上海市杨浦高级中学2018-2019学年高三上学期第三次月考试卷数学含答案
- 格式:doc
- 大小:893.50 KB
- 文档页数:16
杨浦区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.2. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.3. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.4. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 33αα+ C. 3sin 31αα+ D .2sin cos 1αα-+5. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为183O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.6. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i7. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0 C .a >0,△≥0D .a >0,△>08. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是( )9. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .12+B .12 C. 34 D .0 10.已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .11.已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 12.已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .C .D .26cm二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .14.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力. 15.函数的定义域为 .16.已知实数x ,y 满足约束条,则z=的最小值为 .三、解答题(本大共6小题,共70分。
杨浦区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣32. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]3. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .4. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±35. 如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对6. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .367. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .108. 已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( )A .15B .30C .31D .649. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:110.若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .5 11.复数121ii-+在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限12.设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 14.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .15.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题(本大共6小题,共70分。
杨浦区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x ﹣)=x 2+,则f (3)=( )A .8B .9C .11D .102. (理)已知tan α=2,则=()A .B .C .D .3. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( )A .0B .1C .2D .以上都不对4. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是()A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不能被5整除D .a ,b 有1个不能被5整除5. 已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( )A .平行B .相交C .异面D .以上都有可能6. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .27. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为( )A .①②B .①③C .②③D .③④8. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k)的是()A .B .C .D .9. 复数满足=i z ,则z 等于( )2+2z 1-iA .1+iB .-1+iC .1-iD .-1-i10.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能11.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .12.已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( )A .[﹣9,+∞)B .[0,+∞)C .(﹣9,1)D .[﹣9,1)二、填空题13.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .14.(﹣)0+[(﹣2)3]= .15.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .16.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .17.已知函数f (x )=x m 过点(2,),则m= . 18.已知向量、满足,则|+|= .三、解答题19.(本小题满分12分)已知在中,角所对的边分别为且ABC ∆C B A ,,,,,c b a .)3(sin ))(sin (sin c b C a b B A -=-+(Ⅰ)求角的大小;A(Ⅱ) 若,,求.2a =ABC ∆c b ,20.(本小题满分12分)已知顶点在单位圆上的中,角、、的对边分别为、、,且ABC ∆A B C a b c .C b B c A a cos cos cos 2+=(1)的值;A cos (2)若,求的面积.422=+c b ABC ∆21.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式;(2)求数列{}nna b 的前项和n S .22.已知数列{a n }的首项为1,前n 项和S n 满足=+1(n ≥2).(Ⅰ)求S n 与数列{a n }的通项公式;(Ⅱ)设b n =(n ∈N *),求使不等式b 1+b 2+…+b n >成立的最小正整数n .23.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m ﹣n|>10”概率.24.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由.杨浦区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.2.【答案】D【解析】解:∵tanα=2,∴===.故选D.3.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.4.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.5.【答案】D【解析】解:如图,在正方体ABCD﹣A1B1C1D1中,AA1∩平面ABCD=A,BB1∩平面ABCD=B,AA1∥BB1;AA1∩平面ABCD=A,AB1∩平面ABCD=A,AA1与AB1相交;AA1∩平面ABCD=A,CD1∩平面ABCD=C,AA1与CD1异面.∴直线a,b都与平面α相交,则a,b的位置关系是相交、平行或异面.故选:D.6.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.7.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.8.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f (﹣x )+f (x )=0,若函数在其定义域为为偶函数,则f (﹣x )﹣f (x )=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键. 9. 【答案】【解析】解析:选D.法一:由=i z 得2+2z1-i2+2z =i z +z ,即(1-i )z =-2,∴z ===-1-i.-21-i-2(1+i )2法二:设z =a +b i (a ,b ∈R ),∴2+2(a +b i )=(1-i )i (a +b i ),即2+2a +2b i =a -b +(a +b )i ,∴,{2+2a =a -b 2b =a +b)∴a =b =-1,故z =-1-i.10.【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得,消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直. 11.【答案】D【解析】解:双曲线(a >0,b >0)的渐近线方程为y=±x联立方程组,解得A (,),B (,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.12.【答案】D【解析】解:函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,则有0<1﹣x≤10,解得,﹣9≤x<1.则定义域为[﹣9,1),故选D.【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题. 二、填空题13.【答案】 [1,5)∪(5,+∞) .【解析】解:整理直线方程得y﹣1=kx,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y≥1即是y2≥1得到m≥1∵椭圆方程中,m≠5m的范围是[1,5)∪(5,+∞)故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.14.【答案】 .【解析】解:(﹣)0+[(﹣2)3]=1+(﹣2)﹣2=1+=.故答案为:.15.【答案】 {a|或} .【解析】解:∵二次函数f(x)=x2﹣(2a﹣1)x+a+1 的对称轴为x=a﹣,f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,∴a﹣≥2,或a﹣≤1,∴a≥,或a≤,故答案为:{a|a≥,或a≤}.【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.16.【答案】 ﹣12 .【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,∴==,解得x=﹣6,y=6,x﹣y=﹣6﹣6=﹣12.故答案为:﹣12.【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.17.【答案】 ﹣1 .【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.18.【答案】 5 .【解析】解:∵=(1,0)+(2,4)=(3,4).∴==5.故答案为:5.【点评】本题考查了向量的运算法则和模的计算公式,属于基础题. 三、解答题19.【答案】解:(Ⅰ)由正弦定理及已知条件有, 即. 3分2223c bc a b -=-bc a c b 3222=-+ 由余弦定理得:,又,故. 6分232cos 222=-+=bc a c b A ),0(π∈A 6π=A(Ⅱ) ,,①, 8分ABC ∆3sin 21=∴A bc 34=∴bc 又由(Ⅰ)及得,② 10分2223c bc a b -=-,2=a 1622=+c b 由 ①②解得或. 12分32,2==c b 2,32==c b 20.【答案】【解析】(1)∵,2cos cos cos a A c B b C =+∴,2sin cos sin cos sin cos A A C B B C ⋅=+∴,2sin cos sin()A A B C ⋅=+∵,∴,A B C π++=sin()sin B C A +=∴.2sin cos sin A A A ⋅=∵,∴,0A π<<sin 0A ≠∴,∴.2cos 1A =1cos 2A =(2)由,得,1cos 2A =sin A =由,得.2sin aA =2sin a A ==∵,2222cos a b c bc A =+-∴,222431bc b c a =+-=-=∴11sin 22ABC S bc A ∆===21.【答案】(1)2,2==q d ;(2)12326-+-=n n n S .【解析】(2)1212--=n n n n b a ,………………6分122121223225231---+-++++=n n n n n S ,①n n n n n S 212232252321211321-+-++++=- .②……………8分①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222n n n n S --=++++-L ,…………10分所以12326-+-=n n n S .………………12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {nn b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S .22.【答案】【解析】解:(Ⅰ)因为=+1(n ≥2),所以是首项为1,公差为1的等差数列,…则=1+(n ﹣1)1=n ,…从而S n =n 2.…当n=1时,a 1=S 1=1,当n >1时,a n =S n ﹣S n ﹣1=n 2﹣(n ﹣1)2=2n ﹣1.因为a 1=1也符合上式,所以a n =2n ﹣1.…(Ⅱ)由(Ⅰ)知b n ===,…所以b1+b2+…+b n===,…由,解得n>12.…所以使不等式成立的最小正整数为13.…【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想23.【答案】【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.所以该班在这次数学测试中成绩合格的有29人.(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,设成绩为x、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,若m,n∈[50,60)时,只有xy一种情况,若m,n∈[90,100]时,有ab,bc,ac三种情况,若m,n分别在[50,60)和[90,100]内时,有a b cx xa xb xcy ya yb yc共有6种情况,所以基本事件总数为10种,事件“|m﹣n|>10”所包含的基本事件个数有6种∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.24.【答案】【解析】解:(1)圆弧C1所在圆的方程为x2+y2=169,令x=5,解得M(5,12),N(5,﹣12)…2分则直线AM的中垂线方程为y﹣6=2(x﹣17),令y=0,得圆弧C2所在圆的圆心为(14,0),又圆弧C2所在圆的半径为29﹣14=15,所以圆弧C2的方程为(x﹣14)2+y2=225(5≤x≤29)…5分(2)假设存在这样的点P(x,y),则由PA=PO,得x2+y2+2x﹣29=0 …8分由,解得x=﹣70 (舍去)9分由,解得x=0(舍去),综上知,这样的点P不存在…10分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强. 。
杨浦区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a2.已知两不共线的向量,,若对非零实数m ,n 有m+n与﹣2共线,则=( )A .﹣2B .2C.﹣D.3. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.B.C.D.4. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .46. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦7. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种8. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β9. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<11.若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .612.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .二、填空题13.设全集______.14.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,M 是BC 的中点,BM=2,AM=c ﹣b ,△ABC 面积的最大值为 .17.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 .18.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 三、解答题19.设,证明:(Ⅰ)当x >1时,f (x )<( x ﹣1);(Ⅱ)当1<x <3时,.20.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,(1)求证:直线BC 1∥平面D 1AC ; (2)求直线BC 1到平面D 1AC 的距离.21.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.22.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.23.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm).(Ⅰ)计算平均值μ与标准差σ;(Ⅱ)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?参考数据:P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.24.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.杨浦区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C.【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.2.【答案】C【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,∴存在非0实数k使得m+n=k(﹣2)=k﹣2k,或k(m+n)=﹣2,∴,或,则=﹣.故选:C.【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.3.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C4.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.5.【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4. 故选:D .【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.6. 【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .7. 【答案】 B【解析】 排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C 52=20种结果, ③当三台设备按1、1、1分成三份时分给三个社区时,有C 53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B .【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.8. 【答案】D【解析】解:对于A ,α∥β,l ⊂α,n ⊂β,l ,n 平行或 异面,所以错误; 对于B ,α∥β,l ⊂α,l 与β 可能相交可能平行,所以错误;对于C ,l ⊥n ,m ⊥n ,在空间,l 与m 还可能异面或相交,所以错误. 故选D .9. 【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 10.【答案】A 【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 11.【答案】A【解析】解:因为向量=(3,m ),=(2,﹣1),∥, 所以﹣3=2m ,解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.12.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.二、填空题13.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。
杨浦高级中学高三三月月考数学试卷一. 填空题1. 抛物线2y x =的焦点坐标为2. 已知全集{2,1,0,1,2}U =--,集合2{|,,}1A x x x Z n Z n ==∈∈-,则U C A = 3. 如果131lim 3(1)3n n n n a +→∞=++,则a 的取值范围是4. 关于x 的方程:4|42|3xx⋅-=的解为5. 不等式1001lg 20111xx x-≥-的解集为6. 向量a 、b 、c 在正方形网格中的位置如图所示,若c a b λμ=+(,R λμ∈),则λμ= 7. 已知数列{}n a 满足11a =,12n n n a a +=(*n N ∈),则2n a =8. 在10(2)x y z ++的展开式中,325x y z 的系数为9.(理)在极坐标中,将圆2ρ=沿着极轴正方形平移两个单位后,再绕极点逆时针旋转4π 弧度,则所得的曲线的极坐标方程为(文)一个几何体的三视图如图所示,若该几何体的表面积为92,则其高h =10. 5位好朋友相约乘坐迪士尼乐园的环园小火车,小火车的车厢共有4节,设每一位乘客 进入每节车厢是等可能的,则这5位好朋友无人落单(即一节车厢内,至少有5人中的2 人)的概率是11. 已知定义在R 上的函数()y f x =对于任意的x 都满足(2)()f x f x +=,当11x -≤<时,3()f x x =,若函数2()()log ||g x f x x =-至少有6个零点,则a 的取值范围是12.(理)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b (,0a b ≠),不得分的概率为2a b+,若他投篮一次得分ξ的数学期望74E ξ>,则a 的取值范围是(文)设全集{(,)|,}U x y x y R =∈,34120(,)|280,,260x y P x y x y x y R x y ⎧+->⎫⎧⎪⎪⎪=--<∈⎨⎨⎬⎪⎪⎪-+>⎩⎩⎭,222{(,)|,}Q x y x y r r R +=+≤∈,若U Q C P ⊆恒成立,则实数r 的最大值是13.(理)在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的, 我们在复数集C 上,也可以定义一个称为“序”的关系,记为“”,定义如下:对于任意两个复数111z a b i =+,222z a b i =+(1212,,,a a b b R ∈),12z z ,当且仅当“12a a >”或者“12a a =,12b b >”,按上述定义的关系“”,给出如下四个命题:① 10i;② 若12z z ,23z z ,则13z z ;③ 若12z z ,则对任意z C ∈,都有 12z z z z ++;④ 对于复数0z ,若12z z ,则12z zz z ⋅⋅;其中,真命题的序号为(文)已知数列{}n a 满足:1a m =(m 为正整数),若1231nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数当为奇数,若61a =,则m 所有可能的取值构成的集合为14.(理)符号1n ii a =∑表示数列{}na 的前n 项和(即121...nin i aa a a ==+++∑),已知数列{}n a满足10a =,11n n n a a a +≤≤+(*n N ∈),记11(1)kna k n k S a -==-∑(01a <<),若20160S =, 则当20161ka k a=∑取最小值时,2016a =(文)在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的, 我们在复数集C 上,也可以定义一个称为“序”的关系,记为“”,定义如下:对于任意两个复数111z a b i =+,222z a b i =+(1212,,,a a b b R ∈),12z z ,当且仅当“12a a >”或者“12a a =,12b b >”,按上述定义的关系“”,给出如下四个命题:① 10i;② 若12z z ,23z z ,则13z z ;③ 若12z z ,则对任意z C ∈,都有 12z zz z ++;④ 对于复数0z ,若12z z ,则12z zz z ⋅⋅;其中,真命题的序号为二. 选择题15. 在样本的频率分布直方图中,共有9个小长方形,若第 一个长方形的面积为0.02,前五个与后五个长方形的面积分 别成等差数列且公差互为相反数,若样本容量为160,则中 间一组(即第五组)的频数为( )A. 12B. 24C. 36D. 4816. 已知F 为双曲线22:3C x my m -=(0m >)的一个焦点,则点F 到C 的一条渐近线的距离为( )A.B. 3C.D. 3m17. 将函数sin y x x =+(x R ∈)的图像向左平移m (0m >)个单位长度后所得 到的图像关于y 轴对称,则m 的最小值为( ) A.12π B. 6π C. 3πD. 56π 18. 在半径为R 的球内有一内接正三棱锥,底面三个顶点恰好都在同一个大圆上,一个动点 从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是( ) A. 76R π B. 2R π C. 73R π D. 83R π三. 解答题19. 如图,已知四棱锥P ABCD -,底面是边长为6的正方形ABCD ,8PA =,PA ⊥面ABCD ,点M 是CD 的中点,点N 是PB 的中点,连接AM 、AN 、MN ; (理)(1)求证:AB MN ⊥;(2)求二面角N AM B --的大小; (文)(1)求证:AB MN ⊥;(2)求异面直线AM 与PB 所成角的大小;20. 已知向量11(,sin )22a x x =+和向量(1,())b f x =,且a ∥b ; (1)求函数()f x 的最小正周期和最大值;(2)(理)已知△ABC 的三个内角分别为A 、B 、C ,若(2)16f A π-=,BC =,求△ABC 面积的最大值;(文)已知△ABC 的三个内角分别为A 、B 、C ,若有(2)16f A π-=,BC =sin 7B =,求AC 的长度;21. 某地拟模仿如图建造一座大型体育馆,其设计方案侧面的外轮廓线如图所示,曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t ,曲线BC 是抛物线230y ax =-+(0a >)的一部分,CD AD ⊥,且CD 恰好等于圆E 的半径;(1)若要求20CD =米,30)AD =米,求t 与a 的值;(2)当010t <≤时,若要求体育馆侧面的最大宽度DF 不超过45米,求a 的取值范围;22. 已知111212122212.....................m m m m mm a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎝⎭,每一行都是首项为1的等差数列,第m 行的公差为m d ,且每一列也是等差数列,设第m 行的第k 项为mk a (,1,2,3,..,m k n =,3n ≥,*n N ∈); (1)证明:1d 、2d 、3d 成等差数列,并用m 、1d 、2d 表示m d (3m n ≤≤);(2)当11d =,23d =时,将数列{}m d 分组如下:(1d ),(2d ,3d ,4d ),(5d ,6d ,7d ,8d ,9d ),…(每组数的个数构成等差数列),设前m 组中所有数之和为4()m c (0m c >),求数列{2}m cm d 的前n 项和n S ;(3)在(2)的条件下,设20N ≤且*N N ∈,当n N >时,求使得不等式1(6)50n n S d -> 恒成立的所有N 的值;23. 如图,圆O与直线20x ++=相切于点P ,与x 正半轴交于点A,与直线y = 在第一象限的交点为B ,点C 为圆O 上任一点,且满足OC xOA yOB =+,以x 、y 为坐 标的动点(,)D x y 的轨迹记为曲线Γ; (1)求圆O 的方程及曲线Γ的方程;(2)若两条直线1:l y kx=和21:l y xk=-分别交曲线Γ于点E、F和M、N,求四边形EMFN面积的最大值,并求此时的k的值;(3)(理)根据曲线Γ的方程,研究曲线Γ的对称性,并证明曲线Γ为椭圆;(2)(文)已知曲线Γ的轨迹为椭圆,研究曲线Γ的对称性,并求椭圆Γ的焦点坐标;参考答案一. 填空题1. 1(,0)42. {0}3. (4,2)-4. 4log 3x =5. 2(0,](1,)3+∞6. 47. 2n8. 201609.(理)4cos()4πρθ=- (文)410.3125611. 1(0,](5,)5+∞ 12.(理)52(,)123a ∈ (文)12513.(理)① ② ③ (文){4,5,32} 14.(理)1007 (文)① ② ③二. 选择题15. C 16. A 17. B 18. C三. 解答题19.(1)证明略;(2)(理)(文);20.(1)函数()f x 的最小正周期为2π,最大值为2;(2);(文)2AC =; 21.(1)10t =,190a =;(2)2125a ≥; 22.(1)证明略,12(2)(1)m d m d m d =-+-;(2)1(23)26n n S n +=-⋅+;(3)5,6,7,8,...,20N =;23.(1)22:1O x y +=,22:1x y xy Γ++=(,[x y ∈);(2)当1k =±时,四边形EMFN ; (3)(理)曲线Γ关于直线y x =,y x =-和原点对称,证明略;(文)曲线Γ关于直线y x =±和原点对称,焦点坐标为1(F ,2F ;。
上海市 2019届高三数学 3月月考试题 理考生注意:1.本试卷共 4页,23道试题,满分 150分,考试时间 120分钟.2.本考试分设试卷和答题纸. 作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一 律不得分.一、填空题(本大题共有14题,满分 56分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格 填对 4分,否则一律得零分.x y l g x ,Bx x 22x 3 0,则 A B _______________.1. 已知集合 A2.复数(1i )(1 a i ) 是实数,则实数a =_______________.log (x 1) 2l og (x 1) 3. 方程 的解集为_________. 224.已知圆锥的轴与母线的夹角为 ,母线长为 3,则过圆锥顶点的轴截面面积的最大值为_________.315.已知0 y x,且 t an xt an y 2 s in x s i n y ,y ,则 x .3 6. 设等差数列{a }的前n 项和为 ,若 S =42 ,则aa a=.S 7nn 2377.圆 :(x 2)y 4 , 直线 : 3 , : 1,若 , 被圆 所截得的弦的长度之比为1: 2 , C 2 2 l y x l y kx l l1 C 122则 的值为_________.k3 ,侧棱长为 2, 则该球的表面积为_________.4R 9. 已知 ( ) l n( ) ,若对任意的m ,均存在 0 使得 ( ) ,则实数 的f x f x x ax 0m a x取值范围是 .10.直线 y=k(x 1)(k 0)与抛物线 y=4x 相交于 A, B 两点,且 .A, B 两点在抛物线的准线 2 , N B N2 A M,则 的值是k 上的射影分别是M ,若 si n 3 4s in截得的弦长为 11.在极坐标中,直线 被圆 .12.一射手对靶射击,直到第一次中靶为止.他每次射击中靶的概率是0.9,他有 3颗弹子,射击结束后 尚余子弹数目 的数学期望 E =.cos A cosB cosC13. 已知 ABC ,若存在,满足 A B C 则称 1A B C 是 ABC 的一个“友好” , s in A s in B s i nC 1 1 11 1 1111三角形.在满足下述条件的三角形中,存在“友好”三角形的是_______:(请写出符合要求的条件的序号) ① 90 ,B 60 ,C 30 ;② A 75 ,B 60 ,C 45A 75 ,B 75 ,C 30; ③ .A ACB 90 AC 2 BC 1 ,14.如图,在△ AB C 中, ,, 点 A 、C 分别在 x 轴、 y 轴上,当点 A 在 x 轴上运动时,点C 随之在 y 轴上运动,在运动过程中,点B 到原点O 的最大距离是.二、选择题(本大题共有4题,满分 20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答 案的小方格涂黑,选对得 5分,否则一律得零分 1{a } 中,a1,a15.已知数列 ,若利用下面程序 框图计算该数1 an1n 1n列的第 2016项,则判断框内的条件是()n=1,A=1A . n2014C . n 201516.在锐角ABC1 B .n 2016D .n 2017n=n+1 1 , ,中,内角A B C 的对边分别为a b c ,若A= A+1是s in C cos C 2 2 ,则下列各式正确的是()2A .a b 2c C .ab 2cB .a b 2c输出A a b 2c.D 结束{(x , y) | x y 1} ,若实数,17.已知集合 M 满足: 对 任 意 的2 2 (x , y)M ,都有(x ,y )M ,则称(,)是集合 的“和谐实数对”.则以 下集合中,存在“和谐实M数对”的是()A .{(,) | 4}{(,) | 4} B .D .2 2 {(,) | 4 4} {(,) | 4}C .2 2 2 AB C D A' B'C' D'A , , ' 18. 已知正方体 ,记过点 与三条直线 AB A D AA 所成角都相等的直线条数为 ,m ', AC, AD' 过 点 与 三 个 平 面 AB 所 成 角 都 相 等 的 直 线 的 条 数 为 , 则 下 面 结 论 正 确 的 是nA . .()A . 1,n 1B .m 4,n 1D . m4,n 4m C. m3,n 4 三、解答题(本大题共有 5题,满分 74分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要 的步骤.19.(本题满分 12分)本题共有 2个小题,第(1)小题满分 6分,第(2)小题满分 6分.AB2 A B C中, BAC , AB A C , 如图,在直三棱柱 AB C 112 1 1 1C1AA 6 ,点 E 、F 分别在棱 AA 、C C 上,且 AE C F 2 .1111AEFC (1)求四棱锥 B 的体积; F(2)求BEF 所在半平面与ABC所在半平面所成二面角 的余弦值. E20.(本题满分 14 分)本题共有 2 小题,第(1)小题满分 6 分, 第(2)小题满分 8 分.如图,某城市设立以城中心O 为圆心、 公里为半径圆形保护区,从保护区边缘起,在城中心O 正东方r向上一条高速公路 PB 、西南方向上有一条一级公路 QC ,现要在保护区边缘 PQ 弧上选择一点 A 作为出口, 建一条连接两条公路且与圆 O 相切直 道 BC .已知通往一级公路道路 AC 每公里造价为a 万元,通往高速公路的道路 AB 每公里造价为m a万元,其中a 2 (1)把 表示成 的函数 y 并 求 出 定 义y 域;(2)当 m 时,如何确定 A 点的位置才2能使 得总造价最低?21.(本题满分 14 分)本题共有 2 个小题,第(1)小题 6 分,第(2)小题 8 分.x y 2b 2 2 :1(a b 0) 已知椭圆 C 的 右顶点、上顶点分别为 A 、B ,坐标原点到直线 AB a 2 4 32b 的距离为 ,且a . 3(1)求椭圆 C 的方程;(2)过椭圆 C 的左焦点 的直线l 交椭圆于 M 、N 两点,F 1且该椭圆上存在点 P ,使得四边形 MONP (图形上字母按此 顺序排列)恰好为平行四边形,求直线 的方程.l22.(本题满分 16 分)本题共有 3 个小题.第(1)小题满分 4 分,第(2)小题满分 6 分,第(3)小题满分 6分.(x ) f (x )f (x) f (x) ,称 为“局部奇对于函数 f 函数”.,若在定义域内存在实数 x ,满足 (x) a x2x 4a (a R) f (x) 是否为“局部奇函数”?(1) 已知二次函数 f ,试判断 2 并说明理由;(x) 2 m 是定义在区间[1,1](2)若 f (3)若 f 上的“局部奇函数”,求实数m 的取值范围;x (x) 4m 2 m 3 是定义 在 的“局部奇函数”,求实数m 的取值范围.Rx x 1223.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题①满分6分,第(2)小题②满分8分.已知等比数列{a}的首项a 20151,数列{a}n前项和记为S,前n项积记为T.nn n n 6045{a}(1)若S3,求等比数列的公比;q4n(2)在(1)的条件下,判断|T|与|T|的大小;并求n为何值时,T取得最大值;n1n n(3)在(1)的条件下,证明:若数列{a}中的任意相邻三项按从小到大排列,则总可以使其n,d,,d,则数列{d}成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为d 列.为等比数12n n2019学年第二学期考试参考答案和评分标准一、填空题(本大题共 14题,每题 4分,满分 56分) 92(0,3) 18 51. 2.-1 3. 4.5.3 1 7. 28 [4,)26. 8.9. 10. 3211.(理)2 3(文)612. (理)1.89 (文)34 313.②14.(理)1 2(文) (x 1)(y 1) 12 2 二、选择题(本大题共 4题,每题 5分,满分 20分) 15. C16. B三、解答题(本大题共 5题,满分 74分)19.(本题满分 12分)本题共 2个小题,每小题 6分. 17. C18. D1 1 1AB (4 2)22 4 S 解:(理)(1)V……6分 3 3 2(0,0,0) B(0,2,0) E(0,0,2) F(2,0,4) ,B AEF CAEF C (2)建立如图所示的直角坐标系,则 A , ,, EF (2, 0, 2) EB , (0, 2, 2)……………………7分EF 2x 2z 0EF 2y 2z 0 n(x , y , z ) 取 1得 1, 1 设平面 BEF 的法向量为n ,则 z x y , n(1,1,1) 所以 n ……………………………9分n n1 3 (0,0,1) cos平面 AB C 的法向量为 n,则 1 n n3 311 3BEF 所在半平面与ABC所以 所在半平面所成二面角 的余弦值为 .…12分3 1 S3 1 1 43 VC F 222 解:(文)(1)V…6分 3 2 A B C FFA B C A B C 11 1 1 1 1 11 1 1 // FA,所以 CEB 就是异面直线 BE 与 A F 所成的角.8分(2)连接CE ,由条件知CE 1 1 CEB2 2 ,所以CEB 60中, BC CE BE, ………………10分在 60 所以异面直线 BE 与 A F 所成的角为 1.…………………………………12分20.(本题满分 14分)本题共有 2小题,第小题满分 6分,第小题满分 8分.AB r t an解:(1) BC 与圆 O 相切于 A , OA BC,在 ABC 中,……2 分3rt an( ) 同理,可得 AC ………4 分 43y m aAB aA C m ar t an ar t an()2 2 43y ar [m tan t an ( )], ( , ) ………6分2 4 4 2(2)由(1)得3 1 t an1t an y ar [m tan tan( )] a r [m tan ]2 2 4 2 ar [m (tan 1) m 1]…………9 分2 2 t an 12( , ), tan 1 0m (tan 1) 2 2m ………12分 24 2t an 126 2t an 1时取等号,又m t an 3,,所以 当且仅当2 3m即 A 点在 O 东偏南 的方向上,总造价最低。
2 0 16届杨浦高级中学月考卷数学考试卷一、填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸相应编 号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.. 11. 抛物线/=%的焦点坐标为 ___________________ ・(-,0)4 2. 已 知全集= {-2,-1,0,1,2},集 合 A 二二丄「xwZ/wz},贝9q.A= . {0}6.向量a^c 在正方形网格中的位置如图所示.若 e 二加 + “5(入 “ W R),则一二 _________ .47. 已知数列{a n }满 足 a 】=1,= 2" ( n G N '),贝^2«= -------------- ■ 2”8. 在(2x+j + z)10的展开式屮,%3)?225的系数为 _______________ • 201609. (理)在极坐标系中,将圆p = 2沿着极轴正方向平移 两个单位后,再绕极点逆时针旋转兰弧度,则所得的曲线的4 极坐标方程为 _____________ . p = 4cos (0-彳)3. 如果烛FTIT !则。
的取值范围是 .(-4,2)4. 关于兀的方程:4= 14" 一 21=3的解为 X = log 4 35. 不等式 lgx 0 1 x —\ 1-2 no 的解集为.(0,|]u(l,+oo)左视图h主视图(文)一个几何体的三视图如图所示•若该几何体的表面积为92 ,则其高h- ___________ . 410. 5位好朋友相约乘坐迪士尼乐园的环园小火车。
小火车的车厢共有4节,设每一位乘客 进入每节车厢是等可能的,则这5位好朋友无人落单(即一节车厢内,至少有5人屮的231人)的概率是 .——-------------- 256 11. 已知定义在R 上的函数y 二/(x)对于任意的兀都满足/(x + 2) = /(%) •当一 15兀v 1时,/(x) = x 3 .若函数g(x) = /(x)-logjx|至少有6个零点,则a 的取值范围是__________ • (0 ,|]u(5,+oo ) 12.(理)一个篮球运动员投篮一次得3分的概率为G,得2分的概率为b (a,b#0),不 得分的概率为字.若他投篮一次得分§的数学期望E§>£,则a 的取值范围是,5 2、• aw (—,一) ---------------- 12 3(文) 设 全 集 U ={(x,y)\x,ye R} ,” [3 兀+ 4)一 12>0P=(x,y)卜 2x-y-8<0 R s 2 = {(^>0l-v 2 + y 2 <r\re R +},若QuQfx-2y+ 6 > 013.(理)在实数集R 屮,我们定义的大小关系“〉”为全体实数排了一个“序”。
杨浦区实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .2. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .3. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.4. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.5. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1B .±2C.或3D .1或26. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .567. 函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a< C.<a <1 D .a ≤0或a >18. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 9. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( ) A.π B .2πC .4πD.π10.在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB二、填空题11.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力. 12.方程(x+y ﹣1)=0所表示的曲线是 .13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 14.在数列中,则实数a= ,b= .15.命题“若1x ≥,则2421x x -+≥-”的否命题为.16.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .三、解答题1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623817.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.18.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
杨浦区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .212. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为()A .30°B .45°C .60°D .90°3. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)4. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°5. 从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( )A .B .C .D .6. 函数f (x )=x 3﹣3x 2+5的单调减区间是()A .(0,2)B .(0,3)C .(0,1)D .(0,5)7. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)8. 函数在区间上的最大值为5,最小值为1,则的取值范围是( )2()45f x x x =-+[]0,m m A .B .C .D .[2,)+∞[]2,4(,2]-∞[]0,29. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257393027556488730113537989班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________据此估计,这三天中恰有两天下雨的概率近似为( )A .0.35B .0.25C .0.20D .0.1510.已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)11.函数的定义域为( )1ln(1)y x=- A .B .C .D .(,0]-∞(0,1)(1,)+∞(,0)(1,)-∞+∞U 12.函数f (x )的定义域为[﹣1,1],图象如图1所示:函数g (x )的定义域为[﹣2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m+n=()A .14B .12C .10D .8二、填空题13.在等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q= .14.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)16.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x﹣lnx 的单调减区间为 .17.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n 个等式为 . 18.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .三、解答题19.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数.()1ln 1f x a x x=+-(1)当时,求函数在点处的切线方程;2a =()f x ()()11f ,(2)讨论函数的单调性;()f x (3)当时,求证:对任意,都有.102a <<1+2x ⎛⎫∈∞ ⎪⎝⎭,1e x aa x +⎛⎫+< ⎪⎝⎭20.如图,在三棱锥A ﹣BCD 中,AB ⊥平面BCD ,BC ⊥CD ,E ,F ,G 分别是AC ,AD ,BC 的中点.求证:(I )AB ∥平面EFG ;(II )平面EFG ⊥平面ABC .21.本小题满分12分如图,在边长为4的菱形中,,点、分别在边、上.点ABCD 60BAD ∠=oE F CD CB 与点、不重合,,,沿将翻折到的位置,使平面E C D EF AC ⊥EF AC O =I EF CEF ∆PEF ∆PEF ⊥平面.ABFED Ⅰ求证:平面;BD ⊥POA Ⅱ记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长.P ABD -1V P BDEF -2V 1243V V =PO 22.设0<||≤2,函数f (x )=cos 2x ﹣||sinx ﹣||的最大值为0,最小值为﹣4,且与的夹角为45°,求|+|.23.已知函数f (x )=和直线l :y=m (x ﹣1).(1)当曲线y=f (x )在点(1,f (1))处的切线与直线l 垂直时,求原点O 到直线l 的距离;(2)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;(3)求证:ln <(n ∈N +)24.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3.(1)当a=2时,求不等式f (x )<g (x )的解集;(2)设a >,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.PACDO EF FEO DCA杨浦区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B.2.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.3.【答案】C【解析】解:已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e2=,∴e≥2,故选C【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.4.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.5.【答案】C【解析】解:从1,2,3,4中任取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况,其中一个数是另一个数两倍的为(1,2),(2,4)共2个,故所求概率为P==故选:C【点评】本题考查列举法计算基本事件数及事件发生的概率,属基础题.6.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.7.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.8.【答案】B【解析】m m 试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知m[]2,4的右端点为,故的取值范围是.考点:二次函数图象与性质.9. 【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B . 10.【答案】C【解析】解:∵f (x )=﹣log 2x ,∴f (2)=2>0,f (4)=﹣<0,满足f (2)f (4)<0,∴f (x )在区间(2,4)内必有零点,故选:C 11.【答案】B 【解析】∵,∴,∴,∴.110x ->10x x ->10x x-<01x <<12.【答案】A【解析】解:由图象可知,若f (g (x ))=0,则g (x )=﹣1或g (x )=0或g (x )=1;由图2知,g (x )=﹣1时,x=﹣1或x=1;g(x)=0时,x的值有3个;g(x)=1时,x=2或x=﹣2;故m=7;若g(f(x))=0,则f(x)=﹣1.5或f(x)=1.5或f(x)=0;由图1知,f(x)=1.5与f(x)=﹣1.5各有2个;f(x)=0时,x=﹣1,x=1或x=0;故n=7;故m+n=14;故选:A.二、填空题13.【答案】 2或1 .【解析】解:设等差数列{a n}的公差为d,则可得(a1+d)2=a1(a1+3d)解得a1=d或d=0∴公比q==2或1.故答案为:2或1.【点评】本题考查等比数列和等差数列的性质,属基础题.14.【答案】 .【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.15.【答案】 相交 【分析】由已知得PQ∥A1D,PQ=A1D,从而四边形A1DQP是梯形,进而直线A1P与DQ相交.【解析】解:∵在正方体ABCD﹣A1B1C1D1中,点P、Q分别是B1C1、CC1的中点,∴PQ∥A1D,∵直线A1P与DQ共面,∴PQ=A1D,∴四边形A1DQP是梯形,∴直线A1P与DQ相交.故答案为:相交.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.16.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系17.【答案】 n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2 .【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…等号右边是12,32,52,72…第n个应该是(2n﹣1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.18.【答案】 .【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力. 三、解答题19.【答案】(1);(2)见解析;(3)见解析.10x y --=【解析】试题分析:(1)当时,求出导数易得,即,利用点斜式可得其切线方程;(2)2a =()'11f =1k =求得可得,分为和两种情形判断其单调性;(3)当时,根据(2)可()21'ax f x x -=0a ≤0a >102a <<得函数在上单调递减,故,即,化简可得所证结论.()f x ()12,()11a f f x ⎛⎫+< ⎪⎝⎭ln 1a a a x x a⎛⎫+< ⎪+⎝⎭试题解析:(1)当时,2a =,,,,所以函数在点()12ln 1f x x x =+-()112ln1101f =+-=()221'f x x x =-()221'1111f =-=()f x 处的切线方程为,即.()10,()011y x -=⨯-10x y --=(2),定义域为,.()1ln 1f x a x x =+-()0+∞,()2211'a ax f x x x x-=-=①当时,,故函数在上单调递减;0a ≤()'0f x <()f x ()0+∞,②当时,令,得0a >()'0f x =1x a=x10a ⎛⎫ ⎪⎝⎭,1a1a ⎛⎫+∞ ⎪⎝⎭,()'f x -+()f x ↘极小值↗综上所述,当时,在上单调递减;当时,函数在上单调递减,在0a ≤()f x ()0+∞,0a >()f x 10a ⎛⎫ ⎪⎝⎭,上单调递增.1a ⎛⎫+∞ ⎪⎝⎭,(3)当时,由(2)可知,函数在上单调递减,显然,,故,102a <<()f x 10a ⎛⎫ ⎪⎝⎭,12a >()1120a ⎛⎫⊆ ⎪⎝⎭,,所以函数在上单调递减,对任意,都有,所以.所以()f x ()12,1+2x ⎛⎫∈∞ ⎪⎝⎭,01a x <<112a x <+<,即,所以,即,所以()11a f f x ⎛⎫+< ⎪⎝⎭1ln 1101a a a x x ⎛⎫++-< ⎪⎝⎭+ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,即,所以.()ln 11a x a x ⎛⎫++< ⎪⎝⎭ln 11x aa x +⎛⎫+< ⎪⎝⎭1e x aa x +⎛⎫+< ⎪⎝⎭20.【答案】【解析】证明:(I )在三棱锥A ﹣BCD 中,E ,G 分别是AC ,BC 的中点.所以AB ∥EG …因为EG ⊂平面EFG ,AB ⊄平面EFG 所以AB ∥平面EFG …(II )因为AB ⊥平面BCD ,CD ⊂平面BCD 所以AB ⊥CD …又BC ⊥CD 且AB ∩BC=B 所以CD ⊥平面ABC …又E ,F 分别是AC ,AD ,的中点所以CD ∥EF 所以EF ⊥平面ABC …又EF ⊂平面EFG ,所以平面平面EFG ⊥平面ABC .…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键. 21.【答案】【解析】Ⅰ证明:在菱形中,ABCD ∵,∴. BD AC ⊥BD AO ⊥∵,∴,EF AC ⊥PO EF ⊥∵平面⊥平面,平面平面,且平面,PEF ABFED PEF I ABFED EF =PO ⊂PEF ∴平面,PO ⊥ABFED ∵平面,∴.BD ⊂ABFED PO BD ⊥∵,∴平面.AO PO O =I BD ⊥POA Ⅱ设.由Ⅰ知,平面, AO BD H =I PO ⊥ABFED ∴为三棱锥及四棱锥的高,PO P ABD -P BDEF -∴,∵,1211,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形1243V V =∴,∴, 3344ABD CBD BFED S S S ∆∆==梯形14CEF CBD S S ∆∆=∵,,BD AC EF AC ⊥⊥∴,∴∽. ∴, //EF BD CEF ∆CBD ∆21(4CEF CBDS CO CH S ∆∆==∴, ∴.111222CO CH AH ===⨯PO OC ==22.【答案】【解析】解:f (x )=cos 2x ﹣||sinx ﹣||=﹣sin 2x ﹣||sinx+1﹣||=﹣(sinx+)2++1﹣||,∵0<||≤2,∴﹣1≤﹣<0,由二次函数可知当sinx=﹣时,f(x)取最大值+1﹣||=0,当sinx=1时,f(x)取最小值﹣||﹣||=﹣4,联立以上两式可得||=||=2,又∵与的夹角为45°,∴|+|===【点评】本题考查数量积与向量的夹角,涉及二次函数的最值和模长公式,属基础题. 23.【答案】【解析】(Ⅰ)解:由f(x)=,得,∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.原点O到直线l的距离为;(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立..①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.不妨令,∴ln,(k∈N*).∴..….累加可得:,(n∈N*).即ln<(n∈N*).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是压轴题.24.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…。
上海市杨浦高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( )A .14 B .12C .1D .2 2. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.3. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,4. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 5. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个6. 记,那么ABCD7. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x xf e e = C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 8. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 9. 如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD10.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm211.在△ABC中,若A=2B,则a等于()A.2bsinA B.2bcosA C.2bsinB D.2bcosB12.已知2,0()2,0ax x xf xx x⎧+>=⎨-≤⎩,若不等式(2)()f x f x-≥对一切x R∈恒成立,则a的最大值为()A .716-B .916-C .12-D .14-二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.14.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .15.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.16.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.如图,已知椭圆C,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 的另外一个交点为A ,且线段AB 的中点E 在直线y=x 上. (1)求直线AB 的方程;(2)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,直线BM 交椭圆C 于另外一点Q . ①证明:OM •ON 为定值; ②证明:A 、Q 、N 三点共线.18.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的 概率.19.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.20.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分) (3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.21.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.22.若已知,求sinx 的值.上海市杨浦高级中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 【答案】B【解析】试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以()14160,2λλ+-==,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 2. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .3. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 4. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.123-1-2-3-1-212xyO1234-1-2-3-4-1-212xyO(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 5. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
6. 【答案】B 【解析】【解析1】,所以【解析2】,7. 【答案】D. 【解析】8. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 9. 【答案】C 【解析】根据题意有:A 的坐标为:(0,0,0),B 的坐标为(11,0,0),C 的坐标为(11,7,0),D 的坐标为(0,7,0); A 1的坐标为:(0,0,12),B 1的坐标为(11,0,12),C 1的坐标为(11,7,12),D 1的坐标为(0,7,12);E 的坐标为(4,3,12) (1)l 1长度计算 所以:l 1=|AE|==13。
(2)l 2长度计算将平面A 1B 1C 1D 1沿Z 轴正向平移AA 1个单位,得到平面A 2B 2C 2D 2;显然有:A 2的坐标为:(0,0,24),B 2的坐标为(11,0,24),C 2的坐标为(11,7,24),D 2的坐标为(0,7,24);显然平面A 2B 2C 2D 2和平面ABCD 关于平面A 1B 1C 1D 1对称。
设AE 与的延长线与平面A 2B 2C 2D 2相交于:E 2(x E2,y E2,24) 根据相识三角形易知: x E2=2x E =2×4=8, y E2=2y E =2×3=6, 即:E 2(8,6,24)根据坐标可知,E 2在长方形A 2B 2C 2D 2内。
10.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R ,R=,S=4πR 2=12π故选B11.【答案】D 【解析】解:∵A=2B ,∴sinA=sin2B ,又sin2B=2sinBcosB , ∴sinA=2sinBcosB ,根据正弦定理==2R 得:sinA=,sinB=,代入sinA=2sinBcosB 得:a=2bcosB . 故选D12.【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 14.【答案】5 【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f ′(x )>0或f ′(x )<0求单调区间;第二步:解f ′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小. 15.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.16.【答案】8三、解答题(本大共6小题,共70分。