【学案1】1.2直角三角形的性质和判定(Ⅱ)
- 格式:doc
- 大小:106.50 KB
- 文档页数:2
一、复习预习1、三角形的内角和是多少度。
2、什么是直角三角形?日常生活中有哪些物品与直角三角形有关?请举例说明。
3、等腰三角形有哪些性质?三角形按角的分类(1)锐角三角形—三个角都是锐角(2)直角三角形—有一个角是直角(3)钝角三角形—有一个角是钝角二、知识讲解考点/易错点1直角三角形判定定理:两个锐角互余的三角形是直角三角形。
考点/易错点2直角三角形斜边中线性质定理直角三角形中斜边上的中线等于斜边的一半。
性质:直角三角形斜边上的中线等于斜边的一半.如图1,在Rt△BAC中,∠BAC=,D为BC的中点,则。
性质的拓展:如图1:因为D为BC中点,所以,所以AD=BD=DC=,所以∠1=∠2,∠3=∠4,因此∠ADB=2∠3=2∠4,∠ADC=2∠1=2∠2。
因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍.考点/易错点2等腰直角三角形:两条直角边相等的直角三角形叫做等腰直角三角形。
1)具有等腰三角形的所有性质2)具有直角三角形的所有性质结论:等腰直角三角形的两个锐角都是45゜.考点/易错点3含30︒角的直角三角形:30︒的角是一个特殊的角,它具有一个特殊的性质,即“在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半.”这一性质在各类考试中经常出现,利用它的关键是设法构造出含有30︒角的直角三角形.三、例题精析【例题1】【题干】如图,CD是Rt△ABC斜边AB上的中线,若CD=4,则AB=【答案】8【解析】由性质可知:CD,所以AB=2CD=8.【例题2】【题干】如图,在△ABC中,∠BAC=90°,延长BA到D点,使,点E、F分别为边BC、AC的中点。
(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G。
求证:AG=DG【答案】(1)因为E为BC的中点,所以BE=。
1.2 直角三角形的性质和判定(Ⅱ)-湘教版八年级数学下册教案直角三角形是初中数学中重要的概念,本文将从性质和判定两个方面进行介绍,帮助同学们更加深入理解直角三角形。
一、性质1. 直角三角形的定义直角三角形是指一个三角形中,有且仅有一个内角为直角的三角形。
2. 直角三角形的特点直角三角形有以下几个特点:•直角三角形的内角和为180度;•直角三角形的两条直角边相等;•直角三角形的斜边是直角边的平方和的平方根。
3. 直角三角形的勾股定理勾股定理是直角三角形中最著名的定理,它表明:在一个直角三角形中,直角边的平方和等于斜边的平方。
具体而言,设直角三角形三边分别为a、b、c(其中c为斜边),直角边为a和b,则有:a2+b2=c24. 直角三角形的中线定理在一个直角三角形中,过直角边的中点向斜边引一条垂线,则垂足与斜边分成的两条线段的长度满足:•直角边上的中线长度等于斜边长度的一半;•斜边上的中线长度等于直角边长度的一半。
二、判定1. 判定一个三角形是否为直角三角形判定一个三角形是否为直角三角形的方法有以下几种:•观察三角形的内角是否有一个为90度;•使用勾股定理,判断三条边是否满足勾股定理的条件;•如果长度已知,可以计算三条边的长度,判断是否满足勾股定理的条件。
2. 判定一个三角形中一个角是否为直角判定一个三角形中一个角是否为直角,常用的方法是使用三角函数。
三角函数即包括正弦函数、余弦函数和正切函数,它们在数学中有广泛的应用,在直角三角形中也有特别重要的作用。
通过使用三角函数,我们可以通过已知的两条边长和一个角度来求解诸如第三条边长、未知角度等问题。
结论直角三角形是初中数学中一个重要而基础的概念,同学们需要熟练掌握它们的性质和判定方法。
同时,在熟练掌握后,同学们可以通过它们解决许多实际问题。
湘教版数学八年级下册《1.2 直角三角形的性质和判定(Ⅱ)》教学设计一. 教材分析湘教版数学八年级下册第1.2节《直角三角形的性质和判定(Ⅱ)》主要包括两个方面内容:一是进一步探究直角三角形的性质,二是学习直角三角形的判定方法。
本节内容是在学生已经掌握了直角三角形的性质和判定方法的基础上进行学习的,通过本节的学习,使学生能更深入地理解直角三角形的性质和判定方法,提高解题能力。
二. 学情分析学生在学习本节内容之前,已经掌握了直角三角形的性质和判定方法的基本知识,但还需要进一步的巩固和提高。
此外,学生对于证明题的解法还有一定的困难,需要老师在教学过程中进行针对性的指导。
三. 教学目标1.知识与技能:使学生进一步理解直角三角形的性质,掌握直角三角形的判定方法,提高解题能力。
2.过程与方法:通过小组合作、讨论交流等方法,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:直角三角形的性质和判定方法。
2.教学难点:证明题的解法。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形的性质和判定方法,让学生感受到数学与生活的联系。
2.小组合作学习:引导学生进行小组讨论交流,培养学生的合作意识和解决问题的能力。
3.问题驱动法:教师提出问题,引导学生进行思考,激发学生的学习兴趣。
4.讲解法:教师针对学生的疑问进行讲解,帮助学生理解和掌握知识。
六. 教学准备1.教具准备:直角三角板、课件等。
2.教学环境:教室。
七. 教学过程1.导入(5分钟)教师通过生活实例引入直角三角形的性质和判定方法,引导学生思考直角三角形在实际生活中的应用。
2.呈现(10分钟)教师利用课件展示直角三角形的性质和判定方法,引导学生进行观察和思考。
3.操练(10分钟)教师提出问题,引导学生进行小组讨论交流,共同解决问题。
教师巡回指导,对学生的疑问进行讲解。
直角三角形的性质与判定教案直角三角形是指其中一个内角为90°的三角形。
在本教案中,我们将学习直角三角形的性质与判定方法。
通过本教案,我们将了解到直角三角形的特点以及如何利用这些特点进行判定。
一、直角三角形的性质1. 边长关系:在直角三角形中,直角边是相对于直角的两条边。
我们可以使用勾股定理来描述直角三角形的边长关系。
根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
即,设直角三角形的直角边分别为a和b,斜边为c,那么有a² + b²= c²。
2. 角度关系:在直角三角形中,直角为90°,而其余两个角的和为90°。
即,设直角三角形的一个角为α,另一个角为β,那么有α + β = 90°。
二、直角三角形的判定方法根据直角三角形的性质,我们可以通过以下方法来判定一个三角形是否为直角三角形:1. 根据边长关系判定:若一个三角形的三条边满足勾股定理中的等式关系,即a² + b² = c²或c² = a² + b²,则该三角形是直角三角形。
例如,若一个三角形的边长为3、4、5,则满足3² + 4² = 5²,因此该三角形是直角三角形。
2. 根据角度关系判定:若一个三角形的一个角为90°,则该三角形是直角三角形。
例如,若一个三角形的一个角为90°,另一个角度为45°,则这个三角形是直角三角形,因为90° + 45° = 135°。
3. 综合判定:在某些情况下,我们可以综合使用边长关系和角度关系来判定直角三角形。
例如,若一个三角形的两条边长为5和12,并且夹角为90°,则这个三角形是直角三角形。
因为5² + 12² = 13²,同时夹角为90°。
《勾股定理》预学案设计: 审核:八年级数学备课组 班 组 姓名: 完成时间: 分钟 效果自评: 学习目标:(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定理解决一些简单问题.自主探究:(20~30分钟)通过自学教材P9~11面的内容,可结合课外学习资料,完成以下探究内容:探究一:勾股定理●定理内容:直角三角形两直角a ,b 的平方和,等于 。
●几何符号语言表述:做一做,感受课题1、作一个直角三角形,使它的两条直角边长分别 作图区:为3厘米和4厘米,如图,并量出它的斜边的长度。
(学生动手画,并交流)2、分别以所画的直角三角形三边为边在三角形的外部 作图区:作正方形,那么这个正方形的面积有什么关系呢?(学生讨论,同伴交流结果)。
3、是否所有的直角三角形都有这个性质呢?即任意Rt △ABC ,∠C=90°,BC=a,AC=b,AB=c ,有222c b a =+是否成立?●反思:这个定理成立的条件是什么? 公式中字母的位置有可能发生变化吗?探究二:勾股定理的基本应用例1(思考题)一棵树在一次强烈的地震中断裂,树顶落在离树根16m 处,研究人员要查看断痕,需要从树底开始爬12米至断痕外,你能算出这棵古树的高度吗?例2,李大妈开垦了一块荒地,(如图所示)AC为30米,AB=40米,BD为120米,她想在荒地上种植花草,请你帮她算一下她能种植多大面积的花草?分析:整个图形由两个直角三角形组成的,其中Rt△ABC已知两直角边,面积易求。
Rt△CBD只需求得BC长即可求面积,在Rt△ABC中,利用勾股定理便可求得BC。
自学反思(你的困惑、疑难、发现或收获)。
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教案一. 教材分析北师大版八年级下册数学第1.2节《直角三角形的性质与判定》是初中的重要知识点。
本节课主要让学生掌握直角三角形的性质和判定方法,为后续学习几何知识打下基础。
教材通过引入直角三角形的性质和判定,引导学生探究和发现数学规律,培养学生的逻辑思维能力。
二. 学情分析学生在七年级已经学习了三角形的性质和判定,对三角形的基本概念有了一定的了解。
但直角三角形的性质和判定较为抽象,需要学生在原有知识的基础上,进一步理解和掌握。
此外,学生需要具备一定的观察、分析和推理能力,才能更好地学习本节课的内容。
三. 教学目标1.知识与技能:使学生掌握直角三角形的性质和判定方法。
2.过程与方法:培养学生观察、分析、推理的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.教学重点:直角三角形的性质和判定方法。
2.教学难点:直角三角形的判定方法的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形的性质和判定,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、分析、推理,培养学生的逻辑思维能力。
3.小组讨论法:分组讨论,培养学生的团队协作精神。
六. 教学准备1.准备相关的生活实例和图片,用于导入和呈现。
2.准备直角三角形的相关题目,用于操练和巩固。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用生活实例引入直角三角形的性质和判定,引导学生关注数学与实际生活的联系。
2.呈现(10分钟)展示直角三角形的性质和判定方法,让学生初步了解本节课的学习内容。
3.操练(15分钟)让学生分组讨论,分析直角三角形的性质和判定,引导学生运用所学知识解决问题。
4.巩固(10分钟)出示相关题目,让学生独立解答,巩固对直角三角形性质和判定的理解。
5.拓展(10分钟)引导学生运用直角三角形的性质和判定解决实际问题,提高学生的应用能力。
1.2直角三角形第1课时直角三角形的性质与判定1.复习直角三角形的相关知识,归纳并掌握直角三角形的性质和判定;2.学习并掌握勾股定理及其逆定理,能够运用其解决问题.(重点,难点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后按如图所示的方法用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:直角三角形的性质与判定【类型一】 判定三角形是否为直角三角形角形的是( )A .∠A +∠B =∠C B .∠A -∠B =∠CC .∠A ∶∠B ∶∠C =1∶2∶3D .∠A =∠B =3∠C解析:由直角三角形内角和为180°求得三角形的每一个角的度数,再判断其形状.A 中∠A +∠B =∠C ,即2∠C =180°,∠C =90°,为直角三角形,同理,B ,C 中均为直角三角形,D 选项中∠A =∠B =3∠C ,即7∠C =180°,三个角没有90°角,故不是直角三角形.故选D.方法总结:在判定一个三角形是否为直角三角形时要注意直角三角形中有一个内角为90°. 【类型二】 直角三角形的性质的应用D ,CE⊥AB 于E.(1)猜测∠1与∠2的关系,并说明理由.(2)如果∠A 是钝角,如图②,(1)中的结论是否还成立?解析:(1)根据垂直的定义可得△ABD 和△BCE 都是直角三角形,再根据直角三角形两锐角互余可得∠1+∠B =90°,∠2+∠B =90°,从而得解;(2)根据垂直的定义可得∠D =∠E =90°,然后求出∠1+∠4=90°,∠2+∠3=90°,再根据∠3、∠4是对顶角解答即可.解:(1)∠1=∠2.∵AD ⊥BC ,CE ⊥AB ,∴△ABD 和△BCE 都是直角三角形,∴∠1+∠B =90°,∠2+∠B =90°,∴∠1=∠2;(2)结论仍然成立.理由如下:∵BD ⊥AC ,CE ⊥AB ,∴∠D =∠E =90°,∴∠1+∠4=90°,∠2+∠3=90°,∵∠3=∠4(对顶角相等),∴∠1=∠2.方法总结:本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余,同角或等角的余角相等的性质,熟记性质是解题的关键.探究点二:勾股定理【类型一】直接运用勾股定理已知:如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D .求:(1)AC 的长; (2)S △ABC ; (3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =30cm 2;(3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】 分类讨论思想在勾股定理中的应用在△的高AD =12,试求△ABC 周长.解析:本题应分两种情况进行讨论:(1)当△ABC 为锐角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD 的长求出,两者相加即为BC 的长,从而可将△ABC 的周长求出;(2)当△ABC 为钝角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD 的长求出,两者相减即为BC 的长,从而可将△ABC 的周长求出.解:此题应分两种情况进行讨论:(1)当△ABC 为锐角三角形时,在Rt △ABD 中,BD =AB 2-AD 2=152-122=9,在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =BD +CD =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC=9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:在题目未给出具体图形时,应考虑三角形是锐角三角形还是钝角三角形,凡符合题设的情况都要考虑,体现了分类讨论思想,这是解无图几何问题的常用方法.探究点三:勾股定理的逆定理 【类型一】 判断三角形的形状如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对 解析:∵正方形小方格边长为1,∴BC =42+62=213,AC =22+32=13,AB =12+82=65.在△ABC 中,∵BC 2+AC2=52+13=65,AB 2=65,∴BC 2+AC 2=AB2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,在正方形ABCD 中,AE =EB ,AF =14AD ,求证:CE ⊥EF .证明:连接CF ,设正方形的边长为4.∵四边形ABCD 为正方形,∴AB =BC =CD =DA =4.∵点E为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF=3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,∴∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要方法.【类型三】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件运用勾股定理的逆定理可证△ACD 为直角三角形,然后代入三角形面积公式将△ABC 和△ACD 这两个直角三角形的面积求出,两者面积相加即为四边形ABCD 的面积.解:连接AC ,∵∠B =90°,∴△ABC 为直角三角形.∵AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD为直角三角形,且∠ACD =90°,∴S 四边形ABCD =S △ABC +S △ACD=12×6×8+12×10×24=144. 方法总结:此题将求四边形面积的问题转化为求两个直角三角形面积和的问题,既考查了对勾股定理逆定理的掌握情况,又体现了转化思想在解题时的应用.探究点四:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补; (2)垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:分别找出各命题的题设和结论将其互换即可.解:(1)同旁内角互补,两直线平行.真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内).真命题;(3)内错角相等.假命题;(4)等边三角形有一个角是60°.真命题.方法总结:一个定理不一定有逆定理,只有当它的逆命题为真命题时,它才有逆定理.三、板书设计1.直角三角形的性质与判定直角三角的两个锐角互余;有两个角互余的三角形是直角三角形.2.勾股定理及勾股定理的逆定理直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.本节课充分发挥了学生动手操作能力、分类讨论能力、交流能力和空间想象能力,让学生充分体验到了数学思考的魅力和知识创新的乐趣,突显教学过程中的师生互动,使学生真正成为主动学习者.。
直角三角形的性质和判定(Ⅱ)【课时安排】2课时【第一课时】【教学目标】一、知识与技能使学生掌握勾股定理,培养在实际生活中发现问题总结规律的意识和能力。
二、过程与方法了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
三、情感、态度与价值观介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
【教学重难点】1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
【教学过程】一、新课引入已知树高6米,在树梢上有一猫头鹰,猫头鹰从树梢斜飞落地抓老鼠,落点与树根相距8米,那么猫头鹰至少飞过多少米?二、探究定理(一)画一画:让学生动手画一个直角边长为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.(二)做一做1.如图,以这个直角三角形的三边为边作三个正方形,探究这三个正方形的面积之间有什么关系。
正方形P Q R面积91625思考:(1)这三个正方形的面积分别为多少?你是怎么求的?(2)这三个正方形的面积之间满足一个什么等式?(3)正方形的面积等于边长的平方,那么它们的面积用边长代入得到一个什么等式?(4)我们前面说过:在直角三角形中,我们把较短的直角边叫勾,较长的直角边叫股,斜边叫弦,那么勾股弦之间满足一个什么等式?2.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
这个三角形的三边也满足勾2+股2=弦2吗?(三)议一议对于任意的直角三角形也有这个性质吗?(四)猜一猜直角三角形的两直角边的平方和等于斜边的平方。
即在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c,有a2+b2=c2过渡语:猜想的结论是否正确须经过严格论证。
2017八年级数学下册1.2 直角三角形的性质和判定(Ⅱ)第1课时勾股定理导学案(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017八年级数学下册1.2 直角三角形的性质和判定(Ⅱ)第1课时勾股定理导学案(新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017八年级数学下册1.2 直角三角形的性质和判定(Ⅱ)第1课时勾股定理导学案(新版)湘教版的全部内容。
第1课时 勾股定理1.了解勾股定理的发现过程.2。
掌握勾股定理的内容,并能进行相关计算。
3。
会用面积法证明勾股定理.自学指导:阅读课本9页至11页,完成下列问题。
知识探究1.已知,如图:正方形和梯形是由全等的直角三角形构成,请分别求出正方形和梯形的面积。
解:正方形的面积为ab c 22+;梯形的面积为ab c +221. 2。
直角三角形的性质定理(勾股定理):直角三角形两直角边a 、b 的平方和等于斜边c 的平方,及222c b a =+.自学反馈1。
在直角三角形中,两条直角边的平方和等于斜边的平方。
2。
在直角三角形中,两直角边分别为3、4,那么斜边为5。
3。
在直角三角形中,斜边为10,一直角边为6,则另一直角边为8.运用勾股定理“两直角边的平方和等于斜边的平方”计算。
活动1 小组讨论探究一:探究勾股定理:两直角边的平方和等于斜边的平方.(1)如图,每个方格的面积均为1,请分别算出图中正方形A 、B 、C 、A ′、B ′、C ′的面积. ab c解:A的面积=4;B的面积=9;C的面积=52—4×12(2×3)=13;所以A+B=C。
直角三角形的性质和判定(二)导学案第2课时主备人:朱菊球 审核人:朱清华 参与人:全体八年级数学老师一、课前反馈直角三角形有哪些性质?(1)两锐角______;((2)斜边上的中线等于斜边的________二、导入目标1 进一步掌握直角三角形的性质----直角三角形中,30度的角所对的边等于斜边的一半;2 能利用直角三角形的性质解决一些实际问题。
重难点:重点:直角三角形的性质,难点:直角三角形性质的应用三、自主学习1阅读课本4—6页2 按要求画图:(1)画∠MON ,使∠MON=30°,(2)在OM 上任意取点P ,过P 作ON 的垂线PK ,垂足为K ,量一量PO,PK 的长度,PO,PK 有什么关系? (3) 在OM 上再取点Q,R ,分别过Q,R 作ON 的垂线QD,RE,垂足分别为D,E ,量一量QD ,OQ ,它们有什么关系?量一量RE,OR ,它们有什么关系? 由此你发现了什么规律? 直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
为什么会有这个规律呢?这节课我们来研究这个问题.四、 合作探究1 探究直角三角形中,如果有一个锐角等于30°,那么它所对的直角边为什么等于斜边的一半。
如图,Rr △ABC 中,∠A=30°,BC 为什么会等于12AB 分析:要判断BC=12AB,可以考虑取AB 的中点,如果如果BD=BC ,那么BC=12AB ,由于∠A=30°,所以∠B=60°, 如果BD=B C,则△BDC 一定是等边三角形,所以考虑判断△BDC 是等边三角形,你会判断吗?由学生完成 K P M D C B A归纳:直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
这个定理的得出除了上面的方法外,你还有没有别的方法呢?先让学生交流,得出把△ABC 沿着AC 翻折,利用等边三角形的性质证明。
1.2直角三角形的性质和判定(Ⅱ)教学目的知识与技能:掌握直角三角形的判别条件,并能进行简单应用;教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观:敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.重点、难点重点:探索并掌握直角三角形的判别条件。
难点:运用直角三角形判别条件解题教学过程一、创设情境,激发学生兴趣、导入课题展示一根用 13 个等距的结把它分成等长的12 段的绳子,请三个同学上台,按老师的要求操作。
甲:同时握住绳子的第一个结和第十三个结。
乙:握住第四个结。
丙:握住第八个结。
拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角。
问:发现这个角是多少?(直角)二、做一做下面的三组数分别是一个三角形的三边a、b、c。
5、12、13 7、24、25 8、15、171、这三组数都满足吗?同学们在运算、交流形成共识后,教师要学生完成。
2、分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?同学们在在形成共识后板书:如果三角形的三边长a、b、c满足,那么这个三角形是直角三角形。
满足的三个正整数,称为勾股数。
大家可以想这样的勾股数是很多的。
今后我们可以利用“三角形三边a、b、c满足时,三角形为直角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法。
三、讲解例题例1 一个零件的形状如图,按规定这个零件中∠A 与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, DC = 12 , BC=13,这个零件符合要求吗?分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC 是否为直角三角形,这样勾股定理的逆定理即可派上用场了。
八年级数学下册 1.2 直角三角形的性质和判定(II)(第2课时)导学案(新版)湘教版1、2直角三角形的性质和判定(Ⅱ)(2)一、新课引入〈一〉复习旧知1、什么是勾股定理?2、在△ABC中,∠C=90、⑴已知AC=6,BC=8,求AB的长; ⑵已知AB=17,AC=15,求BC的长、〈二〉导读目标学习目标:1、会用勾股定理解决简单的实际问题;2、经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法、重点:勾股定理的应用难点:实际问题向数学问题的转化二、预习导学预习课本P12—P13内容,解答下列问题:A,C,CBA一个2、5m长的梯子AC斜靠在一竖直的墙AB上,这时AB的距离为2、4m、(1)求梯子的底端C距墙角B多少米?(2)如果梯子顶端A沿墙下滑0、4m,那么梯子底端C也外移0、4m吗?(保留2位小数)三、合作探究勾股定理的实际应用例1、“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。
问水深,葭长各几何?”意思是:有一个边长为10尺的正方形池塘,一根芦苇生长在池的中央,其出水部分为1尺。
如果将芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好碰到池边的水面。
问水深与芦苇长各为多少?例2、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30,已知侧角仪高DC=1、4m,BC=30米,请帮助小明计算出树高AB、(取1、732,结果保留三个有效数字)四、解法指导五、堂上练习1、(1)等边三角形的边长为,求它的中线长,并求出其面积;(2)等边三角形的一条角平分线长为,求这个三角形的边长、C2、如图,一艘渔船以30海里∕h速度由洗向东追赶鱼群。
在A处测得小岛C在船的北偏东600方向;40min后,渔船行至B 处,此时测得小岛C在船的北偏东300方向。
已知以小岛C为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?600300北东BA六、课堂小结1、本节课学习了直角三角形的哪些知识?2、通过这节课的学习,你在解题思路和方法上有什么收获?七、课后作业如图,AE是位于公路边的电线杆,高为12m,为了使电线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根为6m的水泥撑杆BD,用于撑起电线,已知两根杆子之间的距离为8m,电线CD与水平线AC的夹角为600。
湘教版八下数学1.2直角三角形的性质和判定(II)(第3课时)教学设计一. 教材分析湘教版八下数学1.2直角三角形的性质和判定(II)是初中数学的重要内容,本节课主要让学生掌握直角三角形的性质和判定方法,进一步理解和运用勾股定理。
教材通过丰富的例题和练习,引导学生探究直角三角形的性质,提高学生解决问题的能力。
二. 学情分析八年级的学生已经掌握了直角三角形的定义和性质,具备一定的观察、分析和推理能力。
但部分学生对概念的理解不够深入,对于复杂的数学问题,解决方法单一,需要老师在教学中加以引导和培养。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理及其应用。
2.培养学生的观察、分析和推理能力,提高解决问题的能力。
3.激发学生的学习兴趣,培养合作、探究的精神。
四. 教学重难点1.重点:直角三角形的性质和判定方法。
2.难点:勾股定理的灵活运用和复杂问题的解决。
五. 教学方法1.讲授法:讲解直角三角形的性质和判定方法,引导学生理解概念。
2.案例分析法:分析典型例题,让学生掌握解题思路。
3.小组讨论法:鼓励学生合作探究,培养团队精神。
4.练习法:布置适量作业,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示直角三角形的性质和判定方法。
2.例题和练习题:挑选具有代表性的例题和练习题,巩固所学知识。
3.教学工具:直角三角板、尺子、黑板等。
七. 教学过程1.导入(5分钟)利用复习提问的方式,引导学生回顾已学的直角三角形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)通过课件展示直角三角形的性质和判定方法,让学生初步了解本节课的内容。
3.操练(10分钟)让学生用直角三角板和尺子自己动手操作,验证直角三角形的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成教材中的练习题,教师批改并及时给予反馈,巩固所学知识。
5.拓展(10分钟)出示一些运用勾股定理解决实际问题的题目,让学生分组讨论,探讨解题思路。
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教学设计一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教材,主要介绍了直角三角形的性质与判定方法。
内容包括:直角三角形的定义、性质以及直角三角形的判定方法。
通过本节课的学习,使学生掌握直角三角形的性质与判定,为后续学习勾股定理和相似三角形打下基础。
二. 学情分析学生在七年级已经学习了三角形的性质和分类,对三角形有了一定的认识。
但直角三角形的性质和判定较为抽象,需要通过实例和动手操作来加深理解。
此外,学生可能对数学证明过程感到困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.知识与技能:掌握直角三角形的性质与判定方法。
2.过程与方法:通过观察、操作、探究、归纳等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作意识,体验成功的喜悦。
四. 教学重难点1.重点:直角三角形的性质与判定方法的运用。
2.难点:对直角三角形性质与判定方法的理解和应用。
五. 教学方法采用启发式教学法、小组合作学习法、直观演示法、实践操作法等,引导学生主动探究、积极思考,提高学生的几何思维能力。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备几何画图工具,如直尺、圆规、三角板等。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的直角三角形的实例,如建筑工人使用的勾股尺、三角板等,引导学生回顾直角三角形的定义,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示直角三角形的性质与判定方法,引导学生观察、思考,并通过几何画图工具进行实际操作,让学生感受直角三角形的性质与判定方法。
3.操练(10分钟)教师提出一些有关直角三角形性质与判定的问题,学生进行小组讨论,引导学生运用所学知识解决问题。
在此过程中,教师应及时给予指导和鼓励,提高学生的问题解决能力。
1.2直角三角形的性质和判定(Ⅱ)
主备审核
班级____________姓名___________
学习目标
1 掌握勾股定理的推导和证明思想,并会运用勾股定理进行有关计算,初步领会数形结合
的思想。
2 在勾股定理的应用中,能对具体情境中的实际问题从不同的角度寻求解决问题的方法,
来体会勾股定理在现实生活中的广泛应用。
学习重点:勾股定理的推导过程和应用学习难点:勾股定理的应用
学习过程
一、温固知新
1 直角三角形有什么性质?
2、计算:(1)2
24
3+(2)2
24
5-(3)2
23
5-
二、合作交流
(1)作一个直角三角形,使它的两条直角边的长分别为:3cm,4cm,并量出
斜边的长。
______________
(2)分别以这个直角三角形的三边为边作正方形,计算
三个正方形的面积,它们有什么关系?_______
____________
(3)直角三角形的两条直角边用a,b表示,斜边用C表
示,是否有a2+b2=c2呢?
观察
如图甲,将四个直角边分别为a,b斜边为c的直角三角
形放入边长为a+b的正方形内,得到正方形
3
I,如图乙,
将四个直角边分别为a,b斜边为c的直角三角形放入边
长为a+b的正方形内,得到正方形
12
I I
、.
思考:(1)甲、乙两个正方形的面积除了用_____
表示外,还可以怎样表示?
54
3
54
3
乙
甲
C
a
b
a
b
b
a
b
a
b
a
a
b
b a
甲的面积:________,乙的面积:__________ (2)由此你发现了什么?____________即_____ 归纳:__________________
即:___,也可以表达为:_____,______,______
早在3000年前,我国周朝数学家商高便提到了“勾3,股4,弦5,”意思是长度为3,4,5的三条线段刚好构成直角三角形。
(3)你还能用别的拼法证明勾股定理吗?如果你感兴趣的话,课后请你在网上查找关于用拼图的方法证明勾股定理的方法,象右图就是一个 三、尝试应用
1.在Rt △ABC 中, ∠C =90°,
(1) 已知: a =5, b =12, 求c ; (2) 已知:b =6,•c =10 , 求a ; (3) 已知: a =7, c =25, 求b ; 2、求出下列直角三角形中未知的边
3、填空题
⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。
⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。
(3正方形的边长为a ,正方形的对角线长是______. 四、 应用提高
1、如图,等腰三角形ABC 中,已知AB=AC=13厘米,BC=10厘米。
(1) 你能算出BC 边上的高AD 的长吗? (2) △ABC 的面积是多少呢?
2、在Rt △ABC 中, ∠C =90°
(1) 若a :b = 1:2 ,c=6,则a ,b 各多长?
(2)若∠A=300
,a=3,则b , c 各多长?
3、已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
4、 如图,根据已知图形面积,求下图中正方形A, B 的面积
求正方形B 的边长
625
400
求正方形A 的面积
144
25
A
B
C
D B A
10 30°
A B C。