数学《数列极限》讲义
- 格式:doc
- 大小:1.15 MB
- 文档页数:23
第二章数列极限1. 教学框架与内容教学目标①掌握数列极限概念,学会证明数列极限的基本方法.②掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限.③掌握单调有界定理;理解柯西收敛准则.教学内容①数列极限的分析定义,数列发散、单调、有界和无穷小数列等有关概念与几何意义;利用放缩法证明数列收敛或发散.②数列极限性质(唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则)的证明与应用,数列的子列及有关子列收敛的定理.③单调有界定理的证明及应用;柯西收敛准则,用柯西收敛准则判别数列的敛散性.2. 重点和难点①数列极限的Nε-语言,数列极限证明中N的存在性.②数列极限性质的分析证明, 数列极限性质的应用.③数列单调有界定理的证明和应用,利用柯西收敛准则判别数列的敛散性.3. 研究性学习选题● 数列极限证明的技巧将书后习题分类,首先自己总结数列极限证明的技巧,然后进行小组交流和讨论.● 如何利用单调有界原理求迭代数列的极限课后自己总结单调有界原理求极限的方法与步骤,选用经典习题小组讨论,进行讲解并评分.4. 综合性选题,尝试写小论文:★不等式技巧在数列极限证明中的应用.★数列极限存在的常用结论.5. 评价方法◎课后作业,计20分.◎研究性学习选题计30分.◎小论文计20分.◎小测验计30分§1数列极限概念一、数列若函数f 的定义域为全体正整数集合Z +(或N ),则称:f N R → 或()f n n N ∈为数列. 通常记为()n a f n =.或 12,,,,n a a a ⋅⋅⋅⋅⋅⋅ .数列表示法:通项、递推公式、1{}n n a ∞=或0{}n n a ∞=.特殊数列:常数数列、单调数列、有界数列、等比数列、等差数列. 二、数列极限------反映变量在某个变化过程中的变化趋势 [作图]1{}n、(1){}n n -、 {}n 、{(1)}n -、 {(1)}n n - 变化趋势: 1) 有一定的变化趋势; 无限接近于某数a ----收敛;震荡、无限增大、无限减小----定向发散;2) 无一定变化趋势----不定向发散.数列{}n a 收敛于a ,||0n a a -→(n a 与a 的距离越来越接近). 1、定义下面我们首先给出数列收敛及其极限的精确定义.定义1 ()N ε- 设{}n a 为数列, a 为一定数, 若对任给的正数0ε>,总存在 正整数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ,而a 称为{}n a 的极限. 记作 lim n n a a →∞= 或 n a a →(n →∞).若数列{}n a 没有极限,则称{}n a 不收敛或发散, 也称{}n a 为发散数列.例1验证下列极限:1) 1lim 0n n →∞=;2) 1lim 02n n →∞=;3) lim 0n n q →∞=, ||1q <;4) 223lim 33n n n →∞=-.注1 ε的任意性.ε的作用在于刻画数列{}n a 与定数a 之间的接近程度.ε越小表示接近度越好,而正数ε—可任意小说明n a 与a 可以无限接近,ε虽具有任意性, 但一经给出,就可看作暂时固定的数,并由此确定N ,从而N 与ε有关系. 同时,ε主要用于刻画n a 与a 的逼近程度,因而n a a ε-<中的ε可用22εε,2,εk ε(0k >常数)等代替,同时n a a ε-<可改写成n a a ε-≤.注 2 N 的相应性. 前面说过N 与ε有关,可记作()N ε但并不意味着N 由ε唯一确定. 这里我们主要强调N 的存在性(一般来说,ε愈小,相应的N 越大),同时n N ≥时(对大于N 的任一n )有n a a ε-<.如对11,1000n a n ε==,相应的1001, 1002N =都可.例2 1) 0n →∞=;2) 1(1)n a =>;3) 1n =;4) 2lim 04n n n →∞=.思考 考虑1n =, 3lim 04n n n →∞=?2、几何意义 当n N >时,n a a ε-<d⇔所有下标大于N 的项n a 都落在a 的 邻域(,)U a ε内,而在(,)U a ε之外,数列{}n a 至多只有有限项(至多N 项). 定义1’任给0ε>,若在(,)U a ε之外{}n a 至多只有有限项,则称{}n a 收敛于a . 例3 改变或去掉数列的有限项,不改变数列的敛散性.例4 设n a a →,则n k a a +→. 这里k 为某固定的正整数.例5 设lim lim n n n n x y a →∞→∞==, 作数列{}n z 1122,,,,,,,n n x y x y x y ⋅⋅⋅⋅⋅⋅验证: lim n n z a →∞=. 思考 用N ε-定义如何证明?3、收敛的否定n a a →0, , ||dn N n N a a εε⇔∀>∃∀>-<:;0, (,)U a εε⇔∀>之外至多有{}n a 的有限项.n a →a 00000,, ||n N n N a a εε⇔∃>∀∃>-≥:; ⇔存在某00ε>,使数列{}n a 有无穷多项落在邻域0(,)U a ε之外.{}n a 收敛, 0, , ||n a R N n N a a εε⇔∃∈∀>∃∀>-<:. {}n a 发散0000, 0, , ||n a R N n N a a εε⇔∀∈∃>∀∃>-≥:.例6 验证 1) lim 01n nn →∞≠+;2) 2{}, {}n n (-1)为发散数列.4、N ε-定义的一些等价形式(变形)1D :20,, , (n N n N a a k εεε∀>∃≥-<:或. (k 为常数)2D :0(),, n c N n N a a εεε∀><∃>-<:. 3D :0,, n N n N a a εε∀>∃>-<有理数:. 4D :1,, n m N N n N a a m∀∈∃>-<:. 5、无穷小数列定义 若lim 0n n a →∞=,则称{}n a 为无穷小数列.定理 n a a →{}n a a ⇔-为无穷小数列.注 3 ||00n n a a →⇔→.例7 证明: 若lim n n a a →∞=,则lim ||||n n a a →∞=. 但反之未必成立,即||||n a a →⇒n a a →.习 题1. 用N -ε定义验证1) lim 12n nn →∞=+; 2) 2233lim 212n n n n →∞-=+;3) !lim 0n n n n →∞=; 4) limsin 0n nπ→∞=;5) lim cos1n nπ→∞=; 6) lim02nn n→∞=;2. 指出下列数列哪些是无穷小数列.; ; 11n ⎧⎫+⎨⎬⎩⎭; 32n n ⎧⎫⎨⎬⎩⎭; {}n n q α(,||1)R q α∈<.3. 证明:若a a n n =∞→lim ,则对任一正整数k , 有a a k n n =+∞→lim .4. 试用定义1'证明:1) 数列}1{n不以1为极限; 2) 数列}{)1(n n -发散.§2 收敛数列的性质一、收敛数列的性质1、唯一性 若数列{}n a 收敛,则它只有一个极限.2、有界性 若数列{}n a 收敛,则{}n a 为有界数列. 即0, , n M n N a M ∃>∀∈≤使得. (画图分析) 推论 无界数列必发散.注 1 有界数列未必是收敛的(定理2.3的逆未必成立).3、保号性 若lim 0 (0)n n a a →∞=><或,则对任何(0,)r a ∈(,0))a ∈(或r , 存在N ,使得n N >时,0 0n n a r a r >><<(或).推论 若lim 0n n a a →∞=>,则存在N ,n N >时,0n a > (保符号).若lim 0n n a a →∞=≠,则存在N ,n N >时,||||02n a a >>. 注 2 由lim 0n n a →∞≥不能推出 , , 0n N n N a ∃>≥.4、保不等式性 设{}n a 和{}n b 为收敛数列,若存在,,N n N >使得时n n a b ≤,则lim lim n n n n a b →∞→∞≤. [直接证明或反证法]定理 设lim , lim , n n n n a a b b a b →∞→∞==>, 则存在N ,n N >时,n n a b >.注 3 在定理2.5中,不等式若为n n a b <, 则不能推出a b <.例1 设0, 1,2,n a n ≥=⋅⋅⋅. 若n a a →.5、迫敛性 若数列{}n a 、{}n b 和{}n c 满足n n n a c b ≤≤,n N ∀∈,, n n a a b a →→, 则n c a →.注 4 用得较多的是0, 0 0n n n n c b b c ≤≤→⇒→.例2 1) 1lim sin 0n n n →∞=2) lim 3n →∞= .... 一般形式?思考 上述定理中若{},{}n n a b 均发散, 能否推出{}n c 发散? 6、四则运算定理 若, n n a a b b →→,则1) n n a b a b +→+, 2) n n a b a b ⋅→⋅,3) 若还有0,0n b b ≠≠,则n n a ab b→.思考 若{},{}n n a b 均发散或其中之一发散, 上述结论又如何?例3 求 11101110lim , , 0, 0m m m m m k k k n k k a n a n a n a m k a b b n b n b n b ---→∞-++⋅⋅⋅++≤≠≠++⋅⋅⋅++.例4 求 lim 1nn n a a →∞+ (1a ≠-).例5 求 1) (31)(5)lim (12)(25)n n n n n →∞++-+;2) 268n ;3) n .例6 求1) 21)sin(21)n n →∞+;2) 1lim nn i →∞=;3)1)21n n →∞⋅⋅⋅++.二、子列的收敛性定义(子列) 设{}n a 为一数列,{}k n N ⊂为无限子集,且12k n n n <<⋅⋅⋅<<⋅⋅⋅, 则数列 12,,,,k n n n a a a ⋅⋅⋅⋅⋅⋅, 称为数列{}n a 的一个子列,记作{}k n a .注 5 {}k n a 选自{}n a 中且保持{}n a 中的顺序不变, 注意k n a 为{}k n a 中的第k 项, 是{}n a 的第k n 项,故k n k ≥. 注意子列的子列仍为子列. 例 7 数列{(1)}n -,奇子列21{}k a +与偶子列2{}k a .注 6 平凡子列是指数列{}n a 本身或者去掉有限项得到的数列,易见平凡子列与 数列{}n a 本身的性质(态)完全一样.定理 数列{}n a 收敛⇔{}n a 的任一子列(非平凡子列)均收敛.⇔{}n a 的任一子列(非平凡子列)均收敛于同一个数.注 7 我们通常用上述定理来证明数列{}n a 不收敛,只需找到某个发散子列或某两个子列收敛但极限不同. 如{(1)}n -. 三、利用上述性质讨论极限*例8 证明: 数列2(1){}31n n nn +-⋅+发散.例9 1) 22231lim(12...)n n n→∞+++; 2) n ;3) n 11lim ()n nn n n a b a b a b++→∞+≠-+.例10 1) 1321lim 242n n n →∞-⋅⋅⋅⋅⋅⋅; 2) lim[(1)]n n n αα→∞+- 01α<<;3) 22lim(1)(1)(1)nn ααα→∞++⋅⋅⋅+ 1α<.例11 设1,...,m a a 为m个正数,则1max{,,}m n a a =⋅⋅⋅.例12 设lim nn na b →∞存在,则若0n b →,必有0n a →.例13 若1||||n n a q a +≤,01q <<,则lim 0n n a →∞=.例14 若0n a >,1lim1nn n a L a →∞+=>,则lim 0n n a →∞=, 并利用其求2lim 4n n n →∞, 3lim n n n q →∞以及213lim 22n →∞+ 212n n -+⋅⋅⋅+. 一般常用结论: 若1lim ||1n n na l a +→∞=<, 则lim 0n n a →∞=.习题1. 求下列数列的极限1) limn→∞(n2) limn→∞3) limn→∞(1n4) limn→∞11(2)3(2)3n nn n++-+-+5) limn→∞212232n nnn++++6) limn→∞12()22n nn+++-+7)limn→∞8) limn→∞11(1)nkk k=+∑2. 设{}n a为无穷小数列, {}n b为有界数列, 证明: {}n na b⋅为无穷小数列.3. 求下列极限1)122lim(2sin cos)nnn n→+∞+2)1lim(arctan)nnn→+∞3) 11lim(1)n n n→∞- 4) 22)nn →∞⋅5) 1!2!!lim!n n n →∞+++ 6) 1321lim 242n n n→∞-⋅⋅⋅4. 说明下列数列发散1) (1)1nn n ⎧⎫-⎨⎬+⎩⎭ 2) {}(1)n n- 3) sin 4n π⎧⎫⎨⎬⎩⎭5. 证明: 若0>n a , 且1lim 1>=+∞→l a a n nn , 则.0lim =∞→n n a6.设a a n n =∞→lim , 证明:1) a nna n n =∞→][lim;2) 若0,0>>n a a , 则1lim =∞→n n n a .§3 数列极限存在条件考察数列极限问题,首先应考察其极限是否存在 (极限存在性问题), 若极限存在,则应考虑如何求极限值(极限的计算问题). 一、单调有界原理 (充分条件)定理 (单调有界定理) 有界的单调数列必有极限.[上(下)有界的单调递增(递减)数列必有极限且极限为其上(下)确界] 例1 设111123n a nααα=+++⋅⋅⋅+, (2)α≥, 证明: {}n a 收敛.例2 设12,n a a a ==⋅⋅⋅=n 重根号), 证明:{}n a 单调有界, 并求其极限.注 1 在具递推关系式的数列{}n a 中,如1()n n a f a +=,若要求其极限,则我们可首先假定极限存在设为a ,则有()a f a =.由此方程解出a (此值一般即为极限), 其次一方面可考察n a a -(考虑用N ε-定义);另一方面,可考察是否有n a a ≤ (或n a a ≥)? 若n a a ≤,则一般证n a 递增(如n a a ≥,则证n a 递减),此时应考察1n n a a +-的符号(或1n na a +与“1”的大小关系).例3 设1, 0a x >,11()2n n nax x x +=+,n N ∈, 求证: {}n x 收敛,并求其极限.例4 证明: 极限1lim (1)n n n→+∞+存在,并利用其来求下列极限1) 1lim (1)n k n n +→+∞+ 2) 31lim (1)2n n n →+∞+3) 1lim (1)n n n -→+∞- 4) 1lim (1)n n n →-∞+5) 3lim ()2n n n n →+∞++ 6) 31lim (1)2n n n→+∞-.二、Cauchy 准则定义 (Cauchy 列) 如果数列{}n a 满足:0,,,:m n N m n N a a εε∀>∃>-<,则称 数列{}n a 为Cauchy 列或基本列.注 2 {}n a 为Cauchy 列0,,,:dn p n N n N p N a a εε+⇔∀>∃∀>∀∈-<. 定理 (Cauchy 准则) {}n a 收敛⇔{}n a 为Cauchy 列.注 3 Cauchy 准则方便之处在于无需知道具体极限值的情况下,就可以直接 判断{}n a 是否收敛.例6 利用Cauchy 准则证明:{}n a 收敛, 其中22211112n a n =++⋅⋅⋅+.例7 利用Cauchy 准则叙述{}n a 发散的条件, 并证明1112n a n =++⋅⋅⋅+发散.例8 利用Cauchy 准则证明limsin n n →∞不存在.三、邻域的语言*a R ∈,a 的邻域,(,)U a a εε=-+; ∞的邻域,(,)M -∞-⋃(,)M +∞,0M ∀>+∞的邻域, (,)M +∞,0M ∀> -∞的邻域,(,)M -∞-,0M ∀>lim n n a a →∞=0,,:n N n N a a εε⇔∀>∃>-<.⇔对a 的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=+∞0,,:n M N N n N a M ⇔∀>∃∈>>.⇔对+∞的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=-∞⇔……记*{,}R R =⋃-∞+∞,*a R ∈.*lim n n a a R →∞=∈⇔对a 的任一邻域U ,存在+∞的邻域V ,:n n N V a U ∀∈⋂∈.习 题1. 证明}{n a 收敛,并求其极限,,其中11n a a +==1,2,n =.2. 设c a =1)0(>c , 11,2...n a n +==, 证明数列}{n a 极限存在并求其值.3. 求下列极限1) 1lim(1)nn n→∞-; 2) 21lim(1)n n n →∞+; 3) 241lim ()2n n n n +→+∞++.4. 证明: 若单调数列}{n a 含有一个收敛子列, 则}{n a 收敛.5. 证明: 若}{n a 为递增(递减)有界数列, 则{}{}).(inf sup lim n n n n a a a =∞→又问逆命题成立否?7. 应用Cauchy 准则证明{}n x 收敛,其中 1) 2sin1sin 2sin 222n n nx =++⋅⋅⋅+2) 0.90.090.0009n x =++⋅⋅⋅+⋅⋅⋅(n 个0)8. 利用Cauchy 准则叙述数列}{n a 发散的充要条件,并用它证明下列}{n a 发散:1) n a nn )1(-=; 2) 2sinπn a n =.习题课一、知识复习1、n a a →d⇔0,,:n N n N a a εε∀>∃>-< ⇔{}n a 的任一子列均收敛于a ⇔{}n a 的奇偶子列均收敛于a . n a a →⇔2、 {}n a 收敛 ⇔{}n a 的任一子列均收敛⇔{}n a 的任一子列均收敛并且收敛于同一个数.⇔0,,,:n m N m n N a a εε∀>∃>-<. {}n a 发散⇔3、单调有界数列必收敛 1lim(1)n n e n →∞+=.4、n a a →的几何意义.5、收敛数列的性质及其证明. 二、典型方法 1、求极限的方法 1) 利用定义a) 观察确定极限值,利用定义验证.b) 对递推数列,可先假定极限存在,利用递推关系,求得极限,再用定义验证.2) 利用10nα→ (0)α>,0n a → (1)a <, 1(0)a →>,1及四则运算法则.3) 利用已知极限,如1lim(1)n n e n →∞+=.4) 利用单调有界原理(如何求极限).5) 利用适当的变换或变形(拆项、插项、裂项).2、证明极限存在方法 1) 用定义(先求极限值). 2) 利用单调有界原理. 3) 利用Cauchy 准则.3、证明极限不存在的方法 1) 定义.2) 找一个发散子列或两个收敛子列但极限不等. 3) 利用Cauchy 准则.4、一些常用结论1) lim 0n n a →∞=,{}n b 有界,则lim 0n n n a b →∞=.2) limnn na b →∞存在,且lim 0n n b →∞=,则lim 0n n a →∞=. 3) 设1lim ||1n n na l a +→∞=<,则lim 0n n a →∞=.4) 若数列满足{}n a 满足1n n a a q a a +-≤-, 01q <<,则lim n n a a →∞=.5) 若{}n x 满足11n n n n x x q x x +--≤- 01q <<,则{}n x 收敛. 6) 1,...,m a a 为m个正数,则1lim max{,,}m n a a =⋅⋅⋅.思考: 设{}n a为有界正数列,则?n =. 7) 设n n x a y ≤≤,0n n x y -→,则,n n x a y a →→.8) 设{}n x ↑,{}n y ↓, 0n n x y -→, 则{},{}n n x y 均收敛,且极限相同. 9) 0,n n a a b b →>→,则n b b n a a →.10) , n n a a b b →→,则max{,}max{,}n n a b a b →, min{,}min{,}n n a b a b →. 11) 设lim n n a a →∞=,则i) 12limnn a a a a n→∞++⋅⋅⋅+=,ii) 若0n a >,则n a =.并考察下列极限(教材43页第四题)(1)1112n n ++⋅⋅⋅+(2) 0)a >(3)……12) (Stolz 定理) 设{},{}n n x y 满足i) 1n n y y +>, ii) lim n n y →∞=+∞,iii)11lim n n n n n x x l y y +→∞+-=-,(l 为有限数), 则lim n n nxl y →∞=.并利用Stolz 定理求下列极限 i) 设n x a →,求1222limnn x x nx n →∞++⋅⋅⋅+.ii) 112lim p p pp n n n +→∞++⋅⋅⋅+ (0)p >.iii)113(21)lim p p pp n n n+→∞++⋅⋅⋅+- (0)p >.利用单调有界原理或Cauchy 准则考察下列命题.13) 设10x >,13(1)3n n n x x x ++=+,证明: lim n n x →∞存在并求极限.14) 证明: 若}{n a 为递增数列,}{n b 为递减数列,且0)(lim =-∞→n n n b a , 则n n a ∞→lim 与n n b ∞→lim 都存在且相等.15) 设011>>b a , 记 211--+=n n n b a a , 11112----+=n n n n n b a b a b .,3,2 =n 证明: 数列}{n a 与}{n b 的极限都存在且等于11b a .16) 给定正数1a 与)(111b a b >,作出等差中项2112b a a +=与等比中项112b a b =, 一般地令 21n n n b a a +=+, n n n b a b =+1, ,2,1=n . 证明: n n a ∞→lim 与n n b ∞→lim 皆存在且相等.17) 设0,0>>σa ,1111(), (), 1,2,.22n n n n a a a a n a a σσ+=+=+=证明: 数列}{n a 收敛, 且其极限为σ.18) 设数列}{n a 满足: 存在正数M , 对一切n 有 .12312M a a a a a a A n n n ≤-++-+-=-证明: 数列}{n a 与}{n A 都收敛.19) 若单调数列有一子列收敛,则该数列收敛.20) 若S 为有界集,则存在数列{}n x S ⊂,使得sup n x S →.21) 若S 为有界集,如果sup S S ∉,那么存在严格递增数列{}n x S ⊂,使得sup n x S →.22) 设S 为无界集,则存在{}n x S ⊂,使得n x →∞23) 若S 为无上界集, 则存在严格增的{},n n x S x ⊂→+∞.24) 证明: 任一数列必有单调子列.25) 证明: 任一有界数列必有收敛子列.。