列车牵引与制动-
- 格式:ppt
- 大小:2.97 MB
- 文档页数:84
列车牵引制动复习题《列车牵引计算》学生复习资料a填空题1.列车和列车运行速度是铁路运输中最重要的指标。
对于一定功率的机车,在线路条件不变的情况下,如果列车要快速运行,牵引质量应相应提高;如果要提高列车的牵引质量,应相应调整列车的运行速度;因此,需要对最有利牵引质量和运行速度的确定进行分析,并与其他方面进行比较。
2.列车附加阻力可分为阻力、阻力和阻力。
3.当列车在2‰坡道上上坡和下坡时,列车每单位坡道的附加阻力为。
4.轮对的制动力不得轮轨间的粘着力,否则,就会发生闸瓦和车轮现象。
5.作用在列车上的合力的大小和方向决定了列车的运动状态。
在牵引条件下,当合力为零时,列车加速;当合力为零时,列车将减速;当合力为零时,列车以恒定速度运行。
6.在一定工况下,当列车的单位合力为零时,相应的运行速度为列车的速度,列车将运行。
7.列车运行时间的长短取决于列车运行及对列车的影响。
8.牵引质量是按列车在限制坡道上运行时,最后能以匀速过顶为标准来计算的。
9.在计算列车的基本阻力时,当货车装载的货物小于标记荷载的50%时,车辆应按以下公式计算:;当车辆达到标记荷载的50%时,应按以下公式计算:。
10.轮轨之间的最大静摩擦力称为机车。
11.列车制动距离是指司机制动到列车的运行距离。
12.列车单位合力曲线由牵引运行和三种工况组成。
2、判断题(每题2分,共20分)1、高速列车制造成流线型车体是为了减小空气阻力。
()2.计算货车单位基本阻力时,只需区分空车和重型车,不考虑其他因素。
(3)线轮廓的简化是将坡度较近的斜坡段合并。
()4、列车在低速运行时,所受到的基本阻力主要以轴承摩擦阻力为主。
()5、隧道越长列车受到的隧道空气附加阻力越大。
()6、对同一列车要想“多拉快跑”是可以实现的。
()7、产生列车制动力的主要方法有摩擦制动和动力制动。
()8、“关门车”不产生闸瓦压力。
()9.列车运行速度和时间的图解法采用垂直线法绘制。
(10)轮轨间的粘着只限制列车的牵引力,而不限制列车的制动力。
中南大学网络教育课程考试复习题及参考答案列车牵引与制动一、填空题:1.列车制动一般分为制动和制动。
2.制动是把正常情況下为调节或控制列车速度,包括进站停车所施行的制动。
3.制动是指紧急情况下为使列车尽快停止而施行的制动。
4.按传动机构的配置,基础制动装置可分为和单元式两种。
5.只要轮轨间不被破杯,制动力将随闸瓦压力的增加而增大。
6.轨道制动既不受钢轨黏着限制,也没有磨耗问题。
7.摩擦制动作用产生的要素为、、。
8.摩擦制动方法包括和盘形制动两种。
9.空重车调整装置目前主要是人工调整。
10.我国货车列车管定压一般为 _ kPa,客车一般为 _ _ kPa11.制动机的灵敏度分为制动灵敏度和灵敏度。
12.列车管减压速度达到指标时必须起紧急制动,而不能是常用制动。
13.常用制动的安定性是常用制动列车管减压速度的。
14.制动作用沿列车长度方向的传播速度称为。
15.制动波速高,说明列车部制动作用的时间差小,既可减轻冲动,又能制动距离。
(前后)(纵向)(缩短16.ST 型闸调安装方式有和两种,分别安装在基础制动装置的和上。
17.具有二压力机构阀的自动制动机,在制动管与制动缸之间安装了三通阀和。
18.具有三压力机构阀的自动制动机,分配阀的动作由制动管、和制动缸三种压力来控制。
19.我国目前铁路客车电空制动机主要型式为_型和_型。
20.我国目前铁路货车空气制动机型式为型、__型和__型。
21.为使每个三通阀都能实现紧急局部减压,在阀的下部加了一个。
22.103 及 104 型分配阀中间体上的三个空腔分别是__、_、室。
23.103 型分配阀构造上由、、三部分组成。
24.103 及 104 型分配阀结构原理是机构作用式。
25.F8 阀转换盖板切断通路时,可形成作用。
26.F8 型分配阀在构造上由、、等几部分组成。
27.120 型空气控制阀的结构原理是压力机构作用式。
28.120 型控制阀半自动缓解阀由_和__两部分组成。
列车牵引制动系统故障应急处理列车牵引制动系统是列车行驶中非常重要的一组系统,它能够实现列车速度的加减和停车,一旦出现故障,就有可能造成严重的后果。
因此,及时采取应急措施是非常必要的。
一、根据实际情况采取措施当列车牵引制动系统发生故障时,应首先根据实际情况采取措施。
如果是牵引故障,应立即切换到备用牵引系统或者换车进行修理;如果是制动故障,可以尝试用列车常用的制动系统、紧急制动系统、手动制动等几种制动系统进行减速,以及旁路故障点,通过紧急脱轨板等措施进行紧急停车。
二、紧急通知车站当列车牵引制动系统出现故障时,应立即向车站发出紧急通知,告知车站管制员所在的位置,列车编号及故障情况,根据指导进行紧急措施并等待调度员指挥。
三、制动距离预判当列车牵引制动系统出现故障时,会影响列车正常制动,因此需要进行制动距离预判。
根据列车行驶速度、列车重量等因素对制动距离进行评估,采取对应的减速措施,以确保安全。
四、主动疏散乘客当列车牵引制动系统出现故障时,为了确保乘客的安全,应主动疏散乘客。
可以根据故障情况选择合适的车门进行疏散,并指导乘客有序下车,避免拥挤和混乱。
五、等待救援当列车牵引制动系统出现故障时,应及时等待救援。
车站或调度中心会派专业技术人员进行修理或拖离事故车辆。
在等待救援的过程中,可以安排乘客在附近的站台等候,或者安排乘客转乘其他列车。
综上所述,列车牵引制动系统是列车行驶中非常重要的一组系统,一旦出现故障,应采取应急措施。
应根据实际情况采取措施、紧急通知车站、制动距离预判、主动疏散乘客、等待救援等步骤,以确保列车行驶的安全性。
《列车牵引与制动》自学指导书注:本课程使用《列车牵引计算》和《列车制动》两本教材,为区别起见,《列车制动》教材的页码引用皆用斜体字表示。
一、课程简介:本课程是内燃机车专业(专科)的专业课,主要介绍列车在外力作用下沿轨道运行的有关问题,以及列车制动装置的结构与工作原理。
通过本课程的学习,使学生能够分析列车运行过程中的各种现象和原理,并能够解决铁路运营和设计上的一些主要技术问题和技术经济问题,如:机车牵引重量、列车运行时分等。
同时使学生了解各种类型的列车制动装置的结构及工作原理,掌握列车制动计算的基本方法,了解现代列车制动技术的发展方向。
并具备查阅技术资料,解决有关技术问题的能力。
绪论主要内容:简要介绍了“牵引计算”这门学科的内容,以及《列车牵引计算规程》的意义和发展。
并明确指出与列车运行直接相关的三个力为:机车牵引力、列车运行阻力和列车制动力;随后的内容都是围绕着这三个力展开的。
学习要求:了解“牵引计算”的主要内容,《列车牵引计算规程》的意义;明确与列车运行直接相关的三个力,掌握其定义以及它们在不同工况下的组合。
第一章机车牵引力主要内容:本章首先分析了机车牵引力产生的过程,给出了轮周牵引力的定义及其在理论上的计算方法。
然后,考虑到列车运行时机车动轮和钢轨的实际接触状况,提出了“粘着”的概念,并给出了粘着牵引力的定义及其计算公式(p5公式1-2)。
接着对影响粘着系数的因素进行了分析,同时给出了粘降的概念。
在内燃机车牵引特性和计算标准一节中,首先给出了牵引特性的概念,然后介绍了我国铁路目前广泛使用的几种主型内燃机车的牵引特性。
最后,提出列车牵引计算中常用的五种计算标准:计算速度和计算牵引力(取持续速度和持续牵引力)、计算起动牵引力、不同速度下的牵引力取值、牵引力因功率降低的修正系数和多机牵引及补机推送的牵引力修正系数。
学习要求:明确机车牵引力产生的条件;掌握轮周牵引力、粘着牵引力、粘降、机车牵引特性、计算速度、持续速度的基本概念;熟悉DF4(货)型、DF11型和BJ型等主型内燃机车的牵引特性曲线,并能对其做简要的解释;了解牵引力计算的五个计算标准;学会查取内燃机车牵引计算主要数据表来解决相关技术问题。
列车牵引与制动重点内容牵引计算第一章1.掌握牵引力、制动力、阻力的概念牵引力:由机车或动车的动力传动装置引起的与列车运行方向相同的外力,是司机可以控制的使列车发生运动或加速的力。
阻力:列车运行中由于各种原因自然发生的与列车运行方向相反的外力,是司机不可以控制的,它的作用是阻止列车发生运动或使列车自然减速。
列车阻力是机车阻力与车辆阻力之和。
制动力:由列车制动装置引起的与列车运行方向相反的力,司机可以控制的,它的作用是使列车产生较大的减速度或者在长大下坡道防止列车超速运行,或者阻止列车在车站停车时由于坡度或大风而自然溜走。
2.不同工况下,作用于列车上的合力的情况牵引工况:C=F-W惰行工况:C=-W制动工况:C=-(W+B)3. 什么是黏着,黏着状态黏着:a.轮轨间非点接触,是椭圆形面接触b.列车运行中要发生各种冲击与振动c.车轮踏面是圆锥形的d.车轮在钢轨上滚动时,伴随微量的轮轨间的纵向和横向振动黏着状态:轮轨间接触状态为黏着状态4. 黏着系数与哪些因素有关概念:把黏着力与轮轨间的垂直载荷之比称为粘着系数因素:列车运行速度、车轮与钢轨的表面状况、环境气候、机车构造第二章1.什么是车钩牵引力、轮周牵引力车钩牵引力:机车牵引客、货车辆的纵向力轮周牵引力:机车或动车是一种能量转换装置。
使机车牵引车辆沿轨道运行的外力肯定来自钢轨和轮周。
产生条件:A.机车车轮上有动力传动装置传来的旋转力矩B.动轮与钢轨接触并存在摩擦作用2.机车牵引特性曲线是怎样的反映了机车的牵引力与速度之间的关系。
在一定功率下,机车运行速度越低,机车牵引力越大。
第三章1. 列车运行阻力包括哪些,附加阻力包括哪些,如何计算列车运行中由于各种原因自然发生的与列车运行方向相反的外力基本阻力的构成:轴承阻力、滚动阻力、滑动阻力、冲击与振动阻力、空气阻力附加阻力不分机车、车辆,而是按列车计算。
决定于线路条件坡道:W I=i 曲线:W R=A/R 隧道:W S=0.00013Ls第四章1.什么是制动、缓解制动:人为的制止物体的运动,包活使其减速、阻止其运动或加速运动缓解:对已经实行制动的物体,解除或减弱其制动作用2.制动装置有哪几部分构成?分别起什么作用制动机:产生制动原动力并进行操纵和控制的部分基础制动装置:传送制动原动力并产生制动力的部分3.列车制动作用分几种常用制动:调速或进站停车紧急制动:紧急情况下,为了尽快停车非常制动:在常用制动无效或制动力不够胆并非紧急情况下使用的一种制动备用制动:在常用制动系统发生故障但情况并不紧急时使用的制动闸瓦制动、盘形制动、磁轨制动、轨道涡流制动、电阻制动、再生制动、液力制动、翼板制动4.制动机的种类有哪些?空气制动机的工作原理?手制动机、空气制动机、电制动机、真空制动机空气制动机的原理:缓解:当司机将制动阀放在缓解位置时,总风缸的压缩空气进入制动主管,经制动支管进入三通阀,推动主动活塞连同滑阀向右移动,打开充气沟,使压缩空气经充气沟进入副风缸,直到副风缸内的空气压力和制动主管内的压力相等为止。
旅客列车牵引制动操作规程1.前言本文档主要针对旅客列车的牵引和制动操作进行规范,旨在确保旅客列车行驶过程中的安全和顺畅。
所有乘务员和司机在执行相关操作时必须严格按照本规程的要求进行。
2.牵引操作规定2.1 牵引操作前的准备 - 在执行牵引前,司机必须仔细检查车辆和设备是否正常,并确保各项安全装置已经启动。
- 乘务员需要在确认乘客上车并扣好安全带后,向司机发出牵引操作信号。
2.2 牵引操作步骤 - 司机在确认信号并确保安全的情况下,将牵引手柄设置为“牵引”位置。
- 进行轻度牵引前,司机应先逐渐增加牵引功率,以减小车辆的冲击力,并保持与列车前车的距离。
- 然后,司机可以逐渐增加牵引功率,使列车平稳加速到运行速度。
- 牵引过程中,司机应密切关注牵引系统的工作状态,一旦发现异常情况,应立即采取相应的应急措施。
2.3 牵引操作注意事项 - 在牵引过程中,司机应根据行车条件合理控制牵引功率,确保列车平稳、顺利地加速。
- 牵引过程中,司机应时刻关注旅客列车车辆的振动和噪声状况,一旦发现异常情况,应立即报告并采取相应的措施。
3.制动操作规定3.1 制动操作前的准备 - 在执行制动操作前,司机必须检查列车的制动系統是否正常,并确保各项制动装置已经准备就绪。
- 乘务员需要提醒旅客将行李和自己稳固地放置好,以避免制动过程中突然停车导致的伤害。
3.2 制动操作步骤 - 当司机接到制动信号时,应立即将制动手柄设为“制动”位置。
- 在开始制动之前,司机应适度减小牵引功率,以平稳过渡到制动状态,防止列车制动过程中发生冲击或失控情况。
- 随着列车速度减慢,司机要逐渐增加制动力度,确保列车平稳、缓慢地停车。
3.3 制动操作注意事项 - 进行制动操作时,司机应注意控制制动力度,以避免列车急刹车导致旅客受伤。
- 制动过程中,司机应时刻留意制动系统的工作状态,一旦发现异常情况,应立即报告并采取相应的措施。
4.特殊情况处理4.1 牵引制动系统故障 - 若发生牵引制动系统故障,司机应立即采取紧急制动措施,并向后方车站和指挥中心报告故障情况。
高铁列车牵引与制动系统设计与优化随着科技的不断进步和人们对快速、高效交通工具的要求不断提高,高铁列车已经成为了一种重要的城市间交通方式。
而在高铁列车的运行过程中,牵引与制动系统起着至关重要的作用,影响着列车的行驶安全和乘客的舒适度。
因此,设计和优化高铁列车的牵引与制动系统对于提高运行效率、降低能耗和保障列车安全具有重要意义。
高铁列车的牵引系统主要包括电力牵引和传动装置两个部分。
电力牵引部分负责将电能转化为机械能,提供牵引力给列车。
在设计和优化电力牵引系统时,首先应该选择合适的电机类型,例如异步电动机或同步电动机。
接下来,需要根据列车的功率需求和轴数确定电机的数量和配置方式。
针对不同运营环境和条件,还需要考虑采用直流供电系统或交流供电系统。
此外,为了提高电力利用率,可以采用能量回馈系统,将制动时产生的能量回馈给电网,降低能耗。
传动装置是高铁列车牵引系统的重要组成部分,负责将电机产生的动力传递给车轮。
在传动装置的设计中,需考虑传动装置的传动效率和可靠性,以及对列车牵引性能的影响。
一种常用的传动装置是齿轮传动系统,通过不同齿轮比实现不同牵引力和速度需求。
此外,还可以考虑采用无级变速器或液力传动装置,提供更灵活的牵引调节性能。
在传动装置的安装和连接中,应注意减少传动损失和振动噪音,提高传动效率和乘客的舒适度。
高铁列车的制动系统在保障列车行驶安全和稳定性方面起着重要作用。
传统的制动系统主要包括电子制动和气动制动两种形式。
电子制动通过列车的牵引变换或电阻器来减速,主要用于低速制动和停车过程中。
气动制动则通过增加列车空气阻力来减速,主要用于高速制动。
在设计和优化制动系统时,应考虑刹车距离、刹车时间和乘客的舒适度。
为了提高刹车性能和安全性,可以采用多级制动系统和防抱死制动系统。
同时,制动系统还应具备自动监控和故障诊断功能,确保系统可靠运行。
为了进一步改善高铁列车的牵引与制动系统,可以采用先进的控制技术和智能化系统。
高速列车牵引及制动系统的控制引言高速列车是一种现代交通工具,其速度飞快,行驶过程中需要稳定而高效的牵引和制动系统,以确保乘客和货物的安全并提高运行效率。
本文将针对高速列车牵引和制动系统的控制方面进行讨论。
一、高速列车的牵引系统高速列车的牵引系统是指将能源转化为动力,使列车在轨道上运行的关键部件。
其包括牵引电机、变速器、控制电缆和驱动轮组等多个部分。
下面将逐一介绍各部分的作用和特点。
1. 牵引电机牵引电机是高速列车牵引系统的核心部件,其作用是将电能转化为机械能,驱动轮组旋转,实现列车运行。
高速列车通常采用交流异步电机来作为牵引电机。
该电机具有起动时冲击小、占用空间小、质量轻等优点,在高速列车牵引系统中得到广泛应用。
2. 变速器变速器是将牵引电机输出的电能转换为合适的机械功率输出到驱动轮组的装置。
其可以将电机的力矩大小、转速进行调整,以适应列车运行的不同条件。
高速列车的变速器一般采用先进的电子变速系统,其能够根据列车的速度和负载自动调整变速器的工作状态,达到最佳的牵引效果。
3. 控制电缆控制电缆是高速列车中采用的电气传输系统,其作用是将列车运行所需的电能、信号传输到各个部件。
高速列车中的控制电缆通常采用高可靠性、耐压、耐磨损和耐高温的特殊材料制作,以确保其在高速列车运行过程中稳定可靠地传输信号和电能。
4. 驱动轮组驱动轮组是高速列车运行的关键部件之一,它通过与铁路轨道摩擦的方式转动,将机械能转化为动能,推动列车前进。
高速列车通常采用6轴式车辆,每个轴上配备2个驱动轮组,以确保列车的牵引能力。
二、高速列车的制动系统高速列车的制动系统是为了提高列车安全性而设计的。
它主要负责控制列车在行驶过程中的刹车和停车,以确保列车停车的速度和平稳性。
1. 机械制动系统机械制动系统是高速列车制动系统的最为基础的部分,它包括制动器、制动齿轮等部件。
通常情况下,高速列车在进站、刹车的过程中会采用机械制动系统,这样可以保证列车在短时间内停车,并且具有重复性好、故障率低等优点。
一、城市轨道交通车辆牵引与制动概述城市轨道交通车辆的牵引与制动是指车辆在运行过程中通过牵引系统获得动力,以及通过制动系统减速停车的过程。
牵引和制动系统的设计和运行质量直接关系到城市轨道交通的安全、舒适和效率。
对于轨道交通车辆的牵引与制动技术的研究和应用具有重要意义。
二、城市轨道交通车辆牵引技术1. 牵引系统类型城市轨道交通车辆的牵引系统一般包括电气和机械两种类型。
电气牵引系统通常采用电机直接驱动或者电机与齿轮箱传动的方式,而机械牵引系统则采用柴油机或者内燃机通过机械传动装置驱动车轮。
2. 牵引系统特点电气牵引系统具有动力传输效率高、节能环保等优点,适用于城市轨道交通车辆短途高频率运行的特点。
而机械牵引系统则适用于长途运行或者特殊环境下的城市轨道交通车辆。
3. 牵引系统改进随着科技的不断发展,城市轨道交通车辆的牵引系统也在不断改进和创新,如采用新型电机、智能控制系统等,以提高牵引系统的效率和性能。
三、城市轨道交通车辆制动技术1. 制动系统类型城市轨道交通车辆的制动系统主要包括空气制动、电磁制动、再生制动等多种类型。
这些制动系统各有特点,可以根据不同的运行环境和需求进行选择和应用。
2. 制动系统特点空气制动系统具有制动效率高、稳定可靠等特点,适用于城市轨道交通车辆的常规制动需求。
而电磁制动和再生制动则具有节能环保、使用寿命长等优点,适用于长途高速运行的城市轨道交通车辆。
3. 制动系统改进随着城市轨道交通的不断发展,车辆制动系统也在不断改进和创新,如采用新型制动材料、智能控制系统等,以提高制动系统的安全性和舒适性。
四、城市轨道交通车辆牵引与制动技术实践1. 实践案例介绍通过介绍一些城市轨道交通车辆牵引与制动技术的实际案例,可以更直观地了解这些技术的应用和效果。
例如某城市地铁线路采用了先进的电气牵引系统和再生制动系统,有效提高了列车的运行效率和能耗节约。
2. 技术应用效果结合实践案例,可以分析城市轨道交通车辆牵引与制动技术的应用效果,包括运行安全性、运行效率、节能环保等方面的表现,以及技术的改进空间和发展趋势。
《列车牵引与制动》作业参考答案一、名词解释:1.换算摩擦系数:不随闸瓦压力改变的假定的闸瓦摩擦系数。
2.黏着系数:黏着力与车轮钢轨间垂直载荷之比。
3.机车牵引性能曲线:表示机车轮周牵引力(纵轴)与运行速度(横轴)相互关系的曲线,通常由试验得到。
4.(制动机的)间接作用:列车管的风压和主活塞的动作直接控制的是作用室风压,然后再通过作用室风压和第二活塞的动作控制机车(车辆)的制动缸。
5.(制动机的)三压力机构:三压力机构的主活塞的动作与否决定于三种压力的平衡与否,工作风缸压力(定压弹簧)、制动管压力,制动缸压力。
二、问答题:1.粘着系数的影响因素有哪些?答:粘着系数的影响因素主要有两个:列车运行速度和车轮和钢轨的表面状况。
轮轨间表面状态包括:干湿情况、脏污程度、是否有锈、是否撒砂以及砂的数量和品质等等。
随着制动过程中列车速度的降低,粘着系数要增大。
2.制动的实质是什么?答:制动的实质可以从能量和作用力两个不同的观点来看。
能量的观点:将列车的动能变成别的能量或转移走。
作用力的观点:制动装置产生与列车运行方向相反的力,是列车尽快减速或停车。
3.简述附加阻力的内容及其意义。
答:列车在线路上运行时受到的额外阻力,如坡道阻力、曲线阻力、隧道阻力等。
附加阻力的种类随列车运行的线路平、纵断面情况而定。
4.简述引起曲线附加阻力的因素。
答:引起曲线附加阻力的因素主要是,机车、车辆在曲线上运行时,轮轨间的纵向和横向滑动、轮缘与钢轨内侧面的摩擦增加,同时由于侧向力的作用,上、下心盘之间以及轴承有关部分摩擦加剧。
由这些原因增加的阻力与曲线半径、列车运行速度、外轨超高、轨距加宽量、机车车辆的固定轴距和轴荷载等诸多因素有关5.简述限制坡度大小对运营的影响。
答:对输送能力的影响:输送能力取决于通过能力和牵引质量。
在机车类型一定时,牵引质量即由限制坡度值决定。
限制坡度大,牵引质量小,输送能力低;限制坡度小,牵引质量大,输送能力高。
《列车牵引制动》课程习题集一、填空题11. 机车牵引力就是指机车_____。
2. 轮轨之间的最大静摩擦力称为机车______。
3. 内燃机车在多机牵引和补机推送时,其牵引力需______。
4. 列车在6‰坡道上上坡运行时,则列车的单位坡道附加阻力为______。
5. 列车在2‰坡道上下坡运行时,则列车的单位坡道附加阻力为_____。
6. 目前,我国机车、车辆上多数使用______闸瓦。
7. 列车制动力是由列车中各制动轮对产生的制动力的_____。
8. 加算坡道阻力与列车运行速度_____。
9. 列车制动距离是自司机施行制动开始到列车_____为止,所运行的距离。
10. 我国普通列车紧急制动距离的限值为_____米。
11. 列车换算制动率的大小,表示列车_____的大小。
12. 计算牵引质量的区段中,最困难的上坡道,称为______。
13. 牵引质量是按列车在限制坡道上运行时,最后能以_____匀速过顶为标准来计算的。
14. 列车动能闯坡的首要条件是列车运行到坡前要有较大的_____。
15. 104主阀和紧急阀安装在 “中间体”上。
二、计算题16. 某列车行驶在非平直的线路上,该线路曲线半径R=1200m ,长i L =480m ,坡度为3‰的下坡,列车长c L =240m 。
求该线路的加算坡度j i 和加算附加单位阻力j 。
17. DF 4(货)型内燃机车(一台)牵引50辆货车,牵引重量G=3000t ,其中重车40辆,空车10辆,车辆制动机为GK 型。
机车计算重量P=135t 。
列车在速度为80km/h 时进行紧急制动,求其速度降为15km/h 时的列车制动力B 和列车单位制动力b 。
(已知:紧急制动初速度0v =80km/h ,v =15km/h 时h =0.198; GK 型制动机重车位每辆车换算闸瓦压力为250kN ;空车位每辆车换算闸瓦压力为160kN ;DF 4(货)型内燃机车换算闸瓦压力为650kN 。
地铁列车制动及牵引计算地铁列车的制动与牵引计算是确保地铁列车能够平稳准确地停车、启动以及行驶的重要环节。
本文将介绍地铁列车的制动与牵引计算方法,并对其中的关键因素进行详细阐述。
地铁列车的制动计算主要包括两个方面:制动距离的计算和制动力的计算。
在计算制动距离时,需要考虑诸多因素,如列车的运行速度、重量、运行曲线的半径以及路面的条件等。
通常采用以下公式进行计算:制动距离=初速度²/(2×制动度)其中,初速度指列车刚开始减速时的速度,制动度是列车的减速度。
地铁列车的牵引计算主要是为了确定列车的最大运行速度和能够实现的最大加速度。
这需要综合考虑列车的功率、牵引系统的效率、列车的重量以及轨道的条件等多个因素。
一般情况下,可以使用如下公式进行计算:牵引力=列车的功率/列车的速度根据实际情况,可以通过调整列车的牵引力来实现不同的运行速度。
在地铁列车的制动和牵引计算中,还需要考虑特殊情况下的因素,例如紧急制动和陡坡行驶等。
对于紧急制动,需要计算所需的制动力以及实际可以提供的制动力之间的差距,并予以补偿。
对于陡坡行驶,需要计算列车在下坡时的制动力是否足够以及上坡时的牵引力是否足够。
此外,地铁列车的制动和牵引计算还需要考虑列车的运行曲线。
在曲线行驶时,列车需要增加横向的制动力,以确保能够在曲线半径的限制下安全运行。
同时,牵引力也需要相应调整,以保持列车的平稳行驶。
综上所述,地铁列车的制动和牵引计算是一个复杂而关键的过程。
通过合理计算并调整制动力和牵引力,可以确保地铁列车的安全和高效运行。
因此,在地铁列车的设计和运行过程中,需要充分考虑制动和牵引计算的各项因素,以使列车能够满足各类运行需求。