岩石弹塑性本构模型
- 格式:pptx
- 大小:632.10 KB
- 文档页数:27
邓肯张本构模型在FLAC3D中的开发与实现一、本文概述随着计算机技术的不断发展和数值模拟方法的日益成熟,岩土工程领域的数值模拟分析已成为研究岩土工程问题的重要手段。
邓肯张本构模型(Duncan-Chang Constitutive Model)作为一种能够描述岩土材料非线性、弹塑性行为的本构模型,在岩土工程领域具有广泛的应用。
然而,在岩土工程数值模拟软件FLAC3D中,邓肯张本构模型并未直接内置,因此需要对其进行开发与实现。
本文旨在探讨邓肯张本构模型在FLAC3D中的开发与实现过程。
将介绍邓肯张本构模型的基本原理和特点,包括其应力-应变关系、屈服准则、硬化法则等。
然后,将详细阐述如何在FLAC3D中通过用户自定义本构模型(User-Defined Constitutive Model)接口实现邓肯张本构模型,包括模型的初始化、应力更新、应变更新等关键步骤。
还将讨论邓肯张本构模型在FLAC3D中的数值实现方法,如如何设置模型参数、如何处理模型的非线性问题等。
通过本文的研究,旨在为FLAC3D用户提供一种在岩土工程数值模拟中应用邓肯张本构模型的有效方法,也为其他岩土工程数值模拟软件的本构模型开发与实现提供借鉴和参考。
本文的研究成果将有助于提高岩土工程数值模拟的准确性和可靠性,推动岩土工程领域的数值模拟研究向更高水平发展。
二、邓肯张本构模型基本理论邓肯张本构模型(Duncan-Chang Model)是一种广泛使用的岩土工程材料本构模型,主要用于描述土的应力-应变关系。
该模型基于土的弹塑性理论,能够模拟土的非线性、弹塑性和剪胀性等行为。
邓肯张本构模型的基本假设包括土的应力-应变关系是非线性的,土的应力路径对其后续行为有影响,以及土的体积变化与其应力状态有关。
模型的核心在于其应力-应变关系的数学描述,其中包括弹性部分和塑性部分。
在弹性部分,邓肯张模型采用了切线弹性模量来描述土的弹性行为,这个模量随着应力的变化而变化,体现了土的非线性弹性特性。
岩土工程中的弹塑性理论与分析技术岩土工程是研究土体和岩石力学行为以及相关工程问题的学科。
在岩土工程中,土体和岩石常常会受到外力的作用,从而产生弹性变形和塑性变形。
弹性变形是指在加载或卸载外力后,土体和岩石能够恢复到原始形状的能力。
而塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。
为了研究土体和岩石在弹性和塑性阶段的力学特性,人们提出了弹塑性理论与分析技术。
弹塑性理论与分析技术是将弹性理论与塑性理论相结合,用于描述土体和岩石在受力过程中的力学行为。
弹塑性理论首先研究土体和岩石的弹性行为。
弹性是指土体和岩石在外力作用下,能够恢复到原始形状的能力。
弹性理论利用应力和应变的关系来描述土体和岩石的弹性行为。
常见的弹性理论有胡克定律、泊松比理论等。
这些理论可以用来计算土体和岩石的弹性应力、应变和变形。
然而,在实际的工程中,土体和岩石常常会出现塑性变形。
塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。
塑性行为涉及到土体和岩石内部颗粒的移动和变形,因此塑性变形的研究要比弹性变形复杂得多。
弹塑性理论与分析技术的目的就是要研究土体和岩石的弹塑性行为,并提供相应的分析方法。
弹塑性理论与分析技术的主要内容包括:1. 弹性塑性模型:弹塑性模型是描述土体和岩石在加载或卸载过程中的应力和应变关系的数学模型。
常见的模型有Cam-Clay模型、Mohr-Coulomb模型、Drucker-Prager模型等。
这些模型可以用来计算土体和岩石的应力应变状态,从而得到土体和岩石的强度参数和变形特性。
2.弹塑性本构关系:弹塑性本构关系是描述土体和岩石在受力过程中力学行为的数学方程。
本构关系可以用来计算土体和岩石的应力、应变和变形。
常见的本构关系有弹性本构关系、弹塑性本构关系等。
这些本构关系可以用来计算土体和岩石的弹性和塑性变形。
3.弹塑性分析方法:弹塑性分析方法可以用来计算土体和岩石的应力、应变和变形。
第28卷 第6期 岩 土 工 程 学 报 Vol.28 No.62006年 6月 Chinese Journal of Geotechnical Engineering June, 2006岩石粘弹塑性本构关系及改进的Burgers蠕变模型袁海平,曹 平,许万忠,陈沅江(中南大学资源与安全工程学院,湖南 长沙 410083)摘 要:软弱岩石一般具有粘弹塑性共存特性,而典型的Burgers蠕变模型只能描述材料第三期蠕变以前的粘弹性规律,因此,本文基于Mohr-Coulomb准则,提出了新的塑性元件,该元件假定材料屈服后完全服从Mohr-Coulomb塑性流动规律。
将该元件与典型的Burgers模型串联,形成了能模拟粘弹塑性偏量特性和弹塑性体积行为的改进型Burgers蠕变模型,推导了相应的粘弹塑性本构关系。
给出了模型参数的求解方法,编制了相应的数据处理程序,并结合工程实例,对蠕变模型参数进行了拟合和加权平均取值。
应用结果表明:试验曲线与理论计算曲线吻合,改进的Burgers蠕变模型能较好的描述岩石的蠕变特性。
关键词:Burgers模型;Mohr-Coulomb;蠕变;粘弹塑性;屈服准则;本构关系中图分类号:TU452 文献标识码:A 文章编号:1000–4548(2006)0796–04作者简介:袁海平(1977–),男,博士研究生,从事岩石力学理论、工程模型及岩土工程数值计算与仿真研究。
Visco-elastop-lastic constitutive relationship of rock andmodified Burgers creep modelYUAN Hai-ping,CAO Ping,XU Wan-zhong,CHEN Yuan-jiang(School of Resources & Safety Engineering, Central South University, Changsha 410083, China)Abstract: The classic Burgers creep model could only describe the viscoelastic behaviour of rock material before the thirdcreep-phase, but weak rock usually was visco-elasto-plastic. So according to this shortage of Burgers model, a new plastic cellwas developed based on Mohr-Coulomb criterion, which was assumed to be in absolute accordance with the plastic flow law ofMohr-Coulomb when rock failed. And then the plastic cell acted in series with the classic Burgers model, and a modifiedBurgers creep model was built and the corresponding visco-elasto-plastic constitutive relationships were deduced. The modifiedmodel could simulate visco-elasto-plastic deviatoric behavior and elasto-plastic volumetric behavior. In addition, some methodsto solve model parameters were given and some corresponding programs were developed to deal with the test data. And themodel parameters of an engineering example were fitted and the values were obtained through weighted mean ones. It wasshown that the creep testing curves were coincident well with the theoretic curves, validating that the modified Burgers creepmodel was felicitous to characterize the creep behaviour law of rock.Key words: Burgers model; Mohr-Coulomb; creep; viscoelastic plasticity; yield criterion; constitutive relationship0 引 言岩石的蠕变特性是岩石类材料重要的力学性质之一,国内外学者对岩石的蠕变特性和蠕变模型进行了大量的研究[1-10],在理论与实践上取得了重大研究成果。
第23卷第21期岩石力学与工程学报23(21):3577~3583 2004年11月Chinese Journal of Rock Mechanics and Engineering Nov.,2004岩土材料弹塑性损伤模型及变形局部化分析*杨强陈新周维垣(清华大学水利水电工程系北京 100084)摘要常规的弹塑性模型由于没有考虑到损伤和塑性的耦合作用,难以模拟破坏时由于内部损伤的累积导致的变形局部化剪切带的形成过程,因而,不能很好地反映实际结构的细观破坏机理。
作者采用一种宏细观结合的思路,基于细观损伤力学提出了一个适用于岩土材料弹塑性损伤模型,研究均质材料在外部环境作用下由于损伤和塑性的耦合导致的局部化剪切带的形成过程。
对基体材料服从Drucker-Prager准则的球形孔洞体胞单元提出了一个塑性损伤屈服面,为了反映岩土材料在拉应力和压应力作用下不同的孔洞形成机理,分别采用了球形拉应力和塑性应变的成核机制来建立孔隙率的演化方程,根据塑性损伤屈服面和孔隙率的演化方程,导出了关联流动法则下的岩土材料塑性损伤本构方程。
将笔者提出的岩土材料弹塑性损伤模型,通过用户子程序嵌入到大型商业有限元软件MRAC中。
为了研究塑性和损伤的耦合作用,分别采用Gurson弹塑性损伤模型和Mises弹塑性模型,对Tvergaard 关于自由表面有周期性分布微小形状缺陷的半无限大板在平面应变拉伸作用下剪切带的形成进行了数值模拟,计算结果表明弹塑性损伤本构模型在模拟变形局部化方面具有明显的优势。
采用作者提出的岩土材料弹塑性损伤模型,对平面应力条件下有一个缺陷单元的均质岩土材料单轴受压试件的局部化剪切破坏进行了数值模拟。
关键词岩土力学,岩土材料,体积孔隙率,Drucker-Prager准则,成核机制分类号 TU 452 文献标识码 A 文章编号1000-6915(2004)21-3577-07ELASTO-PLASTIC DAMAGE MODEL FOR GEOMATERIALSAND STRAIN LOCALIZAION ANALYSESYang Qiang,Chen Xin,Zhou Weiyuan(Department of Hydraulic and Hydropower Engineering,Tsinghua University, Beijing 100084 China)Abstract Elasto-plastic models can not explain the micro mechanism of shear band formation caused by damage evolution in ductile material due to the neglecting of the interaction between damage and plastic flow. An elasto-plastic damage model for geo-materials based on micromechanics is proposed and the micro mechanism of shear band formation in homogeneous geo-material is studied. A macroscopic yield criterion for porous geo-materials with matrices of Drucker-Prager yield criterion is given,and a plastic strain-controlled void nucleation model as well as a tensile volumetric stress-controlled nucleation model are proposed for the compressive and tensile stresses,respectively. Moreover,the constitutive relationship of the elasto-plastic damage model with plastic normality flow rule is deduced. This elasto-plastic damage model for geo-materials is embeded into the commercial FEM software MARC as a user’s subroutine. A tensile plane strain specimen with initial shape imperfection on its upper bound which was first analyzed by Tvergaard is investigated through the elasto-plastic damage model and Mises elasto-plastic model,respectively. It is shown that the shear band development is only found in Gurson elasto-plastic damage model. Shear band formation due to void nucleation and growth in a plane stress specimen of homogeneous geo-material with one defect element subjected to uniaxial compression is 2003年12月8日收到初稿,2004年2月8日收到修改稿。
岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。
即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。
第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。
固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。
物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复; (2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。
岩土弹塑性模型的回映算法及ABAQUS子程序开发郭德伟【摘要】有限元法被广泛应用于各类岩土工程的数值分析中。
为工程的过程分析和方案优化提供必要的计算支持。
但岩土材料大多是弹塑性体,在进行有限元分析时,需要采用迭代方法对本构模型进行积分计算,以求出与实际边值问题相适应的应力场和位移场。
一个优良的迭代方法可以加快数值收敛,得到更精确的计算成果。
文章在前人的研究基础上,采用回映算法的数学原理,推导了岩土材料理想弹塑性模型有限元法的一般数值格式,并且将其应用于常用的D—P模型中,在ABAQUS有限元程序上进行了UMAT的二次开发。
最后用一个数值算例验证了迭代算法的正确性。
【期刊名称】《四川建筑》【年(卷),期】2012(032)006【总页数】3页(P64-66)【关键词】弹塑性模型;回映算法;D—P模型;UMAT子程序【作者】郭德伟【作者单位】中国土木工程集团有限公司,北京100038【正文语种】中文【中图分类】TU432数值分析是岩土工程中最重要的分析手段之一,为岩土工程的设计和建设提供极大的计算支持,因此,愈来愈受到工程界的重视和应用。
岩土工程弹塑性分析的难点之一是岩土材料非线性弹塑性本构模型在计算机上的程序化,这需要对本构方程进行积分,以便得到新的应力增量。
在复杂的应力路径加载条件下,很难给出材料(包括岩土材料)弹塑性应力增量的显示积分解析式,而只能进行数值积分,在过去的数十年,在这方面有大量的文献报道[1-8]。
这些文献报道的方法大致分为两类:显示积分方法[1-2]和隐式向后欧拉算法[3-8]。
隐式向后欧拉算法最早由 Krieg 等人提出[3],经过发展,目前已成为应用最广的算法。
岩土类材料大多为遵循Mohr-Coulomb屈服准则,在主应力空间内其π平面(偏平面)内的屈服函数和塑性势函数的迹线存在不光滑的角点,在这些点上,这两个函数的导数存在不连续的情况,将会造成数值计算的角点奇异。
在处理角点处导数不连续的问题时,Clausen 和 Damkilde[4-6]做了卓有成效的研究工作。