ,a=3cm ,d=10μm ,则U d =? [解] V d a aUd a aU U d 2001010109320103334436423203200=⨯⨯⨯⨯⨯⨯===---πεπε3.2 / 3.1-2空气中有一半径为a 的球形电荷分布,已知球体内的电场强度为2ˆCr r E =(r<a ),C 为常数。
求:a)球体内的电荷分布;b)球体外的电场强度;c)球内外的电位分布;d)验证静电场的电位方程。
[解] a) ()()Cr Crrdrd rE r v 0222041εεερ=⋅=⋅∇= (r<a)b) 24ˆra C r E = (r>a)c) 取 ∞→r 处为电位参考点,得 ()333332424333:raC CaCr Ca dr ra Cdr Cr Edr a r arar-=+-=+==<⎰⎰⎰∞∞φ⎰∞==>rraCE d r a r 4:φd) 022224331:ερφv Cr r C r r r a r -=-=⎪⎭⎫⎝⎛-⋅∂∂=∇< 得证。
()01:24222=⋅∂∂=∇>-rCa rrra r φ 得证。
3.3 / 3.1.3空气中有一半径为a ,体电荷密度为ρv 的无限长圆柱体。
请计算该圆柱体内外的电场强度。
[解] :a <ρ ρερ02ˆv rE =:a >ρ ρερ022ˆarE v =3.4 / 3.1-4 已知空气中半径为a 的圆环上均匀地分布着线电荷,其密度为ρl ,位于z =0平面,试求其轴线上任意点P (0,0,z )处的电位和电场强度(参看图2.1-7,注意与之不同)。