Pb-Sn二元相图测定及其组织分析
- 格式:doc
- 大小:1.67 MB
- 文档页数:10
实验五二元合金相图一、目的要求1.用热分析法测绘Pb-Sn二元金属相图。
2.了解热分析法的测量技术。
二、基本原理相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡情况(相的数目及性质等),故称为相图。
二元或多元体系的相图常以组成为自变量,其物理性质则大多取温度。
由于相图能反映出多相平衡体系在不同自变量条什下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变(例如冶金工业冶炼钢铁或其他合金的过程,石油工业分离产品的过程等),都要用到相图。
图4.1是一种类型的二元简单低共熔物相图。
图中A、B表示二个组分的名称,纵轴是物理量温度T,横轴是组分B的百分含量B%。
在acb线的上方,体系只有一个相(液相)存在;在ecf线以下,体系有两个相(两个固相——晶体A、晶体B)存在;在ace所包为的面积中,一个固相(晶体A)和一个液相(A在B中的饱和熔化物)共存;在bcf所包围的面积中,也是一个固相(晶体B)和一个液相(B在A中的饱和熔化物)共存;图中c点是ace与bef 两个相区的交点,有三相(晶体A、晶体B、饱和熔化物)共存。
测绘相图就是要将相图中这些分隔相区的线画出来。
常用的实验方法是热分析法。
热分析法所观察的物理性质是被研究体系的温度。
将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间(例如半分钟或一分钟)读体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线,图4.2是二元金属体系的一种常见类型的步冷曲线。
冷却过程中,若体系发生相变,就伴随着一定热效应,团此步冷曲线的斜率将发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点。
若图4.2是图4.1中组成为P 的体系的步冷曲线,则点2、3就分别相当于相图中的点G 、H 。
因此,取一系列组成不同的体系,作出它们的步冷曲线,找出各转折点,即能画出二元体系的最简单的相图(对复杂的相图,还必须有其他方法配合,才能画出)。
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2金相组织分析:何林温雅欣杨多雪杨俊杰组:成分组织相理论相对量相实际相对量α90%87.1% 90%Pb-10%Snα+βⅡβ10%12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶内。
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:越凡门明达王光王晓宇瑛康何林温雅欣多雪俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2实验结果:金相组织分析:何林温雅欣多雪俊杰组:成分组织相理论相对量相实际相对量90%Pb-10%Sn α+βⅡα90% 87.1% β10% 12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶。
二组分合金相图一、实验目的1.用热分析法(步冷曲线法)测绘Pb—Sn二组分金属相图。
2.了解固液相图的特点,进一步学习和巩固相律等有关知识。
3.掌握金属相图(步冷曲线)测定仪的基本原理及方法。
二、实验原理1、二组分固-液相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。
以体系所含物质的组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。
二组分相图已经得到广泛的研究和应用。
固-液相图多应用于冶金、化工等部门。
二组分体系的自由度与相的数目有以下关系:自由度= 组分数–相数+ 2 (1)由于一般的相变均在常压下进行,所以压力P一定,因此以上的关系式变为:自由度= 组分数–相数+ 1 (2)又因为一般物质其固、液两相的摩尔体积相差不大,所以固-液相图受外界压力的影响颇小。
这是它与气-液平衡体系的最大差别。
图1以邻-、对-硝基氯苯为例表示有最低共熔点相图的构成情况:高温区为均匀的液相,下面是三个两相共存区,至于两个互不相溶的固相A、B和液相L三相平衡共存现象则是固-液相图所特有的。
从式(2)可知,压力既已确定,在这三相共存的水平线上,自由度等于零。
3、较为简单的二组分金属相图主要有三种;(1)是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu—Ni系统;(2)是液相完全互溶而固相完全不互溶的系统,最典型是Bi—Cd系统;(3)是液相完全互溶,而固相是部分互溶的系统,如Pb—Sn系统,本实验研究的系统就是这一种。
在低共熔温度下,Pb在固相Sn中最大溶解度为(质量百分数)。
2、热分析法(步冷曲线法)是绘制相图的基本方法之一。
热分析法是相图绘制工作中常用的一种实验方法。
按一定比例配成均匀的液相体系,让它缓慢冷却。
以体系温度对时间作图,则为步冷曲线。
曲线的转折点表征了某一温度下发生相变的信息。
由体系的组成和相变点的温度作为T-x图上的一个点,众多实验点的合理连接就成了相图上的一些相线,并构成若干相区。
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2实验结果:金相组织分析:何林温雅欣杨多雪杨俊杰组:成分组织相理论相对量相实际相对量90%Pb-10%Sn α+βⅡα90% 87.1% β10% 12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶内。
P b-S n二元相图测定及其组织分析实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
西安交通大学实验报告
课程:金相技术与材料组织显示分析实验日期:年月日专业班级:组别交报告日期:年月日姓名:学号: 报告退发:(订正、重做)同组者:教师审批签字:
实验名称:Pb-Sn二元相图测定及其组织分析
实验目的:
1.掌握用热分析法测定材料的临界点的方法;
2.学习根据临界点建立二元合金相图;
3. 自制二元合金金相样品,并分析组织;
实验概述:
相图中临界点测定方法有很多种,有热分析法、热膨胀法、电阻测定法、显微分析法、磁性测定法等等。
把熔化的合金自高温缓慢冷却,在冷却过程中每隔相等的时间进行测量,记录一次温度,由此得到某一成分下合金的冷却曲线。
金属或合金无相变发生时,温度随时间均匀的降低,一旦发生了某种转变,水平台阶或者转折点的温度就是相变开始或终了的温度。
利用热分析法测定Pb-Sn合金转变点,是通过一定数量不同合金成分步冷曲线综合得到的。
简述热分析法测定二元相图的方法:
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作步冷曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
实验结果分析:
合金成分是亚共晶状态,在由液态缓慢冷却时,先析出初生α相,由于合金成分离共晶点很近,初生α相的量非常少,故沿晶界非连续分布,到达共晶点温度时,剩余液相按共晶成分恒温析出至完全,最后冷却到室温,组织没有发生变化。
二元系合金的显微组织分析实验指导书一、实验目的1)掌握根据相图分析合金凝固组织的方法。
2)熟悉典型共晶系合金的显微组织特征。
3)了解初晶及共晶形态。
4)分析二元合金的不平衡凝固组织,掌握其组织特征及某与平衡组织的差别二、原理概述研究合金的显微组织时,常根据该合金系的相图,分析其凝固过程,从而得知合金缓慢冷却后应具有的显微组织。
显微组织是指各组成物的本质、形态、大小、数量和分布特征。
特征不同,即使组成物的本质相同,合金的性能也不一样。
具有共晶反应的二元合金系有:Pb-Sb、Pb-Sn、Al-Si、Al-Cu、Cu-O、Zn-Mg等。
根据合金在相图中的位置,可分为端部固溶体、共晶、亚共晶和过共晶合金来研究其显微组织特征。
1、端部固溶体合金端部固溶体合金位于相图两端。
如Pb-Sn相图中含锡的质量分数小于19%的合金,见图3-1;Pb-Sb相图中含锑的质量分数小于3.5%的合金,见图3-2。
这类合金慢冷凝固终了得到单相固溶体α,继续冷却到固溶度曲线以下,将析出二次相βⅡ,一般合金中的二次相常呈粒状或小条状分布在α固溶体的晶界和晶内。
图3-3为含锡10%的Pb-Sn合金的显微组织,其中暗色的基体为铅基固溶体α,亮色颗粒为二次相β,记为βⅡ,β是以锡为基体的固溶体。
图3-1 Pb-Sn相图图3-2Pb-Sb相图图3-3 Pb-10%Sn合金的显微组织2、共晶合金位于二元相图中共晶点成分的合金液体L E 冷至共晶温度t E 时,发生共晶反应,b a t E EL βα+→凝固终了得共晶体组织。
共晶体是由两种一定成分的固相(b a βα+)组成,两相的本质和成分可由相图上得知。
如Pb-Sn 合金的共晶体中两个相的本质分别为以铅和锡为基的固溶体α和β,在共晶温度时,α和β中锡的质量分数分别为19%和97.5%(见图3-1)。
而在Pb-Sb 合金中,由于铅在锑中的固溶度很小,β相的成分接近纯锑,故其共晶体由α+Sb 所组成。
湖南工业大学实验报告实验三步冷曲线法绘制二元合金相图学生姓名预习实验报告内容一、实验目的1.用热分析法测熔融体步冷曲线,再绘制绘Pb-Sn二元合金相图。
2.了解热分析法的实验技术及热电偶测量温度的方法。
二、实验仪器和试剂KWL-10可控升降温电炉、SWKY-Ⅱ数字测控温巡检仪,特制样品管6个,台秤,分析纯金属铅、金属锡、石墨。
三、实验原理图4-1(a)体系是单组分体系。
在冷却过程中,在a~a1段是单相区,只有液相,没有相变发生,温度下降速度较均匀,曲线平滑。
冷却到a1时,达到物质的凝固点,有固相开始析出,两相共存,自由度为零,温度保持不变,冷却曲线出现平台(温度不随时间而改变)。
当到达a1′点液相完全消失,系统成为单一固相,自由度为1,此后随着冷却,温度不断下降。
图4-1(b)体系是一般二元混合物。
在冷却过程中,在b~b1段是单相区,只有液相,没有相变发生,温度下降速度较均匀,曲线平滑。
冷却到b1时,开始析出A(s),体系发生部分相变,相变潜热部分补偿环境吸收的热量,从而减慢了体系温度下降速度,步冷曲线出现转折点(拐点),即b1-b2段。
继续冷却,固体A不断析出,与之平衡的液相中B 的含量不断增加,温度不断下降。
达到b2点时,液相不仅对固体A而且对固相B也达到饱和,所以两固相开始同时析出,三相共存,自由度为0,温度保持不变,冷却曲线出现平台。
当到达b2′点液相完全消失,系统成为两固相,自由度为1,此后随着冷却,温度不断下降。
图4-1(c)体系是低共融体系。
在冷却过程中,在c~c1段是液相区,没有相变发生,温度下降速度较均匀,曲线平滑。
达到c1点时,液相对固相A和固相B同时达到饱和,所以两固相同时析出,三相共存,自由度为零,温度保持不变,冷却曲线出现平台。
c1′后面和图4-1(b)体系b2′点以后的过程相同整理实验数据时,我们会发现冷却曲线的拐点处为一回沟形状(见图4-4),即温度下降到相变点以下,而后又回升上来,这种现象叫过冷现象。
差热分析法测定P b-Sn的金属相图一、实验目的和要求1.用热分析法测绘Pb-Sn二元金属相图,并掌握应用步冷曲线数据绘制二元体系相图的基本方法;2.了解步冷曲线及相图中各曲线所代表的物理意义;二、实验原理相是指体系内部物理性质和化学性质完全均匀的一部分。
相平衡是指多相体系中组分在各相中的量不随时间而改变。
研究多相体系的状态如何随组成、温度、压力等变量的改变而发生变化,并用图形来表示体系状态的变化,这种图就叫相图。
将某一物质进行加热或冷却,在这样的过程中,若有物相变化发生,如发生熔化、凝固、晶型转变、分解、脱水等相变时,总伴随着有吸热或放热的现象。
两种混合物若发生固相反应,也有热效应产生。
因此,在体系的温度——时间曲线上就会发生顿、折,但在许多情况下(例如在试样的来源有限,量很少),体系中发生的热效应相当小,不足以引起体系温度有明显的突变,从而温度——时间曲线的顿、折并不显著,甚至根本显不出来。
在这种情况下,常将有物相变化的物质和一个基准物质(或参比物,即在实验温度变化的整个过程中不发生相变、没有任何热效应产生,如Al2O3、MgO等)在相同的条件下进行加热或冷却时,一旦样品发生相变,则在样品和基准物之间产生温度差。
测定这种温度差,用于分析物质变化的规律,称为差热分析。
本实验采用热分析法绘制相图,其基本原理:先将体系加热至熔融成一均匀液相,然后让体系缓慢冷却,①体系内不发生相变,则温度--时间曲线均匀改变;②体系内发生相变,则温度--时间曲线上会出现转折点或水平段。
根据各样品的温度--时间曲线上的转折点或水平段,就可绘制相图。
纯物质的步冷曲线如①、⑤所示,如①从高温冷却,开始降温很快,a b线的斜率决定于体系的散热程度,冷到A的熔点时,固体A开始析出,体系出现两相平衡(液相和固相A),此时温度维持不变,步冷曲线出现水平段,直到其中液相全部消失,温度才下降。
pb sn合金的相组成物和组织组成物PB-Sn合金是一种常用的金属合金,由铅(Pb)和锡(Sn)两种金属元素组成。
它具有许多重要的应用,特别是在电子工业和焊接领域。
本文将重点介绍PB-Sn合金的相组成物和组织组成物。
PB-Sn合金的相组成物是指合金中不同相的存在情况。
相是指具有一定的化学成分和结构特征的固态物质。
在PB-Sn合金中,主要存在两种相,即α相和β相。
α相是一种固溶体相,其主要成分是锡。
β相是一种亚稳定相,其主要成分是铅。
在PB-Sn合金中,α相和β相的含量与合金的成分比例和处理工艺有关。
一般来说,合金中锡的含量越高,α相的含量就越高。
PB-Sn合金的组织组成物是指合金的微观组织结构。
在PB-Sn合金中,主要存在两种组织结构,即共晶组织和共晶固溶体组织。
共晶组织是指合金中α相和β相以共晶方式存在的结构。
共晶固溶体组织是指合金中α相和β相以固溶体的形式存在的结构。
共晶组织和共晶固溶体组织的形成与合金的冷却速率和成分比例有关。
在合金冷却速度较快的情况下,共晶组织容易形成;在合金冷却速度较慢的情况下,共晶固溶体组织容易形成。
PB-Sn合金的相组成物和组织组成物对合金的性能有重要影响。
首先,相的存在情况影响合金的硬度和强度。
α相是一种较硬的相,可以提高合金的硬度和强度;β相是一种较软的相,可以降低合金的硬度和强度。
其次,组织的存在形式影响合金的韧性和塑性。
共晶组织具有较高的韧性和塑性,可以提高合金的抗拉强度和延伸性;共晶固溶体组织具有较低的韧性和塑性,容易导致合金的脆性断裂。
此外,相的存在情况和组织的存在形式还会影响合金的热传导性能、电导率和热膨胀系数等。
为了获得所需的相组成物和组织组成物,可以通过调整合金的成分比例和处理工艺来实现。
例如,可以通过改变铅和锡的比例来控制α相和β相的含量;可以通过改变合金的冷却速度来控制共晶组织和共晶固溶体组织的形成。
此外,还可以通过添加其他元素或进行热处理等方式来改善合金的性能。
实验10 二组分合金相图
班级:材料(硕)01 组长:丁斌
组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰
实验日期:2013年5月22
1.1实验目的
1.2
①掌握用热分析法测定材料的临界点的方法;
②学习根据临界点建立二元合金相图;
③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)
热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金
属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突
变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相
转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷
却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相
变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);
若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统
的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现
转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔
液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统
温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完
全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线
得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷
曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成
熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2。