第9章 条件异方差模型上课讲义
- 格式:ppt
- 大小:4.33 MB
- 文档页数:81
第三节 自回归条件异方差(ARCH)模型金融时间序列数据通常表现出一种所谓的集群波动现象。
模型随机误差项中同时含有自相关和异方差。
一、ARCH 模型 (Auto-regressive Conditional Heteroskedastic —自回归条件异方差模型)对于回归模型t kt k t t x b x b b y ε++++= 110 (3.3.1) 若2t ε服从AR (q )过程 t q t q t t νεαεααε++++=--221102 (3.3.2) 其中tν独立同分布,并满足0)(=t E ν , 2)(σν=tD 则称(3.3.2)式为ARCH 模型,序列t ε服从q 阶ARCH 过程,记为t ε~ARCH (q )。
(3.3.1)和(3.3.2)称为回归—ARCH 模型。
注:不同时点t ε的方差2)(t t D σε=是不同的。
对于AR (p )模型t p t p t t y y y εφφ+++=-- 11 (3.3.3) 如果tε~ARCH (q ),则(3.3.3)与(3.3.2)结合称为AR (p )-ARCH (q )模型。
ARCH (q )模型还可以表示为 *t t h =εt ν (3.3.4)21022110jt q j q t q t t h -=--∑+=+++=εααεαεααα (3.3.5)其中,tν独立同分布,且0)(=t E ν,1)(=tD ν,00>α 0≥j α)2,1(q j = 且11<∑=q j j α(保证ARCH 平稳)。
有时,(3.3.5)式等号右边还可以包括外生变量,但要注意应保证th 值是非负的。
如:p t p t q t q t t h h h ----++++++=θθεαεαα 1122110 1011<+<∑∑==p j j q i iθα对于任意时刻t ,条件期望E (tε| ,1-t ε)=0)(*=t t E h ν (3.3.6)条件方差t t t t t h E h E ==-)(*),|(2212νεσ (3.3.7) (3.3.7)式反映了序列条件方差随时间而变化。
Econometrics第六章异方差(教材第九章)第六章异方差6.1 异方差的涵义6.2 异方差的后果6.3 异方差的诊断6.4 补救措施学习要点异方差及其产生的后果,诊断及消除其影响的措施6.1 异方差的涵义异方差(Heteroscedasticity )f 古典线性回归模型(CLRM )的对u i 的假定其中,称为同方差(Homoscedasticity )假定。
f 若,则称存在异方差(Heteroscedasticity )。
12233i i i iY B B X B X u =+++2()0()(,)0i i i j E u Var u Cov u u σ=⎧⎪=⎨⎪=⎩2()i Var u σ=22()i i Var u σσ=≠6.1 异方差的涵义异方差(Heteroscedasticity)f例,个人储蓄的方差随个人可支配收入增加而变大。
6.1 异方差的涵义异方差(Heteroscedasticity )f 异方差用符号表示为:(注意下标)表明u i 的方差随观察值的不同而变化。
f存在异方差问题的实际背景多存在于横截面数据(cross-sectional data)由于存在规模效应测量误差f 例如,使用横截面数据估计中国总量消费函数。
22()i iE u σ=()()2()i i i Var u E u E u =−=2i σ6.1 异方差的涵义异方差(Heteroscedasticity )f 例,523个工人的工资:123i i i iWage B B Edu B Exper u =+++6.1 异方差的涵义异方差(Heteroscedasticity )f 例,523个工人的工资:123i i i iWage B B Edu B Exper u =+++6.2 异方差的后果异方差的后果(证明从略)f OLS OLS6.3 异方差的诊断异方差的一些诊断工具f问题的性质:在横截面数据中常有异方差问题f帕克检验(Park test)f格莱泽检验(Glejser test)Heteroscedasticity Test)f异方差的其他检验方法6.3 异方差的诊断异方差的一些诊断工具f 残差的图形检验:用对一个或多个解释变量作图2i e6.3 异方差的诊断异方差的一些诊断工具f 残差的图形检验:多个解释变量时可用对作图2ieˆiY6.3 异方差的诊断异方差的一些诊断工具f 帕克检验(Park test ):做对一个或多个的回归f 例如,一元模型中f 实际估计中以代替,如何获得?f 检验零假设B 2=0,即不存在异方差。