常用数值分析方法(精品课件)
- 格式:ppt
- 大小:629.00 KB
- 文档页数:15
第十章 数值分析方法在生产实际中,常常要处理由实验或测量所得到的一批离散数据,数值分析中的插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。
插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。
相应的理论和算法是数值分析的内容,这里不作详细介绍。
§1 数据插值方法及应用在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。
与此有关的一类问题是当原始数据精度较高,要求确定一个初等函数(一般用多项式或分),(,),,(),,(1100n n y x y x y x )(x P y =段多项式函数)通过已知各数据点(节点),即,或要求得函数在另外n i x P y i i ,,1,0,)( ==一些点(插值点)处的数值,这便是插值问题。
1、分段线性插值这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。
如果bx x x a n =<<<= 10那么分段线性插值公式为ni x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11111 =≤<--+--=-----可以证明,当分点足够细时,分段线性插值是收敛的。
其缺点是不能形成一条光滑曲线。
例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。
x 7.010.513.017.534.040.544.548.056.0y1444547505038303034y24459707293100110110110x 61.068.576.580.591.096.0101.0104.0106.5y1363441454643373328y2117118116118118121124121121x 111.5118.0123.5136.5142.0146.0150.0157.0158.0y1326555545250666668y2121122116838182868568根据地图的比例,18 mm 相当于40 km 。