高级宏观经济学 第四版 中文 罗默课后题答案
- 格式:docx
- 大小:331.61 KB
- 文档页数:55
第8章消费1.宏观经济学模型:储蓄、消费、税收和转移支付。
一个代表性家庭主要生活在两个时期:年轻和年老时期。
当处于年轻期,这个家庭的总收入为20个单位的商品,当处于年老期,其收入为0。
假定其真实利率为2%,这个代表性家庭总是选择年轻和年老时消费同样多的商品,请回答以下问题:(1)请写出代表性家庭的跨期预算约束(inter-temporal budget constraint)。
使用C1和C2分别代表年轻和年老时消费,结合给定的利率和总收入,补充其他需要的条件写出此代表性家庭完整的跨期预算约束。
(2)这个家庭应该储蓄多少?(3)假定这个家庭在年轻的时候需要缴纳4个单位的商品作为税收,而在年老时可以获得6个单位商品的转移支付(福利)。
写出在这种情况下新的跨期预算约束。
此时这个代表性家庭应该从可支配收入中储蓄多少?答:(1)由已知可得这个家庭的年轻收入为Y1=20,年老收入为Y2=20,假定利率为r,则代表性家庭的跨期预算约束为:C1+C2/(1+r)=Y1+Y2/(1+r)=20;即:C1+C2/(1+2%)=20。
假定年轻时,政府征税T单位商品,年老时获得转移支付TR单位商品,则代表性家庭完整的跨期预算约束为:C1+C2/(1+r)=Y1-T+(Y2+TR)/(1+r);即:C1+C2/(1+2%)=20-T+TR/(1+2%)。
(2)由于代表性家庭总是选择年轻和年老时消费同样多的商品,则C1=C2,在不考虑政府税收和转移支付的情况下(T=TR=0),将r=2%代入C1+C2/(1+2%)=20,可得:C 1=C 2=20/[1+1/(1+2%)]=10.1。
因此,这个家庭应该储蓄S =Y 1-C 1=20-10.1=9.9。
(3)若T =4,TR =6,则新的跨期预算约束为:C 1+C 2/(1+2%)=20-4+6/(1+2%)=16+6/(1+2%)由C 1=C 2代入,可得:C 1=C 2=11.05。
目 录第1章 索洛增长模型第2章 无限期模型与世代交叠模型第3章 内生增长第4章 跨国收入差距第5章 实际经济周期理论第6章 名义刚性第7章 动态随机一般均衡周期模型第8章 消 费第9章 投 资第10章 失 业第11章 通货膨胀与货币政策第12章 预算赤字与财政政策第1章 索洛增长模型1.1 增长率的基本性质。
利用变量增长率等于其对数的时间导数这一性质证明:(a)两个变量之积的增长率等于其各自增长率之和。
即,若Z(t)=X(t)Y(t),则:(b)两个变量之比的增长率等于其各自增长率之差。
即,若Z(t)=X(t)/Y(t),则:(c)若Z(t)=X(t)α,则。
证明:(a)因为一个变量的增长率等于对该变量取对数后再对时间求导,那么可得下式:因为两个变量的积的对数等于两个变量各自对数之和,所以有下式:再简化为下面的结果:则得到(a)的结果。
(b)因为一个变量的增长率等于对该变量取对数后再对时间求导,那么可得下式:因为两个变量的比率的对数等于两个变量各自对数之差,所以有下式:再简化为下面的结果:则得到(b)的结果。
(c)因为一个变量的增长率等于对该变量取对数后再对时间求导,那么可得下式:又由于ln[X(t)α]=αlnX(t),其中α是常数,有下面的结果:则得到(c)的结果。
1.2 假设某变量X的增长率从时刻0到时刻t1为常数,并且等于a>0;在时刻t1降为0;从时刻t1到t2逐渐从0增加到a;在时刻t2后为常数,并且等于a。
(a)用图形表示出X的增长率随时间的变化。
(b)用图形表示出lnX随时间的变化。
答:(a)根据题目的规定,X的增长率的图形如图1-1所示。
从时刻到t 1时刻X的增长率为常数且等于a(a>0),为图形中的第一段。
X的增长率从0上升到a,对应于图中的第二段。
从t2时刻之后,X的增长率再次变为a。
图1-1 时间函数X的增长率(b)注意到lnX关于时间t的导数(即lnX的斜率)等于X的增长率,即:因此,lnX关于时间的图形如图1-2所示:从0时刻到t1时刻,lnX的斜率为a(a>0),在t1时刻,X(t)的增长率出现不连续的变化,因此lnX 的斜率出现扭曲,在t1时刻至t2时刻,lnX的斜率由0逐渐变为a;从t2时刻之后,lnX的斜率再次变为a(a>0)。
高级宏观经济学_第四版_中文_罗默课后题答案第2章无限期模型与世代交叠模型2.1 考虑N 个厂商,每个厂商均有规模报酬不变的生产函数Y =F (K,AL ),()Y F K AL =,,或者采用紧凑形式Y =ALf (k )。
假设f ′(·)>0,f ′′(·)<0。
假设所有厂商都能以工资wA 雇用劳动,以成本r 租赁资本,并且所有厂商的A 值都相同。
(a )考虑厂商生产Y 单位产出的成本最小化问题。
证明使成本最小化的k 值唯一确定并独立于Y ,并由此证明所有厂商都选择相同的k 值。
(b )考虑某单个厂商,若其具有相同生产函数,并且其劳动和资本的投入是上述N 个厂商的总和,证明其产出也等于述N 个厂商成本最小化的总产出。
证明:(a )题目的要求是厂商选择资本K 和有效劳动AL 以最小化成本wAL +rK ,同时厂商受到生产函数Y =ALf (k )的约束。
这是一个典型的最优化问题。
min wAL +rKs.t.Y =ALf (k )构造拉格朗日函数:F (K,AL,λ)=wAL +rK +λ[Y −ALf (k )]求一阶导数:ðF ðK =r −λ[ALf ′(K AL ⁄)(1AL ⁄)]=0 ðF ðAL=w −λ[f (K AL ⁄)− ALf ′(K AL ⁄)(K (AL )2⁄)]=0 得到:r =λ[ALf ′(K AL ⁄)(1AL ⁄)]=λf ′(k )w =λ[f (K AL ⁄)− ALf ′(K AL ⁄)(K (AL )2⁄)]=λ[f (k )−kf ′(k )]r w =f ′(k )f (k )−kf ′(k )上式潜在地决定了最佳资本k 的选择。
很明显,k 的选择独立于Y 。
上式表明,资本和有效劳动的边际产品之比必须等于两种要素的价格之比,这便是成本最小化条件。
(b )因为每个厂商拥有同样的k 和A ,则N 个成本最小化厂商的总产量为:∑Y i =N i=1∑AL i f (k )N i=1=Af (k )∑L i Ni=1=AL̅f (k ) L ̅为N 个厂商总的雇佣人数,单一厂商拥有同样的A 并且选择相同数量的k ,k 的决定独立于Y 的选择。
高级宏观经济学_第四版_中文_罗默课后题答案第2章无限期模型与世代交叠模型2.1 考虑N 个厂商,每个厂商均有规模报酬不变的生产函数Y =F (K,AL ),()Y F K AL =,,或者采用紧凑形式Y =ALf (k )。
假设f ′(·)>0,f ′′(·)<0。
假设所有厂商都能以工资wA 雇用劳动,以成本r 租赁资本,并且所有厂商的A 值都相同。
(a )考虑厂商生产Y 单位产出的成本最小化问题。
证明使成本最小化的k 值唯一确定并独立于Y ,并由此证明所有厂商都选择相同的k 值。
(b )考虑某单个厂商,若其具有相同生产函数,并且其劳动和资本的投入是上述N 个厂商的总和,证明其产出也等于述N 个厂商成本最小化的总产出。
证明:(a )题目的要求是厂商选择资本K 和有效劳动AL 以最小化成本wAL +rK ,同时厂商受到生产函数Y =ALf (k )的约束。
这是一个典型的最优化问题。
min wAL +rKs.t.Y =ALf (k )构造拉格朗日函数:F (K,AL,λ)=wAL +rK +λ[Y −ALf (k )]求一阶导数:ðF ðK =r −λ[ALf ′(K AL ⁄)(1AL ⁄)]=0 ðF ðAL=w −λ[f (K AL ⁄)− ALf ′(K AL ⁄)(K (AL )2⁄)]=0 得到:r =λ[ALf ′(K AL ⁄)(1AL ⁄)]=λf ′(k )w =λ[f (K AL ⁄)− ALf ′(K AL ⁄)(K (AL )2⁄)]=λ[f (k )−kf ′(k )]r w =f ′(k )f (k )−kf ′(k )上式潜在地决定了最佳资本k 的选择。
很明显,k 的选择独立于Y 。
上式表明,资本和有效劳动的边际产品之比必须等于两种要素的价格之比,这便是成本最小化条件。
(b )因为每个厂商拥有同样的k 和A ,则N 个成本最小化厂商的总产量为:∑Y i =N i=1∑AL i f (k )N i=1=Af (k )∑L i Ni=1=AL̅f (k ) L ̅为N 个厂商总的雇佣人数,单一厂商拥有同样的A 并且选择相同数量的k ,k 的决定独立于Y 的选择。
第4章 跨国收入差距4.1 黄金律的教育水平。
考虑第4.1节中的模型,假设G (E )的形式为。
(a )找出最大化平衡增长路径上人均产出水平的E 值的表达式。
是否存在这个值等于0的情形?是否存在该值等于T 的情形?(b )假设内点解,描述E 的黄金律水平[即(a )小题中你找到的E 值]如何受下述变化的影响(如果有影响的话)。
(i )T 增加。
(ii )n 下降。
答:(a )在均衡增长路径上假设,则人均产出为:(1)其中,则在均衡增长路径上每单位有效劳动的产出关于E 最大化的自然对数为(注意y *和A (t )不是E 的函数):(2)一阶条件是:(3) 或者:(4)化简可得:(5)(E)e E G φ=()E GE e φ=()1bgpnE nT EnTY e e y A t eN e φ--*--⎛⎫= ⎪-⎝⎭()**y f k =()/bgpY N ln ln ln ()ln ln 1bgpnE nT nTY y A t E e e e N φ*---⎛⎫⎡⎤⎡⎤=+++--- ⎪⎣⎦⎣⎦⎝⎭()ln 1()0bgpnEnE nTY N e n Ee eφ---∂=+-=∂-()nE nT nE e e ne φ----=()nE nT n e e φφ---=方程(5)化简得:(6)方程(6)两边取自然对数得:(7)在(7)两边乘以-1/n ,得到教育的黄金律水平:(8)(b )(i )求E *关于T 的导数:(9) 因此,生命期限的增加一比一的提高了教育的黄金律水平。
(ii )n 下降会提高教育的黄金律水平。
由方程(6)可知:(10)或者:(11)在(11)两边同时乘以φ/n 得:(12)方程(12)的左边等价于:nE nT e e nφφ--=-()ln ln nE n nT φφ-=---⎡⎤⎣⎦1ln E T n n φφ*⎡⎤=-⎢⎥-⎣⎦1E T*∂=∂()n T E n eφφ*---=()1n T E neφ*---=()11n T E e nφ*--⎡⎤-=⎣⎦(13)对方程(12)进行微分,即:(14) 求解方程(14)可得:(15)由于因此,dE */dn <0,即下降会提高教育的黄金律水平。
第1章索洛增长模型1.在Solow模型中,假设一个经济体在初始时候处于稳定状态。
现在一场自然灾害夺去了一部分人的生命,但资本总量却在灾害中没有损失。
请问人均资本、人均产出在短期和长期的变化趋势。
答:(1)索洛增长模型的总量生产函数是Y=F(K,L),或者以人均形式来表示为y =f(k)。
在短期,如果自然灾害夺取了部分人的生命,L下降,使k=K/L上升了。
由总量形式的生产函数可知,劳动力减少,则总产出下降。
但是,由于人均资本存量水平上升了,工人人均产出将会增加。
(2)劳动力的减少意味着自然灾害后的人均资本存量高于灾害发生之前,而灾害前的经济处于稳定状态,所以灾害后的人均资本存量水平高于稳定状态水平。
如图1-1所示,灾害发生后的人均资本存量位于k*右边的某一个位置k1。
但是k1不是稳定状态,这时人均储蓄小于资本扩展化水平,所以资本深化为负,人均资本存量会降低,经济逐渐向稳定状态过渡。
因此,在长期中,人均资本存量下降到k*,经济重新达到稳定状态。
在这个过程中,由于人均资本存量一直在下降,所以人均产出也一直在下降。
在稳定状态,技术进步决定人均产出增长率,一旦经济恢复到稳定状态,人均产量仅由技术进步决定。
因此这和灾害发生前是一样的。
图1-1 资本存量恢复稳态水平2.某经济体的生产函数为:Y t=(A t L t)αK t1-α,其中A t L t为效率劳动单位,如参数A t上升,则同样数量的劳动者可提供更多的效率劳动。
在每一期,消费者将s比例的产出投资于新资本,即I t=sY t,资本运动方程为:K t+1=(1-δ)K t+I t,其中δ为折旧率。
设劳动力与劳动生产率均以固定比率增长:L t+1=(1+l)L t,A t+1=(1+μ)A t。
试回答以下问题:(其中前4问反映的是卡尔多指出的经济增长进程的典型化事实)(1)设代表性竞争企业分别按实质工资W t和实质利息R t雇佣劳动和资本,写出企业的最优化问题,证明劳动和资本分配份额W t L t/Y t和R t K t/Y t在该经济中均为常数。
第7章 动态随机一般均衡周期模型7.1 价格制定失衡时的费希尔模型。
假设经济由第7.2节中的模型所刻画,只是每个时期会有一半的厂商制定价格,其中比例为f 的厂商在奇数期制定价格,比例为1-f 的厂商在偶数期制定价格。
因此当t 为偶数时,价格水平为,当t 为奇数时,价格水平为。
推导每一期关于p t 和y t 的类似于(7.27)式和(7.28)式的表达式。
解:由题意知,当t 为偶数时,价格水平为:(1)其中,表示比例为f 的厂商在t -1期设定的t 期价格,表示比例为1-f 的厂商在t -2期设定的t 期价格。
等于t -1期对的期望,即有:(2)将方程(1)代入(2),并利用如下事实:在设定的时候,就已经确定,因此不存在不确定性。
得:(3) 解得:(4)等于t -2期对的期望,有:(5)将方程(1)代入(5)得:(6) ()121t t fp f p +-()121t t f p fp -+()121t t t p fp f p =+-1t p 2t p 1t p *it p ()1*111t t it t t t p E p E p m φφ--+-==⎡⎤⎣⎦1t p 2t p ()()111211t t t tt m f E f p p p φφ-+-+-⎡⎤=⎣⎦()()()()121111111t t tt pE f m ff p φφφφ-=------+2t p *it p ()2*221t t it t t t p E p E p m φφ--+-==⎡⎤⎣⎦()()2221211t t tt t t m fE p p f E p φφ--+--=+⎡⎤⎣⎦由于方程(4)左右两边相等,因此在t -2期对两边求期望也必定相等。
因此:(7)运用重复映射法则,将方程(7)代入(6)得:(8)求解方程(8)得:(9)化简得:(10)(11) (12)所以,t -2期设定的t 期价格水平为:(13)将方程(13)代入(4)得:(14)即:()()()()1222111111t t t t t f m p E E fp fφφφφ----+---=-212t t t t t m E m E E ---=()()()()()()2222211111111t t t tt t t f f f m E m p f p f f p E φφφφφφ----+-+⎡⎤=⎢⎥⎣+----⎦-()()()()()()()()()()222111111111111t tt t f f p E m f f f f f p f f φφφφφφφφφφ-⎡⎤--+----+----+-=⎢⎥--⎣⎦⎡⎤⎢⎥⎣⎦-()()()()222111111t t t t p E f m ffp φφφφ-=------+()()()()()2211111111t tt f f p m E f f φφφφφ-⎡⎤-----=⎢--⎥--⎣⎦()()221111t t t p m fE fφφφφ---=--22t t t p E m -=()()()()121111111t t tt t pE f f m E m fφφφφ----+=----(15)又所以,方程(15)又可以写成:(16)为了得到总价格水平的表达式,将方程(16)和(13)代入方程(1)得:(17)化简得:(18)为了求解t 期的产出,将方程(18)代入总需求的表达式y t =m t -p t ,得:(19)即:(20)又且,所以,方程(20)又可以写成:(21)()()()()()221111111111tt t t t t t f f E p E f m m E m f φφφφφ---⎡⎤---+-++⎢⎥-⎦=⎣---()()()()()()11111111f ff fφφφφφφ---+-=--+--+-=-()()211211t t t t t t t p E fE m m E m φφ---=--+-()()()1222111t t t t t t t t t p f E m m E m m E f E f φφ----⎡⎤=+-⎢⎥--⎣⎦+-()()21211t t t t t t t fp m E m E fE m φφ---=--+-()()22111t t t t t t t t fE m m E m y m E fφφ---=-----()()()()11211111111t t t t t t t t E m E f f f f y m E f fm m φφφφφφ---⎡⎤⎡⎤-+----=-⎢⎥⎢++⎥----⎣⎦⎣⎦()()111f f f φφ-+-=--()()111f f f φφ---=-()()()()121111t t t t t t t t f y E m E mfm m E φ---+-=----方程(18)和(21)给出了偶数期的均衡价格和均衡产量。
高级宏观经济学_第四版_中文_罗默课后题答案第2章无限期模型与世代交叠模型2.1 考虑N个厂商,每个厂商均有规模报酬不变的生产函数,()=,,或者采用紧凑形式。
假设Y F K AL。
假设所有厂商都能以工资wA雇用劳动,以成本r 租赁资本,并且所有厂商的A值都相同。
(a)考虑厂商生产Y单位产出的成本最小化问题。
证明使成本最小化的k 值唯一确定并独立于Y,并由此证明所有厂商都选择相同的k值。
(b)考虑某单个厂商,若其具有相同生产函数,并且其劳动和资本的投入是上述N个厂商的总和,证明其产出也等于述N个厂商成本最小化的总产出。
证明:(a)题目的要求是厂商选择资本K和有效劳动AL以最小化成本,同时厂商受到生产函数的约束。
这是一个典型的最优化问题。
构造拉格朗日函数:求一阶导数:得到:上式潜在地决定了最佳资本k的选择。
很明显,k的选择独立于Y。
上式表明,资本和有效劳动的边际产品之比必须等于两种要素的价格之比,这便是成本最小化条件。
(b)因为每个厂商拥有同样的k和A,则N个成本最小化厂商的总产量为:为N个厂商总的雇佣人数,单一厂商拥有同样的A并且选择相同数量的k,k的决定独立于Y的选择。
因此,如果单一厂商拥有的劳动人数,则它也会生产的产量。
这恰好是N个厂商成本最小化的总产量。
2.2 相对风险规避系数不变的效用函数的替代弹性。
设想某个人只活两期,其效用函数由方程(2.43)给定。
令和分别表示消费品在这两期中的价格,W表示此人终生收入的价值,因此其预算约束是:(a)已知和和W,则此人效用最大化的和是多少?(b)两期消费之间的替代弹性为,或。
证明,若效用函数为(2.43)式,是则与之间的替代弹性为。
答:(a)这是一个效用最大化的优化问题。
(1)(2)求解约束条件:(3)将方程(3)代入(1)中,可得:(4)这样便将一个受约束的最优化问题转变为一个无约束问题。
在方程(4)两边对求一阶条件可得:解得:(5)将方程(5)代入(3),则有:解得:(6)将方程(6)代入(5)中,则有:(7)(b)由方程(5)可知第一时期和第二时期的消费之比为:(8)对方程(8)两边取对数可得:(9)则消费的跨期替代弹性为:因此,越大,表明消费者越愿意进行跨期替代。
高级宏观经济学_第四版_中文_罗默课后题答案第2章无限期模型与世代交叠模型2.1 考虑N个厂商,每个厂商均有规模报酬不变的生产函数,()=,,或者采用紧凑形式。
假设Y F K AL。
假设所有厂商都能以工资wA雇用劳动,以成本r租赁资本,并且所有厂商的A值都相同。
(a)考虑厂商生产Y单位产出的成本最小化问题。
证明使成本最小化的k 值唯一确定并独立于Y,并由此证明所有厂商都选择相同的k值。
(b)考虑某单个厂商,若其具有相同生产函数,并且其劳动和资本的投入是上述N个厂商的总和,证明其产出也等于述N个厂商成本最小化的总产出。
证明:(a)题目的要厂商选择资本K和有效劳动AL以最小化成本,同时厂商受到生产函数的约束。
这是一个典型的最优化问题。
构造拉格朗日函数:求一阶导数:得到:上式潜在地决定了最佳资本k的选择。
很明显,k的选择独立于Y。
上式表明,资本和有效劳动的边际产品之比必须等于两种要素的价格之比,这便是成本最小化条件。
(b)因为每个厂商拥有同样的k和A,则N个成本最小化厂商的总产量为:为N个厂商总的雇佣人数,单一厂商拥有同样的A并且选择相同数量的k,k的决定独立于Y的选择。
因此,如果单一厂商拥有的劳动人数,则它也会生产的产量。
这恰好是N个厂商成本最小化的总产量。
2.2 相对风险规避系数不变的效用函数的替代弹性。
设想某个人只活两期,其效用函数由方程(2.43)给定。
令和分别表示消费品在这两期中的价格,W表示此人终生收入的价值,因此其预算约束是:(a)已知和和W,则此人效用最大化的和是多少?(b)两期消费之间的替代弹性为,或。
证明,若效用函数为(2.43)式,是则与之间的替代弹性为。
答:(a)这是一个效用最大化的优化问题。
(1)(2)求解约束条件:(3)将方程(3)代入(1)中,可得:(4)这样便将一个受约束的最优化问题转变为一个无约束问题。
在方程(4)两边对求一阶条件可得:解得:(5)将方程(5)代入(3),则有:解得:(6)将方程(6)代入(5)中,则有:(7)(b)由方程(5)可知第一时期和第二时期的消费之比为:(8)对方程(8)两边取对数可得:(9)则消费的跨期替代弹性为:因此,越大,表明消费者越愿意进行跨期替代。
第10章失业1.结合相关理论和模型回答有关经济周期的问题:(1)以下各变量的周期性(顺周期、反周期、无周期)是怎样的?a.消费b.投资c.就业人数d.失业率e.就职率f.离职率g.职位空缺率h.净出口i.资本利用率(2)消费、投资与总产出的波动性有怎样的关系?造成此现象的可能原因有?(3)什么是保留工资?它是如何受到失业保障金水平影响的?(4)技术进步对就职率的影响是不是确定的?有哪些可能影响?(5)贝弗里奇曲线指哪两个变量的关系?如何解释这一关系?(6)资本利用率是如何决定的?如何受到技术进步冲击的影响?答:(1)顺周期性指变量按与实际GDP相同的方向波动;反周期性,又称逆周期性,指变量按与实际GDP相反的方向波动;无周期性,又称非周期性,指变量在经济周期期间不按特定方向波动。
题中给出的各变量的周期性分别如下:a.消费,是顺周期性的。
b.投资,是顺周期性的。
c.就业人数,是顺周期性的。
d.失业率,是反周期性的。
e.就职率,是顺周期性的。
f.离职率,是无周期性的。
g.职位空缺率,是顺周期性的。
h.净出口,是反周期性的。
i.资本利用率,是顺周期性的。
(2)实际消费支出一般按与实际总产出(实际GDP)相同的方向波动,但变化幅度小于总产出的变化幅度。
实际总投资也按与实际总产出(实际GDP)相同的方向波动,但在比例上要比总产出的波动大得多。
造成此现象的可能原因如下:当劳动市场和资本服务市场出清时,可以得到一个简化的家庭预算约束公式:消费+实际储蓄(投资)=实际收入。
家庭会将实际收入在消费和投资之间进行划分。
但是投资是为了增加未来的消费,所以实际收入的划分是对现期消费还是今后消费做出选择。
收入的增加会带来两种效应:收入效应和跨时期替代效应。
若收入增加是暂时性的,则此时只有跨时期替代效应而没有收入效应,表明现期的消费不变,收入的增加全部用来投资。
此时边际消费倾向为0,边际储蓄倾向为1;若收入增加是永久性的,则此时只有收入效应而无跨时替代效应,现期消费会增加,而投资不变。
第二章无限期模型与世代交叠模型高级宏观经济学_第四版—中文_罗默课后题答案第2章无限期模型与世代交叠模型2.1考虑N个厂商,每个厂商均有规模报酬不变的生产函数,Y = F K, AL,或者采用紧凑形式。
假设。
假设所有厂商都能以工资wA雇用劳动,以成本r租赁资本,并且所有厂商的A值都相同。
(a)考虑厂商生产Y单位产出的成本最小化问题。
证明使成本最小化的k 值唯一确定并独立于Y,并由此证明所有厂商都选择相同的k值。
(b)考虑某单个厂商,若其具有相同生产函数,并且其劳动和资本的投入是上述N个厂商的总和,证明其产出也等于述N个厂商成本最小化的总产出。
证明:(a题目的要求是厂商选择资本K和有效劳动AL以最小化成本,同时厂商受到生产函数的约束。
这是一个典型的最优化问题。
构造拉格朗日函数:求一阶导数:得到:上式潜在地决定了最佳资本k的选择。
很明显,k的选择独立于丫第二章无限期模型与世代交叠模型上式表明,资本和有效劳动的边际产品之比必须等于两种要素的价格之比,这便是成本最小化条件。
(b)因为每个厂商拥有同样的k和A,贝U N个成本最小化厂商的总产量为:为N个厂商总的雇佣人数,单一厂商拥有同样的A并且选择相同数量的k, k的决定独立于丫的选择。
因此,如果单一厂商拥有的劳动人数,则它也会生产的产量。
这恰好是N个厂商成本最小化的总产量。
2.2相对风险规避系数不变的效用函数的替代弹性。
设想某个人只活两期,其效用函数由方程(2.43)给定。
令和分别表示消费品在这两期中的价格,W表示此人终生收入的价值,因此其预算约束是:(a)已知和和W,则此人效用最大化的和是多少?(b)两期消费之间的替代弹性为,或。
证明,若效用函数为(2.43)式,是则与之间的替代弹性为。
答:(a)这是一个效用最大化的优化问题。
---- ------------ (1)(2)求解约束条件:(3)将方程(3)代入(1)中,可得:---- ---------------------------- (4) 这样便将一个受约束的最优化问题转变为一个无约束问题。
在方程( 4)两边对求一阶条件可得:(5)解得:将方程(5)代入(3),则有:解得:------------------- (6)将方程(6)代入(5)中,则有:------------------- (7)(b)由方程(5)可知第一时期和第二时期的消费之比为:(8)对方程(8)两边取对数可得:(9)则消费的跨期替代弹性为:因此,越大,表明消费者越愿意进行跨期替代。
2.3 (a)假设事先知道在某一时刻,政府会没收每个家庭当时所拥有财富的一半。
那么,消费是否会在时刻发生突然变化?为什么?(如果会的话,请说明时刻前后消费之间的关系。
)(b)假设事先知道,在某一时刻,政府会没收每个家庭当时所拥有的部分财富,其数量等于当时所有家庭财富平均水平的一半。
那么,消费是否会在时刻发生突然变化?为什么?(如果会,请说明时刻前后消费之间的关系。
)答:(a)考虑两个时期的消费,比如在一个极短的时期内,从到。
考虑家庭在时期减少每单位有效劳动的消费为。
然后他在投资并消费这一部分财富。
如果家庭在最优化他一生的财富,则他的这一财富变化对一生的效用没有影响。
这一变化有一效用成本前,在会有一收益,财富的回报率为,不过,此刻有一半的财富会被没收。
此时的效用收益为后。
总之,对于效用最大化的消费路径来说,必须满足下列条件:前后在时,有下式:前后因此,当政府对财富没收一半后,消费会不连续的变化,消费会下降。
征收前,消费者会减少储蓄以避免被没收,之后会降低消费。
(b)从家庭的角度讲,他的消费行为将不会发生不连续的变化。
家庭事先会预测到自己一半的财富会被政府没收,为了最优化他一生的效用,家庭不会使自己的消费发生不连续的变化,他还是希望平滑自己的消费的。
2.4设方程(2.1)中的瞬时效用函数为。
考虑家庭在(2.6)的约束下最大化方程(2.1)的问题。
请把每一时刻的C表示为初始财富加上劳动收入现值、以及效用函数各参数的函数。
答:OO X—————— 2.6 本题目是在家庭的预算约束下最大化一生的效用OOOO令一建立拉格朗日方程:求一阶条件:抵消—项得: OO(1)—(2)第二章无限期模型与世代交叠模型(1)(3)可以推出:(4)将其代入预算约束方程,得:—(5)将代入上式,得:OO— (6)只要 ,则积分项收敛,为,贝——(7)将方程(7)代入(4):——(8)因此,初始消费为:——(9)个人的初始财富为 ------ ,方程(9)说明消费是初始财富的一个不变的比例。
为个人的财富边际消费倾向。
可以看出,这个财富边际消费倾向在平衡 增长路径上是独立于利率的。
对于折现率 而言,越大,家庭越厌恶风险,越会选择多消费。
2.5设想某家庭的效用函数由(2.1) ~ (2.2)式给定。
假设实际利率不变, 令W 表示家庭的初始财富加上终生劳动收入的现值 [(2.6)的右端]。
已知r 、W 和 效用函数中的各参数,求 C 的效用最大化路径。
OO—— 2.1 ----- 2.2答:本题目是在家庭的预算约束下最大化一生的效用,即:OOW 代表家庭的初始财富加上家庭一生劳动收入的现值,利率 r 是常数建立拉格朗日方程如下:求一阶条件,可得:抵消 ,得:(3)两边对时间t 求导,可得:得到下面的方程:—(4)将方程(3)代入(4),可得:抵消 然后求消费的增长率 ——,可得:————(5)由于利率r 是常数,所以消费的增长率为常数。
如果 ,则市场利率超过贴现率,则消费会增加;反之,如果 ,则市场利率小于贴现率,则消费会减少。
如果 ,则 决定了消费增长的幅度。
值越低,也就是替代弹性越高, 越高,即消费增长的越快。
重写方程(5),得:———— (6)对方程(6)积分,积分区间是从时间T =0到时间T =t ,可得:OO(2)上式可以简化为:对方程(7)两边取指数,可得:下面求解初始消费,将方程(8)代入(2),可得:代入上式,可得:------(9),从而保证积分收敛,则求解方程(9)可得:OO--------- (10)将方程(10)代入(9)中,求解--------- (11)将方程(11)代入(8),求解 :--------- (12)上式便是C 的效用最大化路径。
2.6生产力增长减速与储蓄。
设想一个正处于平衡增长路径上的拉姆塞一 卡斯一库普曼期模型,假设g 永久性下降。
(a ) 曲线会如何变化(如果有影响)? (b )曲线会如何变化(如果有影响)?(c ) 当g 下降时,c 如何变化?(d ) 用一个式子表示g 的边际变化对平衡增长路径上储蓄率的影响。
能否 判断此表达式的正负?(e ) 设生产函数是柯布一道格拉斯函数 ,请用、n 、g 、B 和a重新表示(d )中的结果。
(提示:利用等式o )答:(a )关于资本的欧拉方程为:(7),整理得:将只要(1)该方程描述了资本的动态方程,在拉姆塞模型中,该方程描述了技术特征, 是该模型的核心,它与消费的动态方程一起构成了该模型的欧拉方程组, 从而决定了该模型的最终解。
在平衡增长路径上, ,由此可以推出: 。
在该方程中,当g 永久性地下降时,会导致消费C 上升以保持方程的均衡。
因而在图形 上 曲线向上移动。
同时,保持 k 不变,g 永久性地下降会导致持平投资下 降,这样就会有更多的资源用于消费。
由于持平投资 下降的幅度更大,因而在更高的k 水平上,向上移动得更大。
图2-1是该模型的图示。
(b )每单位有效劳动消费的欧拉方程为:(2)该方程描述了消费的动态方程,在拉姆塞模型中,该方程描述了偏好特征, 是该模型的核心,它与资本的动态方程一起构成了该模型的欧拉方程组, 从而决定了该模型的最终解。
在平衡增长路径上,要求,即为保持 , 必须下降。
由于 因此, 必须上升,在图形上表现为(c) 在g 永久性地下降时,由于每单位有效劳动的资本是由历史上的投资 决定的,因而不会发生不连续的变化。
它仍然保持在平衡增长路径处。
与此相反,每单位有效劳动的消费则会随着 g 永久性地下降而迅速变化。
为,在g 永久性地下降时, ,因而 下降必然导致k 上升。
向右移动,如图2-1所示。
图2-1拉姆塞模型使经济从旧的平衡增长路径达到新的平衡增长路径,每单位有效劳动的消费c必将发生变化。
不过,此处无法确定新的平衡增长路径处于旧的均衡点的上边还是下边,因而无法确定每单位有效劳动的消费c是上升还是下降。
存在一种特殊情况,即如果新的平衡增长路径恰好位于旧的均衡点的右上方,则每单位有效劳动的消费c 甚至可能保持不变。
因此,c和k逐步移动到新的平衡增长路径,此时的值高于原先的平衡增长路径值。
(d)在平衡增长路径上,产出中被储蓄的部分为:因为k保持不变,即,位于一条均衡的增长路径上,则由方程(1)可知:由上面两个式子可以推出在平衡增长路径上,产出中被储蓄的份额为:(3)对方程(3)两边关于g求导数,可得:可以再简化为:- --------------------------------- (4)由于由决定,对该式两边关于g求导数,可得:,从而求出为:(5)将方程(5)代入(4)中,可得:- --------------------------------- (6)在方程(6)中,分母为负,分子中第一项为正,而第二项为负,因而无法确定正与负。
因此,无法判断在平衡增长路径上g永久性地下降会使s上升还是下降。
(e)将柯布一道格拉斯生产函数代入方程(6)中,可得:简化为:从上式可以推出:最终有下面的结果:2.7说明下列变化如何影响图2.5中的线和线,并在此基础上说明其如何影响平衡增长路径上的c值和k值。
(a)上升(b)生产函数向下移动。
(c)折旧率由本章中假设的零变为某一正值。
图2-2 鞍点路径答:(a)关于c与k的欧拉方程为:- -------------- (1)(2)的上升即消费的跨期替代弹性下降,表明家庭不太愿意接受消费的跨期替代,同时表明随着消费的上升,消费的边际产品下降得很快。
这种情况使家庭更偏好于即期消费。
由于没有出现在资本积累方程(2)中,因而资本积累方程不受的上升的影响。
在消费的动态方程中,在平衡增长路径上,从而,由于的上升,因而必须上升,又因为,所以为使,k必须下降。
此时向左移动,消费移动到新的鞍点路径A点上,此刻家庭消费得更多了,经济最终移动到新的稳定点,此时和低于原先的值。
如图2-3所示。
图2-3 上升的影响(b)由于生产函数的向下移动,因而和都变小了,如图2-4所示图2-4生产函数向下移动根据资本的欧拉方程:,在平衡增长路径上,因而有。
由于变小,因此这条曲线会向下移动,如图2-5所示。
根据消费的欧拉方程:一----------------- ,在平衡增长路径上,从而,由于变小,为保持,必须使k下降,从而使保持不变。