计量经济学第五章异方差讲解
- 格式:ppt
- 大小:334.50 KB
- 文档页数:32
计量经济学课件第五章异方差性第五章异方差性1 / 80计量经济学课件第五章 异方差性 2 / 80引子:更为接近真实的结论是什么?根据四川省2000年21个地市州医疗机构数及人口数资料,分析医疗机构及人口数量的关系,建立卫生医疗机构数及人口数的回归模型。
对模型估计的结果如下:ˆ Yi -563.0548 5.3735 X i(291.5778) (0.644284) t (-1.931062) (8.340265) R2 0.785456 R 2 0.774146 F 69.56003式中 Y 表示卫生医疗机构数(个), X 表示人口数量(万人)。
计量经济学课件第五章 异方差性3 / 80模型显示的结果和问题 ●人口数量对应参数的标准误差较小;● t 统计量远大于临界值,可决系数和修正的可决系数结果较好,F 检验结果明显显著;表明该模型的估计效果不错,可以认为人口数量每增加1万人,平均说来医疗机构将增加5.3735人。
然而,这里得出的结论可能是不可靠的,平均说来每增加1万人口可能并不需要增加这样多的医疗机构,所得结论并不符合真实情况。
有什么充分的理由说明这一回归结果不可靠呢?更为接近真实的结论又是什么呢?计量经济学课件第五章 异方差性4 / 80第五章 异 方 差 性 本章讨论四个问题:●异方差的实质和产生的原因●异方差产生的后果●异方差的检测方法●异方差的补救计量经济学课件第五章 异方差性5 / 80第一节 异方差性的概念 本节基本内容:●异方差性的实质●异方差产生的原因计量经济学课件第五章 异方差性6 / 80一、异方差性的实质 同方差的含义同方差性:对所有的 i (i1,2,..., n)有: Var(ui ) = 2 (5.1) 因为方差是度量被解释变量 Y 的观测值围绕回归线 E(Yi ) 1 2 X 2i 3 X 3i ... k X ki (5.2) 的分散程度,因此同方差性指的是所有观测值的分散程度相同。
计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。
通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。
经过学习能够处理模型中出现的异⽅差问题。
第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。
数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。
因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。
如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。
下⾯给出制造业利润对销售收⼊的回归估计。
模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。
例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。
为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。
根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。
第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。
(2)X-~e i2的散点图进行判断异方差性1、定义:如果出现即对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性。
同方差性:σi2 = 常数 ≠ f(Xi)异方差时:σi2 = f(Xi) 2、后果:参数估计量非有效OLS 估计量仍然具有无偏性,但不具有有效性 因为在有效性证明中利用了 E(μμ’)=σ2I而且,在大样本情况下,尽管参数估计量具有一致性,但仍然不具有渐近有效性。
变量的显著性检验失去意义变量的显著性检验中,构造了t 统计量如果出现了异方差性,估计的S 出现偏误则t 检验失去意义。
其他检验也是如此。
模型的预测失效一方面,由于上述后果,使得模型不具有良好的统计性质;另一方面在预测的置信区间中,同样包含参数方差的估计量。
所以,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y 的预测误差变大,降低预测精度,预测功能失效。
3、检验:检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。
图示法(1)用X-Y 的散点图进行判断,看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)看是否形成一斜率为零的直线 帕克(Park)检验与戈里瑟(Gleiser)检验偿试建立方程:i ji i X f e ε+=)(~2Var i i ()μσ=2i ji i X e εασ++=ln ln )~ln(22i e X X f jiji εασ2)(=)12,12(~)12(~)12(~2122------------=∑∑k c n k c n F k c n e k c n e F i i 选择关于变量X 的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。
如: 帕克检验常用的函数形式:若α在统计上是显著的,表明存在异方差性。
戈德菲尔德-奎恩特(Goldfeld-Quandt)检验①将n 对样本观察值(Xi,Yi)按观察值Xi 的大小排队②将序列中间的c=n/4个观察值除去,并将剩下的观察值划分为较小与较大的相同的两个子样本,每个子样样本容量均为(n-c)/2,即3n/8③对每个子样分别进行OLS 回归,并计算各自的残差平方和④在同方差性假定下,构造如下满足F 分布的统计量⑤给定显著性水平α,确定临界值F α(v1,v2),若F> F α(v1,v2), 则拒绝同方差性假设,表明存在异方差。