7-1初中数学
- 格式:ppt
- 大小:1.83 MB
- 文档页数:39
1.5 有理数的乘除1.有理数的乘法(1)有理数的乘法法则①两数相乘,同号得正,异号得负,并把绝对值相乘.如:-3×(-2)=+(3×2)=6,(-2)×3=-(2×3)=-6.②任何数与零相乘仍得零.如:(-5)×0=0.(2)有理数乘法的步骤第一步:确定积的符号;第二步:计算各因数的绝对值;第三步:计算绝对值的积.由于绝对值总是正数或0,因此绝对值相乘就是小学中的算术乘法.由此可见,有理数乘法实质上就是通过符号法则,归结为算术的乘法完成的.解技巧 有理数的乘法运算技巧(1)两个有理数相乘时,先确定积的符号,再把绝对值相乘,带分数相乘时,要先把带分数化为假分数,分数与小数相乘时,一般统一写成分数.(2)一个数同零相乘,仍得零,同1相乘,仍得原数,同-1相乘得原数的相反数.(3)两数相乘,若把一个因数换成它的相反数,则所得的积是原来积的相反数.【例1】 计算:(1)45×0.2; (2)13×(-4);(3)(-1.3)×(-5); (4)221133⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (5)1106⎛⎫-⨯ ⎪⎝⎭.分析:利用乘法法则进行计算.这里(1)中是正数和正数相乘,因而得正;(2)中是正数和负数相乘,因而得负;(3)中是负数与负数相乘,因而得正;(4)中是负数和负数相乘,因而得正;(5)中是负数和零相乘,因而得零.小数和带分数一般化为分数或假分数.解:(1)原式=45×15=425; (2)原式=-(13×4)=-52;(3)原式=+(1.3×5)=6.5;(4)原式=5735326⎛⎫+⨯= ⎪⎝⎭; (5)原式=0.2.倒数(1)倒数的概念如果两个有理数的乘积为1,我们称这两个有理数互为倒数,如2与12,⎝ ⎛⎭⎪⎫-32与⎝ ⎛⎭⎪⎫-23分别互为倒数.用字母表示:若ab =1,则a ,b 互为倒数,反之,若a ,b 互为倒数,则ab =1.(2)倒数的求法若a ≠0,则a 的倒数是1a,正数的倒数是正数,负数的倒数是负数,0无倒数.为了方便,一般采用如下方法:①非零整数——直接写成这个数分之一.如:4的倒数是14,-6的倒数是-16. ②分数的倒数——把分子、分母颠倒写即可;带分数要化为假分数,小数要化为分数后再把分子、分母颠倒位置写.如:-34的倒数是-43;-0.25的倒数是-4,-123的倒数是-35. ③倒数等于本身的数是±1,零没有倒数.辨误区 倒数与相反数的区别一定要注意倒数的概念和相反数的概念的区分,互为相反数的两数之和为零,互为倒数的两数之积为1,同时正数的倒数仍为正数,负数的倒数仍为负数.【例2】 求下列各数的倒数.(1)-3;(2)45;(3)-0.2;(4)323. 分析:求一个整数的倒数直接写成这个数分之一即可;求一个分数的倒数,就是把这个分数的分子、分母颠倒位置即可;求一个小数的倒数,先把这个小数化成分数,再求其倒数;求一个带分数的倒数,要先化为假分数再求.解:(1)-3的倒数为-13;(2)45的倒数为54;(3)由于-0.2=-15,所以-0.2的倒数为-5;(4)由于323=113,所以323的倒数为311. 3.有理数乘法法则的推广(1)几个数相乘,有一个因数为零,积为零.如:1×2×(-5)×0×6=0.(2)几个不为零的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(3)由上面的法则可以知道:几个不等于零的数相乘,首先确定积的符号,然后,再把每个因数的绝对值相乘.这就是多个因数求积的常用方法.解技巧 多个有理数相乘的技巧多个有理数相乘时,先观察因数中有没有0.如果有0,积就是0;如果没有0,一般按从左向右的顺序计算绝对值的积作为积的绝对值.【例3】 计算:(1)1172137732222⎛⎫⎛⎫+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭; (2)(+5.9)×(-1 992)×(+1 993)×(-2 000)×0;(3)(-5)×8×(-7)×(-0.25).分析:(1)四个因数只有一个是负数,所以结果是负数,再把带分数化为假分数,约分之后得出结果;(2)因为乘式中含有一个因数0,故积为零;(3)式子中的负数有3个,所以结果是负数.多个有理数进行运算时,应一次确定结果的符号,再计算各因数绝对值的积,这样既简捷又不易出错.解:(1)1172137732222⎛⎫⎛⎫+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =-227×223×722×2122=-7.(2)(+5.9)×(-1 992)×(+1 993)×(-2 000)×0=0.(3)(-5)×8×(-7)×(-0.25)=-(5×8×7×0.25)=-70.4.有理数的除法(1)有理数除法的意义在有理数运算中,除法的意义依然是乘法的逆运算,即已知两个因数的积和其中一个因数,求另一个因数的运算.除法可以转化为乘法来进行.(2)有理数的除法法则①有理数的除法法则一(直接相除的法则):Ⅰ.两数相除,同号得正,异号得负,并把绝对值相除.Ⅱ.零除以一个不为零的数,仍得零.零不能作除数.用字母表示:Ⅰ.若a >0,b >0,则a b =|a||b|;若a <0,b <0,则a b =|a||b|; 若a <0,b >0,则a b =-|a||b|;若a >0,b <0,则a b =-|a||b|. Ⅱ.若a ≠0,则0a=0. ②有理数的除法法则二(化除为乘的法则):除以一个不为零的数,等于乘以这个数的倒数.用字母表示:a ÷b =a ×1b(b ≠0). 析规律 两个除法法则的区别对于除法的两个法则,在计算时根据具体情况,灵活运用,一般在不能整除的情况下应用法则二,在能整除的情况下,应用法则一比较简便.【例4】 计算:(1)(-16)÷(-4); (2)3324⎛⎫-÷ ⎪⎝⎭; (3)57168⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭; (4)0÷(-20).分析:在做除法时,选择哪一个除法法则,应从运算是否方便考虑,和乘法一样,做除法时,先要把带分数化为假分数.解:(1)(-16)÷(-4)=16÷4=4; (2)333422423⎛⎫-÷=-⨯=- ⎪⎝⎭; (3)57168⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=116×87=4421;(4)0÷(-20)=0.5.有理数的乘、除混合运算(1)有理数的乘、除混合运算①形式a ÷b ÷c ;a ×b ÷c ;a ÷b ×c ,这些都是有理数的乘、除混合运算.②方法有理数的乘、除混合运算,先将除法转化为乘法,然后按照乘法法则确定积的符号,最后求出结果.如,计算:(-81)÷214×49÷(-15). ③运算顺序对于连除或乘除混合运算问题,我们可以按从左到右的顺序依次进行计算,也可以直接把除法转化为乘法来计算.(2)有理数的四则混合运算对于含有加、减、乘、除的有理数的混合运算,运算顺序是:如没有括号,应先做乘除运算,后做加减运算;如有括号,应先做括号里的运算,再做其他运算.【例5-1】 计算:(1)(-35)×(-312)÷(-114)÷3; (2)-214÷1.125×(-8). 分析:乘除混合运算要按从左到右顺序进行.对于有理数的乘除法混合运算,应将它们统一为有理数的乘法运算.先由负因数的个数确定结果的符号,再把带分数化为假分数,同时把小数也化为分数,最后考虑约分.解:(1)(-35)×(-312)÷(-114)÷3 =(-35)×(-72)×(-45)×13=-35×72×45×13=-1425; (2)-214÷1.125×(-8) =94÷98×8 =94×89×8=16. 【例5-2】 计算:(15-13)×(14+15)÷(-120)÷(-13). 分析:本题是有理数的加减乘除混合运算,可按四则混合运算的顺序进行计算,有括号的要先算括号里面的.解:(15-13)×(14+15)÷(-120)÷(-13) =-215×920×(-20)×(-3) =-(215×920×20×3)=-185. 6.有理数的乘法的运算律(1)乘法交换律两个数相乘,交换因数的位置,积不变.即ab =ba.(2)乘法结合律三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.即(ab)c =a(bc).(3)分配律一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即a(b +c)=ab +ac.分配律在有理数的运算以及今后的有关代数式运算及变形中运用非常广泛,它的正向运用(即从左到右)与逆向运用(即从右到左)对于不同形式的计算与变形都起着简化的作用,应注意灵活运用.如,计算:(134-78-712)×(-117),考虑前一个括号里面的各个因数的分子都是7,而后面括号里面的因数的分母是7,可以直接利用乘法的分配律简化运算.【例6】 用简便方法计算:(1) (-12+16-38+512)×(-24); (2)-13×23-0.34×27+13×(-13)-57×0.34. 分析:第(1)题中有(-24)是括号中各分母的公倍数,所以应利用分配律变形;第(2)题把-0.34×27与13×(-13)交换位置,然后利用结合律将前两项结合、后两项结合,即分成两组,再分别在每组中逆用分配律即可.解:(1)原式=⎝ ⎛⎭⎪⎫-12×(-24)+16×(-24)+38×24+512×(-24) =12-4+9-10=7.(2)原式=-13×23+13×(-13)-0.34×27-57×0.34=⎣⎢⎡⎦⎥⎤(-13)×23+13×(-13)+⎣⎢⎡⎦⎥⎤0.34×⎝ ⎛⎭⎪⎫-27-57×0.34 =2125(13)0.343377⎡⎤⎡⎤⎛⎫⎛⎫-⨯++⨯-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=(-13)×1+0.34×(-1)=-13-0.34=-13.34.7.有理数混合运算的技巧进行有理数的乘除运算,除了注意运算顺序和运算法则之外,还要注意一些运算技巧,力求使运算简便.解答有理数除法运算有关的问题时,我们应注意利用有理数的除法法则,将有理数的除法运算转化为有理数的乘法运算.如果被除数或除数中有小数应先化为分数,有带分数应先化为假分数,便于约分,简化运算.辨误区 除法没有分配律除法没有分配律,如在有理数的除法运算中,如果按a ÷(b +c)=a ÷b +a ÷c 进行分配就错了.除法是没有分配律的,从而不能运用分配律.像6÷3×13有时会习惯性地将3和分母中的3约分,这是错误的,应严格按运算顺序进行计算,并经过一定练习才能灵活进行有理数的混合运算.有理数的乘、除混合运算的性质有:①a ÷b ÷c =a ÷(b ×c)=a ÷c ÷b.即一个数除以另一个数所得的商再除以第三个数,等于第一个数除以第二、三两数的积;也等于第一个数除以第三个数所得的商再除以第二个数.如:740÷(37×4)=740÷37÷4=20÷4=5.②a ×b ÷c =a ×(b ÷c)=(a ÷c)×b.即两个数的积除以第三个数,等于其中任意一个乘数除以第三个数,再与另一个乘数相乘.如:136×73÷68=2×73=146.③a ÷b ×c =a ÷(b ÷c).即第一个数除以第二个数所得的商再乘以第三个数,等于先求出第二个数除以第三个数的商,再用第一个数除以这个商.如:480 000÷144×12=480 000÷(144÷12)=480 000÷12=40 000.以上三个公式中,添括号或去括号都有规律.添括号时,如果一个数的前面是乘号,那么这个数前面添上括号后,括到括号里面的运算符号不变;如果一个数的前面是除号,那么在这个数前面添上括号后,括到括号里面的运算符号要改变,乘号变除号,除号变乘号.【例7-1】 计算:(1)⎝ ⎛⎭⎪⎫14-15+13÷160; (2)160÷111453⎛⎫-+ ⎪⎝⎭. 分析:(1)先将除法转化为乘法,运用了分配律后使运算简便;第(2)题属于易错题,因为除法没有分配律,只有乘法才有分配律,而一些学生往往因不看清题目而错误地运用运算律. 解:(1)方法一:⎝ ⎛⎭⎪⎫14-15+13÷160=⎝ ⎛⎭⎪⎫1560-1260+2060×60=2360×60=23. 方法二:⎝ ⎛⎭⎪⎫14-15+13÷160=(14-15+13)×60 =14×60-15×60+13×60=23. (2)方法一:160÷(14-15+13) =160÷(1560-1260+2060)=160÷2360=123. 方法二:∵⎝ ⎛⎭⎪⎫14-15+13÷160=(14-15+13)×60=14×60-15×60+13×60=23, ∴根据倒数的定义有160÷(14-15+13)=123. 【例7-2】 计算:(-48)×⎝ ⎛⎭⎪⎫-23+34+112. 分析:在有理数的计算中,如果能够准确地确定运算结果的符号,则可省去一些不必要的括号,运算步骤的简明与流畅可以提高运算的正确率.解:(-48)×⎝ ⎛⎭⎪⎫-23+34+112 =48×23-48×34-48×112=32-36-4=-8.【例7-3】 计算:-3.5×35.2+(-7)×32.4.分析:仔细观察算式的特点,可以发现3.5和7存在倍数关系,不妨将7写成3.5×2,然后逆用分配律来简化计算.解:-3.5×35.2+(-7)×32.4=-3.5×35.2+(-3.5)×2×32.4=-3.5×(35.2+2×32.4)=-3.5×100=-350.【例7-4】 计算:0.25÷168×(-1517). 分析:本题如果先计算0.25÷168的结果再乘以⎝ ⎛⎭⎪⎫-1517,运算过程就很繁杂,而且容易出错.仔细观察每一个数的特点,考虑0.25×4=1,可将68分解成4×17., 去括号时,如果括号的前面是乘号,那么去掉括号后,括号里面的运算符号不变;如果括号的前面是除号,那么去掉括号后,括号里面的运算符号要改变,乘号变除号,除号变乘号.解:0.25÷168×(-1517)=0.25×68×(-1517) =0.25×4×17×(-1517)=(0.25×4)×151717⎡⎤⎛⎫⨯- ⎪⎢⎥⎝⎭⎣⎦=1×(-15)=-15. 8.计算器的使用计算器是一种方便实用的计算工具,计算速度快,计算准确,操作方便.使用时要特别注意以下几点:(1)按下数字键后,应看清显示器上的显示是否正确;(2)用计算器进行有理数的加减运算时,按式子的顺序从左向右按;(3)用计算器进行有理数的乘除运算时,特别是有负数出现时,先应按(-),再输入其绝对值;(4)对于加减乘除混合运算,只要按算式的书写顺序输入,计算器会按要求求出结果.【例8】 用计算器计算:-15.13+4.85+(-7.69)-(-13.88).分析:不同的计算器用法不一样,要注意,使用计算器能进行一些较为复杂的运算. 解:用带符号键(-)的计算器计算.按键顺序: (-)15·13+4·85+(-)7·69-(-)13·88=. 得到-4.09.9.有理数的混合运算在实际问题中的应用有理数的混合运算在现实生活中有着广泛的应用,是解决其他数学问题的基础,也是解应用题的基础,多以实际应用、规律探究型问题的形式出现.尤其是运算律在现实生活中的应用更加广泛.在现实生活中我们经常会遇到一些较大的或者较复杂的数的混合运算,这时就要利用运算律进行转化,使运算简化.解决实际问题的关键是根据问题情境找出数量关系,将实际问题转化为所学的数学问题.有理数的混合运算可以解决一些实际应用题,如:银行利息计算、话费计算等.解决这类问题的关键是将实际问题抽象成数学问题,用运算符号正确表达出关系式,注意单位和解题格式.【例9-1】 某校体育器材室共有60个篮球.一天课外活动,有3个班级分别计划借篮球总数的12、13和14.请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?分析:本题可以转化为:求一个数的几分之几是多少的数学模型,所以用乘法来解答.解:60×1111234⎛⎫--- ⎪⎝⎭=60×1-60×12-60×13-60×14=60-30-20-15=-5(个).答:不够借,还缺5个篮球.【例9-2】 根据实验测定,高度每增加1 km ,气温大约下降6 ℃,小王是一位登山运动员,他在攀登山峰的途中发回信息,报告他所在的位置的气温是-15 ℃,如果当时地面的气温是3 ℃,则小王所在的位置离地面的高度是多少?分析:地面的温度是3 ℃,小王所在的位置是-15 ℃,我们可以根据温度差与高度每增加1 km 气温大约下降6 ℃之间的关系,通过计算得到小王所在位置的高度.解:[3-(-15)]÷6×1=3(km).所以小王所在的位置离地面的高度为3 km.。
初中一年级上册数学知识点总结一、内容概览初中数学一年级的课程是初中数学学习的基础阶段,为后续的复杂数学问题打下坚实的基石。
对于刚升入初中的同学们来说,上册数学知识点众多且涉及面广,涵盖整数、小数、分数等基础数学知识。
让我们一同走进这个奇妙的数学世界,探寻初中一年级上册的数学知识点吧!接下来我们将逐一梳理这些知识点,帮助大家更好地理解和掌握。
同学们让我们一起加油,迎接数学学习的挑战吧!1. 初中数学课程的重要性初中数学课程的重要性不言而喻,数学不仅仅是一门学科,更是我们日常生活中无处不在的工具。
从小学到初中,数学为我们打开了一个全新的世界,这里既有基础的算术运算,也有复杂的代数、几何知识。
在初中一年级上册的数学课程中,我们首先要明白数学的重要性。
数学是思维的体操,通过学习数学,我们的逻辑思维、抽象思维、问题解决能力都会得到极大的锻炼。
在初中阶段,我们会接触到代数、几何等更为抽象的知识,这些知识的学习过程,也是我们的思维不断得到锻炼和成长的过程。
数学在日常生活中的应用也非常广泛,无论是购物计算、时间规划,还是工程建设、财务管理,都离不开数学。
甚至在我们娱乐时,很多游戏、谜题也需要数学知识和技巧。
初中一年级上册的数学课程,为我们打下了日常生活应用的基础。
此外数学还是很多学科的基础,物理、化学、生物、计算机等学科学习都离不开数学的支持。
初中数学的学习,不仅为我们高中更深层次的学习打下基础,还为我们未来的职业发展提供了有力的支持。
所以初中一年级上册的数学课程,不仅仅是一门学科的学习,更是我们思维能力、生活能力、未来职业发展能力的一次全面提升。
让我们一起走进数学的世界,感受数学的魅力吧!2. 初一上册数学的主要内容及特点在初中一年级上册的数学学习中,我们将开启全新的数学知识之旅。
这一册的数学内容主要包括数与代数部分,它不仅是初中数学的基础,更是我们日常生活和今后学习的重要工具。
接下来让我们看看这一年我们都要学习哪些内容。
初中数学相反数 课标定位一、考点突破 1. 掌握相反数的意义;2. 会求一个数的相反数;3. 结合数轴理解相反数的几何意义,体验数形结合的数学思想。
二、重难点提示重点:求一个数的相反数。
难点:根据相反数的意义化简符号。
考点精讲1. 相反数的代数意义只有符号不同的两个数叫做互为相反数。
a 和-a 互为相反数,a 叫做-a 的相反数,-a 叫做a 的相反数。
【注意】-a 不一定是负数,a 不一定是正数。
2. 相反数的几何意义在数轴上,到原点两边距离相等的两个点表示的两个数互为相反数。
3. 相反数的性质正数的相反数一定是负数,负数的相反数一定是正数,0的相反数是0。
典例精析例题1 完成下列两题:(1)下列各数中互为相反数的是( )A. -6与-(+6)B. -(-7)与+(-7)C. -(+2)与+2.2D. -13与―(―23) (2)下列四个数中,其相反数是正整数的是( )A. 3B. 13C. -2D. -12思路分析:根据相反数的概念及正整数的概念,采用逐一检验法求解即可。
答案:(1)“+”号可以省略,两个“-”号表示一个负数的相反数,如-(-7)表示-7的相反数,-7的相反数是7,所以-(-7)=7,而+(-7)=-7,所以本题选B ,其他选项均不正确。
(2)其相反数是正整数的数,首先必须是负数,则可舍去A 、B ,而且相反数还得是整数,又舍去D,故选C。
技巧点拨:本题主要考查相反数的意义,一个数前面如果有多个符号,可以根据相反数的意义将符号化简。
例题2若m-4的相反数是-11,求3m+1的值。
思路分析:根据相反数的性质求解即可。
答案:因为11的相反数是-11,所以m-4=11,解得m=15。
所以3m+1=3×15+1=46。
技巧点拨:本题主要考查了互为相反数的定义,注意任意一个数都有相反数,但其相反数是唯一的。
例题3如图,在数轴上有三点A、B、C,请根据图示,回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?A B C-56-4-6-2012345-1-3思路分析:(1)若将B点向左移动3个单位后,则变为-5,三个点中点B最小,所表示的最小的数是-5;(2)分A不动,B移动;B不动,A移动两种情况讨论;(3)移动方法有3种:①把C、B两点移到A点处;②把A、C两点移到B点处;③把A、B两点移到C点处。
第七章平行线的证明1为什么要证明典型例题题型一实验验证结论例1观察,再验证.(1)图1①中黑色的边是直的还是弯曲的?(2)图1②中两条线段a与b,哪一条更长?①②图1分析:先观察得出结论,再实验验证.解:对于(1)题,直接观察图1①可能得出结论:黑色的边是弯曲的.但实际上,黑色的边是直的.对于(2)题,直接观察图1②可能得出结论:线段b比线段a短.但实际上,这两条线段同样长.点拨:要判断一个数学结论是否正确,仅仅依靠经验、观察是不够的,必须给出严格的证明或实验验证.例2在学习中,小明发现:当n=1,2,3时,n2-6n的值都是负数.于是小明猜想:当n 为任意正整数时,n2-6n的值都是负数.小明的猜想正确吗?请简要说明你的理由.分析:因为n2-6n=n(n-6),所以只要n≥6,该式子的值都表示非负数,所以猜想不正确.解:(方法1:利用反例证明)不正确.理由:例如当n=7时,n2-6n=7>0.(方法2)不正确.理由:n2-6n=n(n-6),当n≥6时,n2-6n≥0.特别提示:通过此题可说明一点:学生在解答问题时不能太片面,而要全面考虑问题.题型二推理的应用1.图形中的推理例3如图2所示,一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成段.图2点拨:从简单、特殊的情况入手,运用比较、归纳的方法,探究内在的规律.2.数学式子中的推理例4观察下列关于自然数的等式:①1×7+2×9=52;②2×8+2×10=62;③3×9+2×11=72;…根据上述规律解决下列问题:(1)完成第4个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.解题关键:观察等式左右两边的数字变化情况,找出每个式子与序号之间的关系.解:(1)根据题意得,第4个等式为4×10+2×12=82.(2)猜想的第n个等式为n(n+6)+2(n+8)=(n+4)2.验证:左边=n(n+6)+2(n+8)=n2+6n+2n+16=n2+8n+42=(n+4)2=右边,所以n(n+6)+2(n+8)=(n+4)2.3.假设论证例5甲、乙、丙、丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色的.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的解析:∵丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,假设乙的车是红色的,∴乙说的是实话,∴丙的车也是红色的,和只有一个人的车是红色的矛盾.假设丙的车是红色的,∴丙说的是实话,而乙说“丙的车是红色的”,∴乙说的是实话,∴有两人说的是实话,与只有一个人说的是实话矛盾,∴只有甲的车是红色的.∴甲说的是实话,丙说的不是实话.∵丙说:“丁的车不是蓝色的”,∴丁的车是蓝色的,∴乙和丙的车一个是白色的,一个是银色的.∵甲说:“乙的车不是白色”,且甲说的是实话,∴丙的车是白色的,乙的车是银色的.综上,甲的车是红色的,乙的车是银色的,丙的车是白色的,丁的车是蓝色的.答案:C4.推理论证例6某球赛小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁解析:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分为5分,1胜2平,丙得分为3分,1胜0平,丁得分为1分,0胜1平.∵甲、乙都没有输球,∴甲一定与乙平.∵丙得3分,1胜0平,乙得5分,1胜2平,∴与乙打平的球队是甲与丁.答案:B拓展资源哥德巴赫猜想两百多年前,彼得堡科学院院士哥德巴赫曾研究过“将一个数表示成几个素数的和”的问题,他取了很多数做试验,想把它们分解成几个素数的和,结果得到一个断语:“总可将任何一个数分解成不超过三个素数之和.”但是哥德巴赫不能证明这个问题,甚至连如何证明的方法也没有,于是他写信给另一名彼得堡科学院院士、著名数学家欧拉,他在1742年6月7日的信中写道:“我想冒险发表下列假定‘大于5的任何数都是三个素数的和’.”这就是后来举世闻名的哥德巴赫猜想.同年6月30日,欧拉在给哥德巴赫的回信中说:“我认为‘每一个偶数都是两个素数之和’,虽然我还不能证明它,但我确信这个论断是完全正确的.”这两个数学家的通信内容传播出来之后,人们就称这个猜想为哥德巴赫猜想或者哥德巴赫-欧拉猜想.完整地说,哥德巴赫猜想是:大于1的任何数都是三个素数的和.后来,人们把它归纳为:命题A:每一个大于或者等于6的偶数,都可以表示为两个奇素数的和;命题B:每一个大于或者等于9的奇数,都可以表示为三个奇素数的和.人们在研究命题A的过程中,开始引进了“殆素数”的概念.所谓“殆素数”就是素数因子(包括相同的和不同的)的个数不超过某一固定常数的自然数.我们知道,除1以外,任何一个正整数,一定能表示成若干素数的乘积,其中每一个素数,都叫做这个正整数的素因子.相同的素因子要重复计算,它有多少素因子是一个确定的数.例如,从25~30这六个数中,25=5×5有2个素因子,26=2×13有2个素因子,27=3×3×3有3个素因子,28=2×2×7有3个素因子,29是素数有1个素因子,30=2×3×5有3个素因子.于是可说25,26,29是素因子不超过2的殆素数,27,28,30是素因子不超过3的殆素数.用殆素数的新概念,可以提出命题D来接近命题A.命题D:每一个充分大的偶数,都是素因子的个数不超过m与n的两个殆素数之和.这个命题简化为“m+n”.这样,哥德巴赫猜想的最后证明的方向就更明朗化了:如果能证明,凡是比某一个正整数大的任何偶数,都能表示成一个素数加上两个素数相乘,或者表示成一个素数加上一个素数,就算证明了“1+2”.当然如果能证明“1+1”就基本上证明了命题A,也就基本解决了哥德巴赫猜想了.1920年,挪威数学家布朗证明了“9+9”.1924年,德国数学家拉代马哈证明了“7+7”.1932年,英国数学家埃斯特曼证明了“6+6”.1938年,苏联数学家布赫雪托布证明了“5+5”.1938年,中国数学家华罗庚证明了几乎全体偶数都能表示成两个素数之和,即几乎所有偶数“1+1”成立.1940年,苏联数学家布赫雪托布证明了“4+4”.1948年,匈牙利的瑞尼证明了“1+c”,其中c是一个很大的自然数.1956年,中国数学家王元证明了“3+4”,稍后证明了“3+3”和“2+3”.1956年,苏联数学家维诺格拉多夫证明了“3+3”.1957年,中国数学家王元又证明了“2+3”.1962年,中国年轻数学家潘承桐证明了“1+5”,这是证明了相加的两个数中,有一个肯定是素数的成果,而另一个殆素数的因子小到不超过5.1962年,苏联数学家巴尔巴恩也证明了”1+5”.1963年,中国数学家王元、潘承桐及苏联数学家巴尔巴恩分别证明了“1+4”.1965年,维诺格拉多夫、布赫雪托布证明了“1+3”.1965年,意大利数学家朋比尼也证明了“1+3”.1966年,中国数学家陈景润宣布证明了“1+2”.。
2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米B .30+米C .10−米D .10米2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710×B .37.8710×C .47.8710×D .50.78710×3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个B .2个C .3个D .4个4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−−B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)+C .-|-0.01|与1100−−D .13−与0.3 6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3B .2C .1−D .07.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34B .32−C .152D .129.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a <<②1c <−③2b >−④b a <⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg .1314.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .15.比较两数大小: −76−16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 17.比2−小6的数是 .18.当||2,||4x y ==,且2x y +=−,则xy = . 19.已知1xyz xyz =,则x zy x y z++值为 .20.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 .三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−;(2)12433−÷−×;(3)()()32211234−+×−+−;(4)()235363412−+×−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.24.(本题8分)如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:.(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×.27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×=. 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1 B .任何非零数的圈3次方都等于它的倒数 C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472−−÷−×−④⑥⑧.2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米 B .30+米 C .10−米 D .10米【答案】A【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可. 【详解】解:∵向东走40米记作40+米, ∴向西走30米可记作30−米, 故选A .2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710× B .37.8710×C .47.8710× D .50.78710×【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中≤<110a ,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将78700用科学记数法表示为:47.8710× 故选:C .3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】将每个数进行化简后,得出判断.【详解】解:239−=−,2(93) ,(2)2−−=,|5|5−−=−,因此负数有:23−和|5|−−,共有2个, 故选:B .4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−− B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−【答案】C【分析】本题考查了绝对值、有理数的乘方、相反数、倒数,熟练掌握这几个定义是解题的关键.根据绝对值、有理数的乘方、相反数、倒数的定义分别计算判断即可. 【详解】解:A 、22−=,故此选项不符合题意; B 、()328−=−,故此选项不符合题意; C 、−2的相反数是2,故此选项符合题意; D 、−2的倒数是0.5−,故此选项不符合题意; 故选:C .5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)−+C .-|-0.01|与1100−−D .13−与0.3 【答案】C【分析】先化简,根据相反数的定义:只有符号不同的两个数即可求解. 【详解】解:A .−(+5)=−5−5)=−5,选项A 不符合题意; B .−(+0.5)=−0.5,与12−相等,选项B 不符合题意;C .−|−0.01|=−0.01,−(1100−)=1100=0.01,−0.01与0.01互为相反数,选项C 符合题意; D .13−与0.3不是相反数,选项D 不符合题意;故选:C .6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3 B .2 C .1− D .0【答案】B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程求解即可. 【详解】解:由题可知:A 点表示的数为a ,B 点表示的数为1, ∵C 点是A 向左平移3个单位长度,∴C 点可表示为:3a −, 又∵点C 与点B 互为相反数,∴310a −+=, ∴2a =. 故选:B .7.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A 、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B 、原式=﹣(4×125×7),不符合题意;C 、原式=(10﹣119)×16=160﹣1619,不符合题意; D 、原式=3×[(﹣25)×(﹣2)],不符合题意. 故选:A .8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34 B .32− C .152 D .12【答案】C【分析】本题主要考查了有理数的乘方运算,求一个数的绝对值,有理数的加法运算等知识点,熟练掌握相关运算法则是解题的关键. 先计算乘方和绝对值,然后相加即可. 【详解】解:722−▲2722=+−742=+152=,故选:C .9.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a << ②1c <− ③2b >− ④b a < ⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个【答案】B【分析】此题考查了利用数轴比较有理数的大小,由a ,b ,c 在数轴上的位置得到1012b c a <−<<<<<,进而逐项求解即可.【详解】解:由题意得,1012b c a <−<<<<<, ∴12a <<,①正确;1c >−,②错误; 2b <−,③错误;b a <,④正确; 12c −<<,⑤正确;a 到原点的距离小于b 到原点的距离,⑥错误;在a 与c 之间有2个整数,⑦正确.∴正确的有4个.故选:B .10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024【答案】D【分析】根据前面图案中三角形的个数,找出规律,即可求解. 【详解】解:第1个图案有2个三角形,即12个; 第2个图案有4个三角形,即22个; 第3个图案有8个二角形,即32个; 第4个图案有16个三角形,即42个; 则第n 个图案有2n 个三角形,只有D 选项,当21024n =时,10n =符合题意,其余选项n 都不符合题意, 故选:D二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 【答案】12024【分析】本题考查了相反数,熟练掌握相反数的概念:“只有符号不同的两个数叫做互为相反数”,是解题的关键. 【详解】解:12024−的相反数是12024. 故答案为:12024. 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg . 【答案】0.4【分析】本题主要考查正负数的意义,有理数的加减混合运算,根据题意质量相差最多的是()250.2kg ±,再根据有理数的加减运算即可求解,解题的关键理解并掌握正负数的意义,进行有理数的混合运算.【详解】解:根据题可得,质量最少的是少了0.2kg ,质量最多的是多了0.2kg ,∴质量最多相差0.20.20.4(kg)+=, 故答案为:0.4.13 【答案】2−【分析】根据绝对值的意义进行化简即可求解. 【详解】解:2−−=2−, 故答案为:2−.14.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .【答案】25−【分析】本题考查了有理数的混合运算,根据操作步骤列出式子进行计算即可求解. 【详解】解:依题意,()()310529 −÷−×−−()289=×−− 169=−− 25=−故答案为:25−.15.比较两数大小: −76−【答案】>【分析】本题主要考查的是比较有理数的大小,依据两个负数比较大小,绝对值大的反而小比较即可; 【详解】解:∵6677−=,7766−=,6776<, ∴−>−6776, 故答案为:>.16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 【答案】 579−+− 负5加7减9【分析】本题主要考查了有理数的加减混合运算,熟练掌握有理数的加减法法则是解题的关键.利用有理数的减法法则和有理数的加法法则解答即可.【详解】()()()()()()579579579−−−−+=−+++−=−+−, 读作:负5加7减9;故答案为:579−+−;负5加7减9. 17.比2−小6的数是 . 【答案】8−【分析】本题考查了有理数的减法,理解题意,根据题意正确列出式子,进行计算即可. 【详解】解:比2−小6的数是268−−=−, 故答案为:8−.18.当||2,||4x y ==,且2x y +=−,则xy = . 【答案】8−【分析】根据绝对值先求出x ,y 的值,再根据2x y +=−得出符合条件的值,计算即可. 【详解】解:∵||2,||4x y ==, ∴2x =±,4y =±, ∵2x y +=−, ∴2,4x y ==−, ∴8xy =−, 故答案为:8−. 19.已知1xyz xyz =,则x zy x y z++值为 . 【答案】1−或3【分析】此题考查了绝对值,以及有理数的除法,熟练掌握运算法则是解本题的关键.根据已知等式得到||xyz xyz =,确定出x ,y ,z 中负因式有0个或2个,原式利用绝对值的代数意义化简即可得到结果. 【详解】解:由1||xyzxyz =,得到||xyz xyz =,x ∴,y ,z 中有0个或2个负数,当2个都为负数时,原式1111=−−+=−; 当0个为负数时,原式1113=++=.∴1x zy xy z++=−或3 故答案为:1−或320.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 . 【答案】202348【分析】根据题意列出算式进行计算即可. 【详解】解:根据题意可得:11112023111123448×−×−×−− ……12347202323448=××××……1202348× 202348=. 故答案为:202348. 三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−; (2)12433−÷−× ;(3)()()32211234−+×−+−;(4)()235363412−+×−. 【答案】(1)50− (2)38(3)6(4)12−【分析】(1)根据有理数的加法法则计算即可; (2)根据有理数的混合运算法则解答即可;(3)根据含有乘方的有理数的混合运算法则解答即可; (4)根据乘法运算律解答即可.本题考查了有理数的混合运算,运算律的应用,熟练掌握法则和预算律是解题的关键. 【详解】(1)解:()()43772743+−++− ()43277743=++−− ()70120=+−50=−.(2)解:12433−÷−×()2433=−×−×236=+ 38=.(3)解:()()32211234−+×−+−()11894=−+×−+129=−−+ 6=.(4)解:()235363412−+×−()()()2353636363412=×−−×−+×− 242715=−+−12=−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明. 【答案】(1)=,=,= (2)满足交换律,理由见解析【分析】本题考查有理数的混合运算,新定义,理解新定义是关键. (1)按照题中新定义的运算进行计算即可作出判断; (2)就一般情况根据新定义进行计算即可.【详解】(1)解:∵()424(2)4(2)10⊗−=×−−−−=−,()24(2)4(2)410−⊗=−×−−−=−; ∴()42(2)4⊗−=−⊗;∵()()53(5)(3)(5)(3)23−⊗−=−×−−−−−=,()()35(3)(5)(3)(5)23−⊗−=−×−−−−−=,∴(5)(3)(3)(5)-⊗-=-⨯-;∵1115557222 −⊗=−×−−−=− ,1115557222⊗−=×−−−−=− ; ∴115522 −⊗=⊗− ; 故答案:=,=,=(2)解:运算:“✞”满足交换律 理由如下:由新定义知:a b ab a b ⊗−−,b a ba b a ⊗−−, ∴a b b a ⊗=⊗,表明运算“✞”满足交换律.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.【答案】见解析,()11300.5133234<<−−<+−<−<−−【分析】本题考查了有理数的大小比较,解题的关键是先将所给各数化简,在数轴上表示出各数,再根 【详解】解:()33110.50.5,,334433−−=−−=−+−=− . 画出数轴并在数轴上表示出各数如图:根据数轴的特点从左到右用“<”把各数连接起来为: ()1313300.51342+−<−<−−<<−−<24.(本题8分)如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少?A : ;B : ;C : .(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 . (3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等? 【答案】(1)6−、1、4 (2)7;10(3)点B 向左移动2个单位【分析】本题考查了是数轴,运用数轴上点的移动和数的大小变化规律是左减右加是解答此题的关键. (1)本题可直接根据数轴观察出A 、B 、C 三点所对应的数; (2)根据数轴的几何意义,根据图示直接回答;(3)由于10AC =,则点B 到点A 和点C 的距离都是5,此时将点B 向左移动2个单位即可. 【详解】(1)解:根据图示可知:A 、B 、C 这三个点表示的数各是6−、1、4, 故答案为:6−;1;4.(2)解:根据图示知:AB 的距离是()167−−=;AC 的距离是6410−−=, 故答案为:7;10;(3)解:∵A 、C 的距离是10, ∴点B 到点A 和点C 的距离都是5,∴应将点B 向左移动2B 表示的数为1−,5ABBC ==. 25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元? 【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米 (2)800915:~:汽车共耗油21.2升(3)沈师傅在上午800915:~:一共收入156元【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面; (2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【详解】(1)解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5++−+++−+++++−+−++++=, ∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米; (2)解:|8||6||3||6||8||4||8||4||3||3|+−+++−+++++−+−++++8636848433=+++++++++ 53=,∴0.45321.2×=(升),∴800915:~:汽车共耗油21.2升. (3)解:∵共营运十批乘客, ∴起步费为:1110110×=(元), 超过3千米的收费总额为:[](83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246−+−+−+−+−+−+−+−+−+−×=(元),∴11046156+=(元),∴沈师傅在上午800915:~:一共收入156元 26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−× .【答案】(1)11111565630−×=−+=− (2)()11111111n n n n n n −×=−+=−+++ (3)20222023−【分析】本题考查了有理数的乘法运算,(1)根据题干,模仿写出第5个等式,即可作答;(2)由(1)以及题干条件,即得第n 个等式:()11111111n n n n n n −×=−+=−+++;(3) 由(2)的结论,先化简再运算,即可作答,掌握第n 个等式:()11111111n n n n n n −×=−+=−+++是解题的关键. 【详解】(1)解:依题意,第5个等式: 11111305656−×=−+=−; (2)解:第1个等式:11111222−×=−+=−; 第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−; 第4个等式:11111454520−×=−+=−; 第5个等式:11111565630−×=−+=−; ……故第n 个等式:()11111111n n n n n n −×=−+=−+++; (3)解:由(2)知第n ()11111111n n n n n n −×=−+=−+++;则111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×111111112233420222023=−++−++−++⋅⋅⋅⋅⋅⋅+−+111111112022202322334=−+−+−++⋅⋅⋅⋅⋅⋅−+112023=−+ 20222023=−27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×= . 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−【答案】(1)没有除法分配律,故解法一错误; (2)过程见解析,114−.【分析】本题考查了有理数的除法乘法分配律; (1)根据有理数的运算法则进行判断,可得答案;(2)根据有理数的运算顺序,计算原式的倒数,和按照先计算括号内的,最后计算除法,两种方法求解,即可得出答案.【详解】(1)解:没有除法分配律,故解法一错误; (2)解法一:原式的倒数为: 132216143742 −+−÷− , ()132********=−+−×−()()()()13224242424261437=×−−×−+×−−×− 14=−;所以原式114=−; 解法二:原式=17928124242424242 −÷−+−17928124242−+− =−÷1424214=−×114=−. 28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472 −−÷−×− ④⑥⑧. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)1149− 【分析】(1)根据题意,计算出所求式子的值即可;(2(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10a a a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确;B .因为()10a a a a a a=÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .圈n 次方等于它本身的数是1或1−,说法错误,()11−=②;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ,故答案为:21n a −; (4)解:()2114172 −−÷−×− ④⑥⑧ ()()()()711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−8个16个 41119647=−−÷×1149=−−4950=−.。
人教版初中数学7-9年级第一单元重点知识整理七年级上册第一章有理数一.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a (bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。