拉伸与压缩--应力集中
- 格式:ppt
- 大小:5.02 MB
- 文档页数:39
第五章 轴向拉伸与压缩一、轴向拉伸与压缩承受拉伸或压缩杆件的外力(或外力的合力)作用线与杆轴线重合,杆件沿杆轴线方向伸长或缩短,这种变形形式称为轴向拉伸或轴向压缩。
这种杆件称为拉压杆。
二、轴力及轴力图杆件在外力作用下将发生变形,同时杆件内部各部分之间产生相互作用力,此相互作用力称为内力。
对于轴向拉压杆,其内力作用线与轴线重合,此内力称为轴力。
轴力拉为正,压为负。
为了表现轴向拉压杆各横截面上轴力的变化情况,工程上常以轴力图表示杆件轴力沿杆长的变化。
三、横截面上的应力根据圣文南原理,在离杆端一定距离之外,横截面上各点的变形是均匀的,各点的应力也应是均匀的,并垂直于横截面,此即为正应力。
设杆的横截面面积为A,则有AF N =σ 工程计算中设定拉应力为正,压应力为负。
四、强度条件工程中为各种材料规定了设计构件时工作应力的最高限度,称为许用应力,用[σ]表示。
轴向拉伸(压缩)强度条件为[]σσ≤=AF N用强度条件可解决工程中三个方面的强度计算问题,即:(1)强度校核;(2)设计截面;(3)确定许可载荷。
五、斜截面上的应力与横截面成θ角的任一斜截面上,通常有正应力和切应力存在,它们与横截面正应力σ的关系为:⎪⎪⎩⎪⎪⎨⎧=+=θστθσσθθ2sin 2)2cos 1(2 由上式可知,当θ=0°时,正应力最大,即横截面上的正应力是所有截面上正应力中的最大值。
当θ=±45°时,切应力达到极值。
六、拉压变形与胡克定律等值杆受轴向拉力F作用,杆的原长为l ,横截面积为A,变形后杆长由l 变为l +△l ,则杆的轴向伸长为EAFl l =∆ 用内力表示为EAl F l N =∆ 上式为杆件拉伸(压缩)时的胡克定律。
式中的E称为材料的拉伸(压缩)弹性摸量,EA称为抗拉(压)刚度。
用应力与应变表示的胡克定律为σ=Eε在弹性范围内,杆件的横向应变ε‘和轴向应变ε有如下的关系:μεε-='式中的μ称为泊松比。
第2章 杆件的拉伸与压缩提要:轴向拉压是构件的基本受力形式之一,要对其进行分析,首先需要计算内力,在本章介绍了计算内力的基本方法——截面法。
为了判断材料是否会发生破坏,还必须了解内力在截面上的分布状况,即应力。
由试验观察得到的现象做出平面假设,进而得出横截面上的正应力计算公式。
根据有些构件受轴力作用后破坏形式是沿斜截面断裂,进一步讨论斜截面上的应力计算公式。
为了保证构件的安全工作,需要满足强度条件,根据强度条件可以进行强度校核,也可以选择截面尺寸或者计算容许荷载。
本章还研究了轴向拉压杆的变形计算,一个目的是分析拉压杆的刚度问题,另一个目的就是为解决超静定问题做准备,因为超静定结构必须借助于结构的变形协调关系所建立的补充方程,才能求出全部未知力。
在超静定问题中还介绍了温度应力和装配应力的概念及计算。
不同的材料具有不同的力学性能,本章介绍了塑性材料和脆性材料的典型代表低碳钢和铸铁在拉伸和压缩时的力学性能。
2.1 轴向拉伸和压缩的概念在实际工程中,承受轴向拉伸或压缩的构件是相当多的,例如起吊重物的钢索、桁架第2章 杆件的拉伸与压缩 ·9··9·2.2 拉(压)杆的内力计算2.2.1 轴力的概念为了进行拉(压)杆的强度计算,必须首先研究杆件横截面上的内力,然后分析横截面上的应力。
下面讨论杆件横截面上内力的计算。
取一直杆,在它两端施加一对大小相等、方向相反、作用线与直杆轴线相重合的外力,使其产生轴向拉伸变形,如图2.2(a)所示。
为了显示拉杆横截面上的内力,取横截面把m m −拉杆分成两段。
杆件横截面上的内力是一个分布力系,其合力为N F ,如图2.2(b)和2.2(c)所示。
由于外力P 的作用线与杆轴线相重合,所以N F 的作用线也与杆轴线相重合,故称N F 为轴力(axial force)。
由左段的静力平衡条件0X =∑有:()0+−=N F P ,得=N F P 。
第2章杆件的拉伸与压缩杆件的拉伸与压缩是杆件的基本变形形式之一,也是最简单的一种变形形式。
本章主要通过对于拉伸与压缩的研究,我们将对杆件变形与内力的关系以及材料基本力学性质的研究建立初步的概念。
因此,对拉伸与压缩的研究具有重要的意义。
本章将建立拉压杆内力的概念和应力、应变的概念,讨论截面法在求解拉压杆内力中的具体应用,研究应变与应力的关系及材料拉伸压缩时的力学性能,建立强度计算的基本概念,并对超静定问题的求解作初步的了解。
§ 2.1引言在实际工程中,我们经常会遇到承受轴向拉伸和轴向压缩的等直杆件。
例如组成起重机塔架的杆件(图2.1),房屋的屋盖珩架中的杆件(图2.2)等。
如图2.2(a)所示的房屋的屋盖椅架,是由很多等直杆件绞接而成的。
现取出拉杆和压杆来进行分析。
拉杆的计算简图如图2.2(c),它是一根受拉的等直杆,由节点处传来的合力P,作用在杆件的两端,与杆的轴线重合,并且大小相等方向相反,它们使杆件产生轴向的伸长变形,图2.1 图 2.2 (a)我们称之为轴向拉伸;作用在压杆图2.2(b)两端的力P使杆产生轴向压缩变形,称为轴向压缩。
通过上述实例得知轴向拉伸和压缩具有如下特点:受力特点:作用于杆件两端的外力大小相等,方向相反,作用线与杆件轴线重合,即称轴向力。
变形特点:杆件变形是沿轴线方向的伸长或缩。
§ 2.2用截面法计算拉(压)杆的内力、拉(压)杆内力的概念内力的概念:杆件在受到轴向拉力作用时,会产生变形而伸长,同时,在杆件内任何截面处截面两侧相连部分之间产生相互作用力,它的存在保证了截面两侧部分不被分开,这种作用力,这种作用力本来是分布在整个截面的所示。
(c)就是杆件的拉伸内力。
类似地,杆件在受到轴向压力作用时,杆件内部会产生压缩内力。
二、用截面法求轴力根据1.5节所介绍计算杆件内力的方法即截面法的原理和一般步骤 ,现在研究拉(压)杆的内力计算方法。
图2.3(a)所示拉杆,两端各作用一轴向外力 P,内力的计算步骤如下:(1) 在该杆任一横截面 m-m 处将其假想地切开,取其左半部分(或右半部分)为脱离体。
第三章直杆的基本变形复习资料机械和工程结构中的零部件在载荷的作用下,其形状和尺寸发生变化,为了了保证机械零部件正常安全工作,必须具有足够的、和。
零件抵抗破坏的能力,称为。
零件抵抗破坏的能力,称为。
受压的细长杆和薄壁构件,当所受载荷增加时,可能失去平衡状态,这种现象称为丧失稳定。
是零件保持原有平衡状态的能力。
基本的受力和变形有、、,以及由两种或两种以上基本变形形式叠加而成的组合变形。
一、轴向拉伸与压缩(一)拉伸与压缩1、在轴向力作用下,杆件产生伸长变形称为轴向拉伸,简称,在轴向力作用下,杆件产生缩短变形称为轴向压缩,简称.2、轴向拉伸和压缩变形具有以下特点:(1)受力特点——。
(2)变形特点——。
(二)内力与应力1、杆件所受其他物体的作用力都称为外力,包括和。
2、在外力作用下,构件产生变形,杆件材料内部产生变形的抗力,这种抗力称为。
3、外力越大,构件的变形越大,所产生的内力也越大。
内力是由于外力的作用而引起的,内力随外力。
当内力超过一定限度时,杆件就会被破坏。
4、轴向拉、压变形时的内力称为,用F N表示。
剪切变形时的内力称为,用F Q表示。
扭转变形时的内力称为,用M T表示。
弯曲变形时的内力称为(M)与F Q)5、内力的计算——截面法将受外力作用的杆件假想地切开,用以显示内力的大小,用以显示内力的大小,并以平衡条件确定其合力的方法,称为截面法。
F N=F6、应力1)同样的内力,作用在材料相同、横截面不同的构件上,会产生不同的效果。
2)构件在外力作用下,单位面积上的内力称为。
轴向拉伸和压缩时应力垂直于截面,称为,记作σ。
3)轴向拉伸和压缩时横截面上的应力是均匀分布的,其计算公式为A F N =σ,其中σ为横截面上的正应力,MPa ;F N 为横截面上的内力,N ;A 为横截面面积,mm 2。
4)正应力的正负号规定为:拉伸压力为 ,压缩应力为 。
7、强度计算1)、材料丧失正常工作能力的应力,称为 。
塑性材料的极限应力是其 应力σs ,脆性材料的极限应力是其 应力σb 。
实验一 拉伸与压缩实验拉伸实验是对试件施加轴向拉力,以测定材料在常温静荷载作用下的力学性能的实验。
它是材料力学最基本、最重要的实验之一。
拉伸实验简单、直观、技术成熟、数据可比性强,它是最常用的实验手段。
由此测定的材料力学性能指标,成为考核材料的强度、塑性和变形能力的最基本的依据,被广泛、直接地用于工程设计、产品检验、工艺评定等方面。
而有些材料的受压力学性能和受拉力学性能不同,所以,要对其施加轴向压力,以考核其受压性能,这就是压缩实验。
一、实验目的1.通过对低碳钢和铸铁这两种不同性能的典型材料的拉伸、压缩破坏过程的观察和对实验数据、断口特征的分析,了解它们的力学性能特点。
2.了解电子万能试验机的构造、原理和操作。
3.测定典型材料的强度指标及塑性指标,低碳钢拉伸时的屈服极限S σ,(或下屈服极限SL σ),强度极限b σ,延伸率δ,截面收缩率ψ,压缩时的压缩屈服极限SC σ,铸铁拉伸、压缩时的强度极限b σ、bC σ。
二.实验设备及试件1. 电子万能试验机:试验机结构与原理――材料力学基本实验设备是静态万能材料试验机, 能进行轴向拉伸、轴向压缩和三点弯曲等基本实验。
试验机主要由机械加载、控制系统、测量系统等部分组成。
当前试验机主要的机型是电子万能试验机,其加载是由伺服电机带动丝杠转动而使活动横梁上下移动而实现的。
在活动横梁和上横梁(或工作台上)安装一对拉伸夹具或压缩弯曲的附件,就组成了加载空间。
伺服控制系统则控制伺服电机在给定速度下匀速转动,实现不同速度下横梁移动或对被测试件加载。
活动横梁的移动速度范围是0.05~500毫米/每分钟。
图1-1 万能材料试验机结构图图1—2 拉伸圆试件 测量系统包括负荷测量、试件变形测量和横梁位移测量。
负荷和变形测量都是利用电测传感技术,通过传感器将机械信号转变为电信号。
负荷传感器安装在活动横梁上,通过万向联轴节和夹具与试件联在一起,测量变形的传感器一般称作引伸计安装在试件上。