静电场的边值问题
- 格式:pdf
- 大小:34.11 KB
- 文档页数:1
静电场边值问题的唯一性定理摘要:静电场边值问题及其唯一性定理是一重要知识点,定理的表述和证明都涉及较多的数学知识。
由于唯一性定理的概念对于许多问题(如静电屏蔽)的确切理解有很大帮助,所以我们将给此定理一个物理上的论证,期待大家能从中有所受益. 关键词:静电场;边值;唯一性;静电屏蔽1、问题的提出实际中提出的静电学问题,大多不是已知电荷分布求电场分布,而是通过一定的电极来控制或实现某种电场分布。
这里问题的出发点(已知的前提),除给定各带电体的几何形状、相互位置外,往往是在给定下列条件之一;(1) 每个导体的电势U K ; (2) 每个导体上的总能量Q K ;其中K=1,2,……为导体的编号。
寻求的答案则是在上述条件(称为边界条件)下电场的恒定分布。
这类问题称为静电场的边值问题。
这里不谈静电场边值问题如何解决,而我们要问:给定一组边界条件,空间能否存在不同的恒定电场分布?唯一性定理对此的回答是否定的,换句话说,定理宣称:边界条件可将空间里电场的恒定分布唯一地确定下来。
2、几个引理在证明唯一性定理之前,先作些准备工作——证明几个引理。
为简单起见,我们暂把研究的问题限定为一组导体,除此之外的空间里没有电荷。
(1)引理一 在无电荷的空间里电势不可能有极大值和极小值。
用反证法。
设电势U 在空间某点P 极大,则在P 点周围的所有邻近点上梯度U ∇ρ必都指向P 点,即场强U E ∇-=ρρ的方向都是背离P 点的(见图1-1a 。
)这时若我们作一个很小的闭合面S 把P 点包围起来,穿过S 的电通量为0)(>⋅=⎰S d E S E ρρϕ (1)根据高斯定理,S 面内必然包含正电荷。
然而这违背了我们的前提。
因此,U 不可能有极大值。
用同样的方法可以证明,U 不可能有极小值(参见图1-1b )。
(2)引理二 若所有导体的电势为0,则导体以外空间的电势处处为0。
因为电势在无电荷空间里的分布是连续变化的,若空间有电势大于0(或小于0)的点,而边界上又处处等于0,在空间必然出现电势的极大(或极小)值,这违背引理一。
安培环路定律1)真空中的安培环路定綁在真空的磁场中,沿任总回路取乃的线积分.其值等于真空的磁导率乘以穿过该回路所限定面枳上的电流的代数和。
即in di=^i kk=l2)•般形式的安培环路定律在任总磁场中•磁场强度〃沿任一闭合路径的线积分等于穿过该回路所包鬧而积的自由电流(不包括醱化电流)的代数和。
即B (返回顶端)边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类边界条件下,求电位函数®的泊松方程(沪卩=一%)或拉普拉斯方程(gp=O)定解的问題。
2)恒定电场的边值问题在恒定电场中,电位函数也满足拉普拉斯方程。
很多恒定电场的问題,都可归结为在一定条件下求竝普拉斯方程(▽?信=° )的解答,称之为恒定电场的边值问题o3)恒定磁场的边值问题(1)磁矢位的边值问题磁矢位在媒质分界面上满足的衔接条件和它所满足的微分方程以及场域上给定的边界条件一起构成了描述恒定磁场的边值问题°对于平行平而磁场,分界而上的衔接条件是* 1 3A 1 dAn磁矢位*所满足的微分方程V2A = -pJ(2)磁位的边值问题在均匀媒质中.磁位也满足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上满足的衔接条件以及场域上边界条件一起构成了用磁位描述恒定磁场的边值问題。
磁位满足的拉普拉斯方程= °两种不同媒质分界浙上的衔接条件边界条件1.静电场边界条件在场域的边界面s上给定边界条件的方式有:第•类边界条件(狄里赫利条件,Dirichlet)已知边界上导体的电位第二类边界条件(聂以曼条件Neumann)已知边界上电位的法向导数(即电荷而密度或电力线)第三类边界条件已知边界上电位及电位法向导数的线性组合5静电场分界而上的衔接条件% "和场*二丘"称为静迫场中分界面上的衔接条件。
前者表明.分界而两侧的电通壮密度的法线分址不连续,其不连续虽就等于分界面上的自由电荷血•密度:后者表明分界而两侧电场强度的切线分址连续。
有电介质的静电场边值问题姓名:***院校系别班级摘要:我们知道,静电场在一种均匀电介质中是不会发生跃变的。
但在两种均匀电介质边界上是否发生突变?如果发生跃变,那么这个过程是怎样的呢?根据前面的知识,本文我们采用柏松公式和拉普拉斯定理对有电介质的静电场边值问题进行证明!关键词:静电场 电介质 突变 边值问题 唯一性引言:由于在外场作用下,两均匀电介质分界面上一般会出现一层束缚电荷和电流分布,这些电荷、电流的存在又使得界面两侧场量发生跃变,这种场量跃变是面电荷、面电流激发附加的电场产生的,描述在电介质分界面上。
若带电体的形状、尺寸和位置均已固定,则满足边界条件的柏松方程和拉普拉斯方程的解是否唯一?一、讨论两不同电介质交界面两侧场量跃变情况我们先探讨在外电场存在的作用下两种电介质交界面两侧场量跃变情况。
通过对电磁学的学习,我们知道麦克斯韦方程组的微分形式是0BE t ∂∇⨯+=∂ (1)000EB t με∂∇⨯-=∂ (2)0E ∇⋅= (3)0B ∇⋅= (4)微分方程中所涉及的量都必须是良态的。
所谓良态,即函数在其观察点及其领域内连续并有连续的导数,则称该函数是良态的。
所以微分形式的麦克斯韦方程组只能描述一种介质内电磁场的变化规律,然而实际中常常遇到有不同介质交界面的情况。
在分界面上,介质的性质有一突变,电磁常量一般也要发生突变,所以,在分界面上的各点,麦克斯韦方程组的微分形式已失去意义。
由于麦克斯韦方程组的积分形式不要求各个量都是良态,所以它适用于包括介质分界面在内的区域。
因此研究边值关系的基础是积分形式的麦克斯韦方程组。
即:0l s E dl B ds t ∂⋅+⋅=∂⎰⎰ (5)0l S H dl D ds t ∂⋅-⋅=∂⎰⎰ (6)s D ds Q ⋅=⎰⎰ (7)0s B ds ⋅=⎰ (8)式中:环线l 为面s 的闭合边界,其正向与面元d s 法向遵从右手螺旋法则。
环面s 为包围体积v 的闭合面,面元d s 指向为s 面的外法向。
1静电场的边值问题1•镜象法的理论依据是()。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的()。
2•根据边界面的形状,选择适当的坐标系,如平面边界,则选直角坐标;圆柱面选圆柱坐标系;球面选球坐标。
以便以简单的形式表达边界条件。
将电位函数表示成三个一维函数的乘积,将拉普拉斯方程变为三个常微分方程,得到电位函数的通解,然后寻求满足条件的特解,称为()3.将平面、圆柱面或球面上的感应电荷分布(或束缚电荷分布)用等效的点电荷或线电荷(在场区域外的某一位置处)替代并保证边界条件不变。
原电荷与等效点电荷(即通称为像电荷)的场即所求解,称为(),其主要步骤是确定镜像电荷的位置和大小。
4.()是一种数值计算方法,把求解区域用网格划分,同时把拉普拉斯方程变为网格点的电位有限差分方程(代数方程)组。
在已知边界点的电位值下,用迭代法求得网格点电位的近似数值。
5•用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是()A.镜像电荷是否对称 B .电位所满足的方程是否未改变C•边界条件是否保持不变 D .同时选择B和C4 4 46.微分形式的安培环路定律表达式为' H二J,其中的J ()。
A.是自由电流密度B •是束缚电流密度C.是自由电流和束缚电流密度D.若在真空中则是自由电流密度;在介质中则为束缚电流密度7.在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布()。
A. —定相同 B .一定不相同 C .不能断定相同或不相同8.两相交并接地导体平板夹角为:,则两板之间区域的静电场()。
A.总可用镜象法求出。
B.不能用镜象法求出。
C•当:•二二/n且n为正整数时,可以用镜象法求出。
D.当、=2 In且n为正整数时,可以用镜象法求出9.将一无穷大导体平板折成如图的90°角,一点电荷Q位于图中(1, n /6 )点处,求所有镜像电荷的大小和位置并在图中标出10.两个平行于XOY面的极大的金属平板,两平板间的距离为d,电位差为〔。
1静电场的边值问题1.镜象法的理论依据是()。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的()。
2.根据边界面的形状,选择适当的坐标系,如平面边界,则选直角坐标;圆柱面选圆柱坐标系;球面选球坐标。
以便以简单的形式表达边界条件。
将电位函数表示成三个一维函数的乘积,将拉普拉斯方程变为三个常微分方程,得到电位函数的通解,然后寻求满足条件的特解,称为()3.将平面、圆柱面或球面上的感应电荷分布(或束缚电荷分布)用等效的点电荷或线电荷(在场区域外的某一位置处)替代并保证边界条件不变。
原电荷与等效点电荷(即通称为像电荷)的场即所求解,称为(),其主要步骤是确定镜像电荷的位置和大小。
4.()是一种数值计算方法,把求解区域用网格划分,同时把拉普拉斯方程变为网格点的电位有限差分方程(代数方程)组。
在已知边界点的电位值下,用迭代法求得网格点电位的近似数值。
5.用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称 B.电位所满足的方程是否未改变C.边界条件是否保持不变 D.同时选择B和C∇⨯=,其中的J()。
6.微分形式的安培环路定律表达式为H JA.是自由电流密度B.是束缚电流密度C.是自由电流和束缚电流密度D .若在真空中则是自由电流密度;在介质中则为束缚电流密度7.在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布( )。
A .一定相同B .一定不相同C .不能断定相同或不相同8.两相交并接地导体平板夹角为α,则两板之间区域的静电场( )。
A .总可用镜象法求出。
B .不能用镜象法求出。
C .当/n απ= 且n 为正整数时,可以用镜象法求出。
D .当2/n απ= 且n 为正整数时,可以用镜象法求出。
9.将一无穷大导体平板折成如图的90°角,一点电荷Q 位于图中(1, π/6)点10. 两个平行于 XOY 面的极大的金属平板,两平板间的距离为 d ,电位差为 。
安培环路定律1)真空中的安培环路定律在真空的磁场中,沿随意回路取 B 的线积分,其值等于真空的磁导率乘以穿过该回路所限制面积上的电流的代数和。
即2)一般形式的安培环路定律在随意磁场中,磁场强度 H 沿任一闭合路径的线积分等于穿过该回路所包围面积的自由电流(不包含磁化电流)的代数和。
即B( 返回顶端 )边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类界限条件下,求电位函数的泊松方程() 或拉普拉斯方程() 定解的问题。
2)恒定电场的边值问题在恒定电场中,电位函数也知足拉普拉斯方程。
好多恒定电场的问题,都可归纳为在必定条件下求拉普拉斯方程 () 的解答,称之为恒定电场的边值问题。
3)恒定磁场的边值问题( 1)磁矢位的边值问题磁矢位在媒质分界面上知足的连接条件和它所知足的微分方程以及场域上给定的界限条件一同构成了描绘恒定磁场的边值问题。
关于平行平面磁场,分界面上的连接条件是磁矢位 A 所知足的微分方程( 2)磁位的边值问题在平均媒质中,磁位也知足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上知足的连接条件以及场域上界限条件一同构成了用磁位描绘恒定磁场的边值问题。
磁位知足的拉普拉斯方程两种不一样媒质分界面上的连接条件界限条件1.静电场界限条件在场域的界限面S 上给定界限条件的方式有:第一类界限条件( 狄里赫利条件,Dirichlet)已知界限上导体的电位第二类界限条件(聂以曼条件Neumann)已知界限上电位的法导游数( 即电荷面密度或电力线)第三类界限条件已知界限上电位及电位法导游数的线性组合静电场分界面上的连接条件和称为静电场中分界面上的连接条件。
前者表示,分界面双侧的电通量密度的法线重量不连续,其不连续量就等于分界面上的自由电荷面密度;后者表示分界面双侧电场强度的切线重量连续。
电位函数表示的分界面上的连接条件和,前者表示,在电介质分界面上,电位是连续的;后者表示,一般状况下, 电位的导数是不连续的。
问题-02-7-1 静电场的边值问题可分为哪几类,是否均满足唯一性定理?
解答:静电场中的典型边值条件包括3类:(1)给定场域边界上的电位值,称为第一类边值条件;(2)给定场域边界上电位的法向导数值,称为第二类边界条件;(3)部分场域边界上给定电位、另一部分场域边界上给定电位的法向导数,称为混合边界条件。
上述三类边界条件与标量电位满足的泛定方程组合成相应的边值问题。
对于第一类边值问题,电位和电场强度的解均唯一;对于第二类边值问题,电场强度的解唯一,电位的解可以相差某一常数,若选定电位参考点,则电位的解也唯一;对于混合边值问题,电位和电场强度的解均唯一。