第06章 热力学第二定律
- 格式:pdf
- 大小:365.99 KB
- 文档页数:18
《热力学第二定律》讲义一、热力学第二定律的引入在我们生活的这个世界中,热现象无处不在。
从烧开水时的水汽蒸腾,到冬天取暖时的热量传递,热的变化和流动贯穿于我们的日常生活。
而热力学第二定律,则是用来描述热现象中能量转换和传递的重要规律。
想象一下,一个热的物体和一个冷的物体相互接触,热量会自发地从热的物体流向冷的物体,直到它们的温度相等。
但是,你有没有想过,为什么热量不会自发地从冷的物体流向热的物体呢?这就是热力学第二定律所要探讨的核心问题之一。
二、热力学第二定律的表述热力学第二定律有多种表述方式,其中最常见的有克劳修斯表述和开尔文表述。
克劳修斯表述:热量不能自发地从低温物体传递到高温物体而不引起其他变化。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
为了更好地理解这两种表述,我们来举几个例子。
假如在一个封闭的房间里,有一台没有外接电源的冰箱。
如果热量能够自发地从冰箱内部的低温区传递到外部的高温环境,那么冰箱内部就会越来越冷,而房间却不会因为接收了这些热量而有任何其他变化。
但在现实中,这是不可能发生的。
再比如,有一个热机,它从高温热源吸收了一定的热量,并将其中一部分转化为有用功。
如果能够从单一热源吸收热量并完全转化为有用功,而不向低温热源排放任何热量,那么这样的热机就是“永动机”,但根据热力学第二定律,这种情况是不可能实现的。
三、热力学第二定律的实质热力学第二定律的实质是揭示了自然界中一切与热现象有关的实际过程都是不可逆的。
什么是不可逆过程呢?比如说,一滴墨水滴入一杯清水中,墨水会逐渐扩散,最终使整杯水都变得有颜色。
但是,我们不可能让这杯已经混合均匀的水自动地恢复到墨水和清水分离的状态。
再比如,一块光滑的冰块在常温下会逐渐融化成水,而这些水不会自动地再重新凝结成原来形状规则的冰块。
这些过程一旦发生,就无法自发地逆向进行,这就是不可逆过程。
而热力学第二定律正是说明了这类不可逆过程的方向性。
《热力学第二定律》讲义在我们探索自然世界的奥秘时,热力学定律是不可或缺的重要基石。
而其中的热力学第二定律,更是具有深远的意义和广泛的应用。
让我们先来理解一下什么是热力学第二定律。
简单地说,热力学第二定律指出,热量不能自发地从低温物体传向高温物体,而不引起其他变化。
这就好比水总是从高处往低处流,如果要让水从低处往高处流,就必须要施加外力,消耗其他形式的能量。
从宏观角度来看,热力学第二定律表明,在任何自发的过程中,系统的熵总是增加的。
熵这个概念可能有点抽象,我们可以把它理解为系统的混乱程度。
一个封闭系统,如果没有外界的干预,它会自然而然地朝着更加混乱的方向发展。
比如说,一间整洁的房间,如果没有人去整理,它会逐渐变得杂乱无章,东西到处乱放,这就是熵增加的表现。
再比如,一堆燃烧的木材,燃烧的过程中,能量从高温的木材传递到周围的环境中,这个过程是不可逆的,而且系统的熵在增加。
那么,为什么热力学第二定律如此重要呢?首先,它对于理解能源的利用和转化具有关键意义。
在实际的能源利用过程中,比如发电、驱动汽车等,我们都无法实现能量的完全转化和利用。
总会有一部分能量以废热的形式散失掉,导致能源的效率无法达到 100%。
这就是热力学第二定律所限制的。
其次,热力学第二定律对于生命现象的理解也有启示。
生命是一个高度有序的系统,似乎与熵增加的趋势相违背。
但实际上,生命通过不断地从环境中摄取能量和物质,来维持自身的低熵状态。
但这个过程是以环境的熵增加为代价的。
在工业生产中,热力学第二定律也起着重要的指导作用。
例如,在设计热机、制冷设备等时,工程师们必须充分考虑热力学第二定律的限制,以提高设备的性能和效率。
为了更深入地理解热力学第二定律,我们来看几个具体的例子。
想象一下一个热的物体和一个冷的物体接触。
根据热力学第二定律,热量会自动从热的物体传递到冷的物体,直到两者的温度相等。
这个过程是不可逆的,也就是说,热量不会自动地从冷的物体返回热的物体,而不产生其他的变化。
第6、7章 热力学第I 、第II 定律原理及应用热力学第I 定律就是能量守恒定律:各种形式能量间相互转化或传递,在转化或传递的过程中,总的能量数量是守恒的。
能量的表现方式一是物质自身的蓄能,如内能、动能、位能和焓、自由能等各种热力学能等,它们都是状态函数;二是以系统和环境间传递的方式表现出来,如热和功,它们均与变化所经历的过程有关,是过程函数。
热力学第II 定律揭示了热和功之间的转化规律。
能量不仅有数量多寡,而且有质量(品位)的高低之分。
从做功能力上看,功可以全部转化为热,而热只能部分变为功,热和功是两种不同品位的能量。
运用热力学第I 定律和第II 定律,研究化工过程中的能量变化,对化工过程的能量转化、传递、使用和损失情况进行分析,揭示能量消耗的大小、原因和部位,为改进工艺过程,提高能量的利用率指出方向和方法,这是过程热力学分析的核心内容。
本章学习要求本章要求学生掌握敞开系统的热力学第I 定律(即能量衡算方程)及其工程应用;热力学第II 定律三种定性表述方式和熵衡算方程,弄清一些基本概念,如系统与环境、环境状态、可逆的热功转换装置(即Carnot 循环)、理想功与损失功、有效能与无效能等,学会应用熵衡算方程、理想功与损失功的计算及有效能衡算方法对化工单元过程进行热力学分析,对能量的使用和消耗进行评价。
重点与难点6 热力学第I 定律及其工程应用6.1 封闭系统能量衡算方程系统在过程前后的能量变化E ∆应与系统在该过程中传递的热量Q 与功W 的代数和:21E E E Q W ∆=-=+(5-1)通常规定:系统吸热为正,放热为负;系统对环境作功,得功为负,式(5-1)即是热力学第I 定律的数学表达式。
6.2 敞开系统的热力学第I 定律22Si i i i j j j j i jW 11Q dE m (h gz u )m (h gz u )22dt dt dt ''δδ++-+++-=∑∑ (5-5)式(5-5)即为敞开系统的热力学第I 定律表达式,其中:i i i h U P V =+。
热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。
第六章热力学第二定律5-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为25m+80m+0.5×18m=114m有热平衡方程得4.18×114m=3600×2922∴ m=2.2×104克=22千克5-2试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。
(提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。
如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。
试分析每一微小卡诺循环效率与的关系)证:(1)d当任意循环可逆时。
用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。
考虑任一微小可逆卡诺循环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率任意可逆循环R的效率为A为循环R中对外作的总功(1)又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度∴对任一微小可逆卡诺循,必有:T i≤T m,T i≥T n或或令表示热源T m和T n之间的可逆卡诺循环的效率,上式为将(2)式代入(1)式:或或(188完)即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n 之间的可逆卡诺循环的效率。
(2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡诺循环的效率必小于可逆时的效率,即(3)对任一微小的不可逆卡诺循环,也有(4)将(3)式代入(4)式可得:即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。
《热力学第二定律》讲义在我们探索自然世界的奥秘中,热力学定律无疑是极其重要的基石。
而其中的热力学第二定律,更是具有深远的意义和广泛的应用。
首先,让我们来理解一下什么是热力学第二定律。
简单地说,它表明了在一个孤立系统中,热量不可能自发地从低温物体传递到高温物体,或者说,任何自发的过程总是朝着熵增加的方向进行。
这里的熵,可以理解为系统的混乱程度。
为了更直观地感受这个定律,我们可以想象一个热的物体和一个冷的物体相互接触。
按照我们的直觉,热量似乎应该从热的物体均匀地流向冷的物体,直到两者温度相同达到平衡。
但热力学第二定律告诉我们,这个过程是不可逆的。
也就是说,一旦两者温度相同,热量不会自发地从冷的物体回到热的物体,使冷的物体更冷,热的物体更热。
那为什么会有这样的定律呢?这其实与自然界的宏观趋势有关。
从微观角度来看,分子和原子在不停地运动和碰撞,而这种运动和碰撞是随机的。
在一个封闭的系统中,随着时间的推移,这种随机性会导致系统的熵增加,也就是混乱程度增加。
比如,把一堆整齐摆放的积木弄乱是很容易的,但要让这堆乱掉的积木重新恢复整齐的摆放,就需要外界的干预和做功。
同样的道理,一个房间如果不打扫,会越来越乱;一个城市如果没有管理和规划,也会变得越来越无序。
热力学第二定律在很多实际的领域都有着重要的应用。
在能源领域,它告诉我们能源的转化和利用是有一定限度的。
例如,在热机中,燃料燃烧产生的热能不可能完全转化为机械能,总会有一部分能量以废热的形式散失掉。
这也就限制了热机的效率,促使我们不断寻找更高效的能源利用方式。
在化学领域,热力学第二定律可以帮助我们判断化学反应的方向和限度。
如果一个反应会导致系统的熵增加,那么这个反应在一定条件下就有可能自发进行;反之,如果一个反应会导致系统的熵减少,那么这个反应就需要外界提供能量才能进行。
在生物学中,生命的存在似乎与热力学第二定律有所矛盾。
生命系统是高度有序的,从简单的细胞到复杂的生物体,都展现出了精妙的结构和功能。
热力学第二定律知识点总结热力学是研究能量转化和能量传递规律的学科,其中热力学第二定律是热力学的核心和基础。
热力学第二定律描述了自然界中热量如何传递的方向和限制。
本文将对热力学第二定律的几个重要知识点进行总结。
一、热力学第二定律的表述热力学第二定律有多种表述形式,其中最为常见的是克劳修斯表述和开尔文表述。
克劳修斯表述指出,不能将能量从低温物体传递到高温物体而不引起其他变化。
换句话说,热量只能从高温物体传递到低温物体,不可能自发地从低温物体移动到高温物体中。
开尔文表述则强调了热力学第二定律的实际应用,它指出热量不可能从自发流动的热源中完全转化为功,一定会有一部分热量转化为无用的热量,最终导致热能的不可逆损失。
二、熵的概念熵是描述热力学系统混乱程度或无序程度的物理量。
熵的增加表示系统的混乱度增加,而熵的减少则表示系统的混乱度减少。
根据热力学第二定律,孤立系统的熵总是会增加,不可能自发减少。
根据熵的定义,我们可以得出一个结论:任何自发过程都会伴随着熵的增加。
这也是为什么自发发生的过程是不可逆的原因之一。
熵的增加导致能量的不可逆转化,使得系统无法恢复到原来的状态。
三、热机效率和热泵效率热机效率是指热机从热源中吸收的热量与做功所消耗的热量之比。
根据热力学第二定律,热机效率的上限由克劳修斯表述给出,即热机效率不能超过1减去低温热源与高温热源的温度比之间的比值。
热泵效率是指热泵从低温热源中吸收的热量与提供给高温热源的热量之比。
热泵效率的上限同样由克劳修斯表述限制。
四、热力学不可逆性热力学第二定律揭示了热力学过程的不可逆性。
不可逆性的存在使得热流只能从高温物体传递到低温物体,而不能反向流动。
不可逆性还导致了热机效率和热泵效率的存在上限。
热力学第二定律的不可逆性在自然界广泛存在,如热传导、功的转化等过程都受到了不可逆性的约束。
能量的不可逆流动使得一部分能量转化为无用的热量,增加了能量损失。
五、热力学第二定律的应用热力学第二定律在工程和科学研究中有着广泛的应用。