计算流体力学常用数值方法简介[1]
- 格式:pdf
- 大小:118.44 KB
- 文档页数:4
计算流体力学常用数值方法简介李志印 熊小辉 吴家鸣(华南理工大学交通学院)关键词 计算流体力学 数值计算一 前 言任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。
利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。
计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。
一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。
随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。
经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。
现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。
此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。
随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。
目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。
计算流体力学有限差分法流体力学有限差分法(Finite Difference Method,FDM)是一种常用的计算流体力学的方法。
它是基于流体力学基本方程对系统求解压力、速度和位置变化的一种近似数值方法,这些方程可以使用有限差分法求解得到准确结果。
一、流体力学有限差分法的概念1、端点条件:端点条件是差分方程组确定变量的边界条件,主要有边界条件和内部条件。
2、场变量定义:流动的物质可以用速度、压力和密度来描述,这种变量称为场变量。
3、有限差分法:有限差分法试图使描述精度在最小情况下得到一个可以接受的结果。
它将待求解区域划分为若干个小块,并且计算每一个小块上的变量。
4、边界条件:边界条件是用来描述物理事件发生的时候的物理量,如压力、流动量等。
二、流体力学有限差分法的基本步骤1、数学模型:开发有限差分方程,用来描述流体力学问题,这种模型可以由流体力学的基本方程得到。
2、网格划分:将区域网格划分成更小的网格,为了更准确的解决流体力学问题。
3、空间离散:将每一个网格按照有限差分公式空间离散,获得离散的压力方程式。
4、时间离散:在解决大规模动态流体力学问题时,通过一个更小的时间步骤进行求解。
5、求解:用适当的方法和算法求解有限差分方程式,获得求解结果。
三、流体力学有限差分法的优势1、高精度:使用此法,可以获得较高数值精度,从而准确描述流体力学过程。
2、计算效率:该方法可以快速找出有效的解决方案,并且计算效率更高。
3、计算能力:此方法可以处理复杂的物理问题,而且没有太多的硬件限制。
4、收敛性:当求解复杂的物理问题时,有限差分法不太容易出现"收敛"的情况。
5、可靠性:此方法可以快速、准确的求解出可靠的结果,相对于其他求解方法,其精度更高。
四、总结流体力学有限差分法是一种常用的计算流体力学的方法。
它易于实施,并且可以获得较高数值精度,从而准确描述流体力学过程。
处理复杂的物理问题时,它可以提供较快、较准确的结果,更能可靠性和可靠性更好。
计算流体力学常用数值方法简介
李志印;熊小辉;吴家鸣
【期刊名称】《广东造船》
【年(卷),期】2004(000)003
【摘要】@@ 一前言rn任何流体运动的动力学特征都是由质量守恒、动量守恒
和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述.利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学.
【总页数】4页(P5-8)
【作者】李志印;熊小辉;吴家鸣
【作者单位】华南理工大学交通学院;华南理工大学交通学院;华南理工大学交通学院
【正文语种】中文
【相关文献】
1.基于计算流体力学的温室数值模拟分析 [J], 王应毅;张续;邓鑫;BingXin Wu
2.基于计算流体力学-离散单元法耦合的粗糙壁面颗粒趋壁沉积过程的数值模拟 [J], 刘岩;秦攀;洪文鹏
3.计算流体力学数值计算在化工原理实践课程教学中的应用 [J], 朱奎松;赵英涛;曹丽;王军
4.计算流体力学的几种常用软件 [J], 方坤
5.基于计算流体力学数值模拟的板式热交换器传热与流动分析 [J], 姚立影;马金伟;马一鸣;陈晶;高杰;张向南
因版权原因,仅展示原文概要,查看原文内容请购买。
有限容积法和有限体积法有限容积法和有限体积法是计算流体力学中常用的两种数值方法,它们在流体动力学的数值计算中占有非常重要的地位。
本文将从概念、原理、特点、应用等方面,对这两种方法进行详细介绍。
一、有限容积法1.概念有限容积法(Finite Volume Method,FVM)是一种离散化的数值方法,它将连续的物理量离散化为有限个体积元,在每个体积元内计算其平均值,进而求解整个流体系统的物理量。
FVM方法的核心是质量守恒原理,即物质的进出必须平衡,这种保证了物理量在每个体积元内的守恒关系,从而保证了数值计算的准确性。
2.原理FVM方法的数值计算是基于网格的,它将流体动力学问题离散化为一个由有限体积元组成的系统,将原问题转化为流量守恒方程的求解,即$$\frac{\Delta m}{\Delta t}=\Sigma_{faces}\rho uA$$其中,$\Delta m$是在$\Delta t$时间内通过一个表面的质量变化量,$\rho$是介质的密度,$u$是速度,$A$是面积。
对于每个有限体积元,上式可以写为其中,$F_{ij}^p$和$F_{ij}^n$分别是流向有限体积元内部和外部的通量,$i,j$是有限体积元的编号。
3.特点(1)FVM方法基于质量守恒原理,具有非常强的数值稳定性和保真性;(2)FVM方法的计算结果具有局部守恒性,能够准确反映流场内部的物理现象;(3)FVM方法可以处理非结构化网格,适用范围广泛;(4)FVM方法求解的是面积分,所需的时间和空间存储相对较少。
4.应用(1)流体力学领域,如空气动力学、水力学、燃烧问题等;(2)材料科学领域,如薄膜生长、材料变形等。
有限体积法(Finite Element Method,FEM)是一种离散化的数值方法,它将求解的物理场离散化为有限个单元,然后在每个单元内进行近似计算。
相比于FVM方法,FEM方法更加精确,适用于需要高精度计算的问题。
一、实验目的1. 了解计算流体力学的基本原理和方法;2. 掌握计算流体力学软件的使用方法;3. 通过实验验证计算流体力学在工程中的应用。
二、实验原理计算流体力学(Computational Fluid Dynamics,简称CFD)是一种利用数值方法求解流体运动和传热问题的学科。
其基本原理是利用数值方法将连续的物理问题离散化,将其转化为求解偏微分方程组的问题。
在计算流体力学中,常用的数值方法有有限差分法、有限元法和有限体积法。
本实验采用有限体积法进行流体运动的数值模拟。
有限体积法将计算区域划分为若干个控制体,在每个控制体上应用守恒定律,将连续的偏微分方程转化为离散的代数方程组。
通过求解这些代数方程组,可以得到流体在各个控制体内的速度、压力和温度等参数。
三、实验内容1. 实验一:二维不可压缩流体的稳态流动模拟(1)实验目的:通过模拟二维不可压缩流体的稳态流动,验证计算流体力学在流体运动模拟中的应用。
(2)实验步骤:① 建立二维流场模型,包括进口、出口、壁面和障碍物等;② 划分计算区域,选择合适的网格划分方法;③ 设置边界条件和初始条件;④ 选择合适的数值方法和湍流模型;⑤ 运行计算流体力学软件,得到流场参数;⑥ 分析结果,绘制流线图、速度矢量图等。
(3)实验结果与分析:通过模拟二维不可压缩流体的稳态流动,得到流场参数,并绘制流线图、速度矢量图等。
根据实验结果,可以分析流场特征,验证计算流体力学在流体运动模拟中的应用。
2. 实验二:三维不可压缩流体的瞬态流动模拟(1)实验目的:通过模拟三维不可压缩流体的瞬态流动,验证计算流体力学在流体运动模拟中的应用。
(2)实验步骤:① 建立三维流场模型,包括进口、出口、壁面和障碍物等;② 划分计算区域,选择合适的网格划分方法;③ 设置边界条件和初始条件;④ 选择合适的数值方法和湍流模型;⑤ 运行计算流体力学软件,得到流场参数;⑥ 分析结果,绘制流线图、速度矢量图等。
计算流体力学-离散单元法计算流体力学-离散单元法(Computational Fluid Dynamics - Discrete Element Method)是一种用于解决离散流体力学问题的数值方法。
它是以构造有限元模型为基础的,将流体物理过程划分为若干节点或小单元,以及小单元之间的相互作用,从而计算出流体的局部分布和运动情况。
因为离散元法采用有限元技术,模型计算出来的数据不受场地尺寸、复杂曲面及网格影响,可以计算复杂场景。
离散元法以描述每个小单元的力作为基础,而不是以一维、二维和三维网格结构为基础;每一个单元都只能表示某个区域或某个物体表面上的一小部分。
因此,离散元可以有效地描述曲面结构,并在表面上提供更精细的计算。
离散元法还使用了一种新的“动态颗粒”的概念,用以描述流体的运动情况。
这意味着,即使在实时环境中,也可以以更高的精度模拟流体性能,而不会遭受时间延迟和数据损失的影响。
此外,离散元法能够很好地模拟流体运动的连续性,因为它能够精确地描述每个细胞的力学行为,包括粘度、密度和压力的变化等,从而构建出一个连续的流体物理模型。
离散元法也有其局限性,如:1. 由于它是基于有限单元的,这意味着一些复杂的流场的表示可能不够精确;2. 对于较大的场地尺寸,模型中的单元会非常多,因此计算量会很大,需要占用较多的计算资源;3. 由于它模拟连续物理模型,它计算出来的结果可能过度准确,可能会影响到模型的表现,因此需要进行参数调整来获得合适的结果。
总而言之,计算流体力学-离散单元法是一种十分常用的数值分析方法,它由于采用有限元技术,模型计算出来的数据不受场地尺寸、复杂曲面及网格影响,可以计算复杂场景,故用于流体力学分析中非常有用。
计算流体力学常用数值方法简介李志印 熊小辉 吴家鸣(华南理工大学交通学院)关键词 计算流体力学 数值计算一 前 言任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。
利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。
计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。
一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。
随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。
经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。
现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。
此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。
随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。
目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。
二 计算流体力学常用数值方法流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。
总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区域,在其中设置有限个离散点(称为节点),将求解区域中的连续函数离散为这些节点上的函数值;通过某种数学原理,将作为控制方程的偏微分方程转化为联系节点上待求函数值之间关系的代数方程(离散方程),求解所建立起来的代表方程以获得求解函数的节点值。
不同的数值方法,其主要区别在于求解区域的离散方式和控制方程的离散方式上。
在流体力学数值方法中,应用比较广泛的是有限差分法、有限元法、边界元法、有限体积法和有限分析法,现简述如下。
1 有限差分法这是最早采用的数值方法,它是将求解区域划分为矩形或正交曲线网格,在网格线交点(即节点)上,将控制方程中的每一个微商用差商来代替,从而将连续函数的微分方程离散为网格节点上定义的差分方程,每个方程中包含了本节点及其附近一些节点上的待求函数值,通过求解这些代数方程就可获得所需的数值解。
有限差分法的优点是它建立在经典的数学逼近理论的基础上,容易为人们理解和接受;有限差分法的主要缺点是对于复杂流体区域的边界形状处理不方便,处理得不好将影响计算精度。
2 有限元法有限元法的基本原理是把适定的微分问题的解域进行离散化,将其剖分成相连结又互不重叠的具有一定规则几何形状的有限个子区域(如:在二维问题中可以划分为三角形或四边形;在三维问题中可以划分为四面体或六面体等),这些子区域称之为单元,单元之间以节点相联结。
函数值被定义在节点上,在单元中选择基函数(又称插值函数),以节点函数值与基函数的乘积的线性组合成单元的近似解来逼近单元中的真解。
利用古典变分方法(里兹法或伽辽金法)由单元分析建立单元的有限元方程,然后组合成总体有限元方程,考虑边界条件后进而求解。
由于单元的几何形状是规则的,因此在单元上构造基函数可以遵循相同的法则,每个单元的有限元方程都具有相同的形式,可以用标准化的格式表示,其求解步骤也就变得很规范,即使是求解域剖分各单元的尺寸大小不一样,其求解步骤也不用改变,这就为利用计算机编制通用程序进行求解带来了方便。
有限元法的主要优点是对于求解区域的单元剖分没有特别的限制,因此特别适合处理具有复杂边界流场的区域。
3 边界元法边界元法是在经典积分方程和有限元法基础上发展起来的求解微分方程的数值方法,其基本思想是:将微分方程相应的基本解作为权函数,应用加权余量法并应用格林函数导出联系解域中待求函数值与边界上的函数值与法向导数值之间关系的积分方程;令积分方程在边界上成立,获得边界积分方程,该方程表述了函数值和法向导数值在边界上的积分关系,而在这些边界值中,一部份是在边界条件中给定的,另一部份是待求的未知量,边界元法就是以边界积分方程作为求解的出发点,求出边界上的未知量;在所导出的边界积分方程基础上利用有限元的离散化思想,把边界离散化,建立边界元代数方程组,求解后可获得边界上全部节点的函数值和法向导数值;将全部边界值代入积分方程中,即可获得内点函数值的计算表达式,它可以表示成边界节点值的线性组合。
边界元法的优点是:(1)将全解域的计算化为解域边界上的计算,使求解问题的维数降低了一维,减少了计算工作量;(2)能够方便地处理无界区域问题。
例如对于势流等的无限区域问题,使用边界元法求解时由于基本解满足无穷远处边界条件,在无穷远处边界上的积分恒等于零。
因此对于无限区域问题,例如具有无穷远边界的势流问题,无需确定外边界,只需在内边界上进行离散即可;(3)边界元法的精度一般高于有限元法。
边界元法的主要缺点是边界元方程组的系数矩阵是不对称的满阵,该方法目前只适用于线性问题。
4 有限体积法有限体积法又称为控制体积法,其导出离散方程的基本思路是:(1)将计算区域划分为一系列不重复的控制体积,每一个控制体积都有一个节点作代表,将待求的守恒型微分方程在任一控制体积及一定时间间隔内对空间与时间作积分;(2)对待求函数及其导数对时间及空间的变化型线或插值方式作出假设;(3)对步骤1中各项按选定的型线作出积分并整理成一组关于节点上未知量的离散方程。
有限体积法着重从物理观点来构造离散方程,每一个离散方程都是有限大小体积上某种物理量守恒的表示式,推导过程物理概念清晰,离散方程系数具有一定的物理意义,并可保证离散方程具有守恒特性,这是有限体积法的主要优点。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间物,该方法的主要缺点是不便对离散方程进行数学特性分析。
5 有限分析法有限分析法在某种意义上说是在有限元法基础上发展起来的一种数值方法,其基本思想是:将求解区域划分成矩形网格,网格线的交点为计算节点,每个节点与相邻的四个网格组成一个计算单元,即一个计算单元由一个中心节点与8个相邻节点组成;在每个单元中函数的近似解不是象有限元方法那样采用单元基函数的线性组合来表达,而是以单元中未知函数的分析解来表达;为了获得单元中的分析解,单元边界条件采用插值函数来逼近,在单元中把控制方程中非线性项局部线性化(如N-S方程中的对流项中认为其流速为已知,并对单元中待求函数的组合形式作出假设,找出其系数用单元边界节点上待求函数值表达的分析解;利用单元分析解确定单元中心节点与8个相邻节点间待求函数值之间关系的一个代数方程,称为单元有限分析方程;将所有内点上的单元有限分析方程联立,就构成总体有限分析方程,通过代数方程组求解,即可获得求解区域中全部离散点的函数值。
虽然有限分析解获得的是求解区域中离散点的函数值,但是由于每个单元内部都有与其中心节点对应的分析解表达式,因此有限分析解在每一个节点的局部区域内都是连续可微的,这对于需要计算求解函数导数的计算流体力学问题具有明显的优势。
该计算方法与有限元、有限差分法比较具有较高的精度。
此外,有限分析法具有自动迎风特性,能准确地模拟对流项,同时不存在数值振荡失真问题。
有限分析法的缺点是对复杂形状的求解区域适应性较差。
三 计算流体力学主要通用商业软件简介计算流体力学商业软件最早出现于上世纪八十年代初,目前已经在工业和研究领域发挥积极的作用。
这些软件的使用减少了计算流体力学研究和开发人员的工作量,降低了其对计算机知识的要求,从而使研究者可以把精力集中在对计算流体力学本质问题的研究和技术开发上。
计算流体力学软件一般包括三个主要部份:前处理模块、解算模块和后处理模块。
现在世界上有数十种计算流体力学商业软件,各种软件的应用范围各不相同,它们又有通用软件和专用软件之分,而且各种软牛都在不断地发展变化中。
在此,仅就知名度较高的几个大型通用商业软件作一概略介绍。
1 CFX软件CFX软件的前身为CCFDS-FLOW3D,是由Computational Fluid Dynamics Services, AEA Technology于1991年推出的,后改名为CFX。
CFX采用的数值方法是有限体积法,可以进行结构化正交网格、不规则分块网格和非正交曲线坐标网格划分。
另外,CFX还能处理滑移网格划分功能,利用它可以模拟运动物体的边界条件,如可以模拟动力机械转动的叶片周围流动情况。
使用CFX可以进行包括流体流动、传热、辐射、多相流、化学反应、燃烧等许多工程实际问题的模拟。
CFX具有很强的网格生成和图像后处理功能,使得问题的定义、求解直到最后的结果输出都非常直观方便。
2003年CFX加入ANSYS软件包,成为其中专门进行流体力学数值计算的一个模块。
2 FL U ET软件该软件由美国FL U EN T Inc.,1983年推出,采用的数值方法是有限体积法。
其前处理软件G AMBB IT可以生成多种网格形状,对于二维流动可以生成三角形和矩形网格,对于三维流动则可生成四面体、六面体、三角柱和金字塔网格,结合具体计算要求还可以生成混合网格,其自适应功能可以对网格进行细分和粗化。
FL EN T通过CO KTEX图形后处理软件,可以得到二维和三维图像,如速度矢量图、等值线图(流线图、等压线图)、等值面图等。
它还可以通过其积分功能求得力和流量等数值。
FL U EN T可以计算的物理类型有定常与非定常流动、不可压缩与可压缩流动、多相流动、燃烧过程、化学反应等。
3 PHOEN ICS软件PHOENlCS软件是英国CHAM公司的主要产品,它于1981年首次公开发行,是世界上投放市场的计算流体力学领域大型通用商业软件,也是较早在全世界各大学、研究所以及工业界得到广泛应用的计算流体力学商业软件。
与CFX和FL U EN T一样,该软件采用有限体积法来实现控制方程离散化,它可以模拟单相流和多相流的流体流动、传热传质、化工反应和燃烧等现象。