高三物理典型例题集锦(一)
- 格式:doc
- 大小:242.50 KB
- 文档页数:12
高三物理专题复习: 滑块—滑板模型典型例题:例1.如图所示,在粗糙水平面上静止放一长L质量为1的木板B ,一质量为1的物块A以速度s m v /0.20=滑上长木板B 的左端,物块与木板的摩擦因素μ1=0.1、木板与地面的摩擦因素为μ2=0.1,已知重力加速度为10m 2,求:(假设板的长度足够长)(1)物块A 、木板B 的加速度;(2)物块A 相对木板B 静止时A 运动的位移;(3)物块A 不滑离木板B,木板B 至少多长?考点: 本题考查牛顿第二定律及运动学规律考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。
解析:(1)物块A 的摩擦力:N mgf A 11==μ A 的加速度:21/1s m m f a A -=-= 方向向左木板B 受到地面的摩擦力:A g m M f f N 2)(2>=+=μ地故木板B 静止,它的加速度02=a(2)物块A 的位移:m a v S 2220=-= (3)木板长度:m S L 2=≥拓展1.在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素μ3=0.4,其余条件保持不变,(假设木板足够长)求:(1)物块A 与木块B 速度相同时,物块A 的速度多大?(2)通过计算,判断速度相同以后的运动情况;(3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热多大?考点:牛顿第二定律、运动学、功能关系考查:木板与地的摩擦力计算、是否共速运动的判断方法、相对位移和摩擦热的计算。
解析:对于物块A:N mg f A 44==μ 1分加速度:,方向向左。
24/0.4s m g m f a A A-=-=-=μ 1分 对于木板:N g m f 2)M 2=+=(地μ 1分加速度:,方向向右。
地2A /0.2s m M f f a C =-= 1分物块A 相对木板B 静止时,有:121-t a v t a C B =解得运动时间:,s t .3/11= s m t a v v B B A /3/21=== 1分(2)假设共速后一起做运动,22/1)()(s m m M g m M a -=++-=μ 物块A的静摩擦力:A A f N ma f <==1'1分 所以假设成立,共速后一起做匀减速直线运动。
高三物理学科中的常见案例分析题及解析在高三物理学科中,案例分析题是一种常见的题型。
这种题目往往通过具体的事例或案例来引导学生进行分析和解答,旨在培养学生的物理问题解决能力和逻辑思维能力。
本文将从力学、光学和电磁学三个方面介绍几个常见的案例分析题,并给出相应的解析。
一、力学方面的案例分析题案例1:小红同学骑着自行车顺风速度行驶,当自行车出现故障,小红同学停了下来。
请你解释为什么小红同学停下来的原因,并计算此时阻力所做的功。
解析:小红同学骑着自行车顺风速度行驶时,风的速度和自行车的速度具有相同的方向,所以风对自行车的阻力较小。
然而当自行车出现故障停下来时,风的速度与自行车速度相对,风对自行车的阻力增大,并使得自行车逐渐停下来。
此时阻力所做的功可以通过计算阻力与自行车停下来速度之差的乘积来获得。
案例2:小明同学骑着自行车逆风速度行驶,感到骑车变得困难。
请你解释为什么小明同学感到困难,并计算其所受的阻力。
解析:小明同学骑着自行车逆风速度行驶时,风的速度与自行车的速度相对,风对自行车的阻力增大。
这样的情况下,小明同学需要更多的力才能够保持原来的速度或继续前进,因此感到骑车变得困难。
所受的阻力可以通过计算风速与自行车速度之差的乘积来获得。
二、光学方面的案例分析题案例3:小李同学在夜晚用手电筒照射到墙上,发现墙上有一个红色的“x”字。
请你解释为什么手电筒照射到墙上形成了这样的影像,并计算其与屏幕之间的距离。
解析:手电筒照射到墙上形成了红色的“x”字影像的原因是光在通过手电筒的透镜时发生了折射,随后在墙上反射形成影像。
影像所在的位置与屏幕的距离可以通过光的折射定律来计算,公式为:1/v + 1/u = 1/f,其中v为影像到透镜的距离,u为物体到透镜的距离,f为透镜的焦距。
案例4:小张同学用凸透镜观察一根铅笔,并发现当他离铅笔越近时,观察到的铅笔越大。
请你解释为什么离铅笔越近时观察到的铅笔越大,并计算其观察到的铅笔的放大率。
高三物理易错题专题复习一 受力分析与物体的平衡一. 典型例题分析例1.如下列图,将质量为m 的物体置于固定的光滑斜面上,斜面倾角为θ,水平力F 作用在m 上,物体m 处于静止状态,如此斜面对物体的支持力大小为〔 〕A 、B 、C、 D、互动探究:假设斜面未固定,但仍相对地面静止,如此地面对斜面的摩擦力?二.解题方法:1.认真审题,弄清题意,明确条件和未知条件;2.巧选研究对象,灵活运用整体法和隔离法;3.分析受力情况和运动情况,注意运动的程序性、状态的瞬时性和各力的方向性,画好受力图;4.选择适当的运动规律列方程求解。
三.热点透视:〔一〕与摩擦力有关的问题例2.〔06全国II 〕如图,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q 的两段绳都是水平的。
Q 与P 之间以与P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m ,滑轮的质量、滑轮轴上的摩擦都不计,假设用一水平向右的力F 拉P 使它做匀速运动,如此F 的大小为〔 〕A 4μmgB 3μmgC 2μmgD μmg注意:1、注意区分滑动摩擦力和静摩擦力2、静摩擦力总是小于或等于最大静摩擦力,其大小和方向由物体的受力情况和运动状态决定。
3、滑动摩擦力的大小由公式N F F μ=计算。
例3.〔168套P 9 3〕如右图,倾角为θ的斜面上有一质量为m 的物块,斜面与物块均处于静止状态。
现用一大小为2.5sin mg θ、方向沿斜面向上的力F 推物块,斜面和物块仍静止不动。
如此力作用时与F 作用前相比,物块对斜面的摩擦力与斜面对地面的摩擦力的变化情况分别为〔 〕A .变大,变大B 变大,变小C 变小,不变D 变小,变小。
例4.〔试卷一5〕倾角为30。
斜面体上放一个质量为5kg 的小物块,处于静止状态,假设在小物块上再作用一个竖直向上的力F=4N ,如下列图,如此地面对斜面体的支持力F N ,小物块受到的摩擦力F 1的变化情况是〔 〕()22mg F +cos sin mg F θθ+cos mg θsin F θA.F N减小了4NB.F N的减小量小于4NC.F1减小了4ND.F1的减少量小于4N归纳:从以上两题也看出在解这类平衡问题时要灵活运用整体法和隔离法。
1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。
2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。
一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。
已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。
请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。
高三物理复习讲义 第六章 动量 动量守恒定律 参考答案第一讲 冲量 动量 动量定理【知识梳理】一. 冲量和动量1. 运动状态 矢量3. 时间 矢量【典型例题】例题1、AC例题2、B例题3、D例题4、E例题5、1:3,1:3例题6、1:1,1:1,1:3,1:3,3mg μ例题7、mv v 2,0,0-二.动量定理例题1、(1)B A p p (2)B A p p ∆=∆例题2、A AC例题3、F =1500N例题4、D例题5、(1)11-=n h H(2)11-=n t T【巩固练习】1、D2、AC3、B4、AC5、C6、B7、D8、BCD9、8:1,1:410、(1)60Ns (2)18 Ns (3)9 Ns11、AB12、D13、D14、D15、B16、ABD17、AC18、F =190N19、C20、2sv F ρ=第二讲 动量守恒定律【典型例题】例题1、A例题2、ACD例题3、v 人=-3m/s例题4、B实验例题、1、飞行时间、飞行时间、水平位移2(1)65.5 (2)ABD【巩固练习】1、D2、B3、C4、C5、B6、 AC7、D8、ABD9、A10、D11、(1)s m v A /1.2=' (2) s m v C /4='12、(1)kg m 23= (2)s m kg p /16⋅-=∆,方向向右13、1221112m v m v m v +='第三讲 碰撞和反冲【典型例题】例题1、AC例题2、BC例题3、C例题4、CD例题5、mM m v v -=θcos 0 【巩固练习】1、A2、AC3、AC4、D5、A6、A7、C8、AC9、Mm u Mv v -=0 10、h =20m 11、(1)s m v /5001=' (2)s m v s m v B A /50,/10==12、最低点,()1212221+-=m m13、(1)s m v A /3= (2) (E P =12J)14、(1)s m v /1=(2)J E 3max =,0.75m专题四 相互作用过程中的能量转化【典型例题】例题1、B例题2、(1)s m v B /22=(2)m/s 254=共v J E p 8.4=' 例题3、J E 180=例题4、mM M mv E d m M M d +=∆+='2021,4、动量守恒中的能量问题练习1、AD2、AC3、A4、AD5、ABD6、ABCD7、C8、AC5、解题中应用动量守恒定律应是该问题中的一个环节。
多少年了,高考题可是个宝藏啊。
练一练,多一份感悟和自信。
高考题源解密:让我悄悄的告诉你,往年高考真题,课本原型材料,生产生活科技 (1)高三物理 力学高考典题集锦1.(2000 全国 10).如图为一空间探测器的示意图,1P 、2P 、3P 、4P是四个喷气发动机,1P 、3P 的连线与空间一固定坐标系的x 轴平行,2P、4P 的连线与y 轴平行,每台发动机开动时,都能向探测器提供推力,但不会使探测器转动,开始时,探测器以恒定的速率0v 向正x 方向平行,要使探测器改为向正x 偏负y60°的方向以原来的速率0v 平动,则可A .先开动1P 适当时间,再开动4P 适当时间B .先开动3P 适当时间,再开动2P 适当时间C .开动4P 适当时间D .先开动3P 适当时间,再开动4P 适当时间多少年了,高考题可是个宝藏啊。
练一练,多一份感悟和自信。
2.(2002 全国30).(27分)有三根长度皆为l=1.00m的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的O点,另一端分别拴有质量皆为m=1.00×10-2kg的带电小球A和B,它们的电量分别为-q和+q,q=1.00×10-7C。
A、B之间用第三根线连接起来。
空间中存在大小为E=1.00×106N/C的匀强电场,场强方向沿水平方向右,平衡时A、B球的位置如图所示。
现将O、B之间的线烧断,由于有空气阻力,A、B 球最后会达到新的平衡位置。
求最后两球的机械能与电势能总和与烧断前相比改变了多少。
(不计两带电小球间相互作用的静电力)高考题源解密:让我悄悄的告诉你,往年高考真题,课本原型材料,生产生活科技 (2)多少年了,高考题可是个宝藏啊。
练一练,多一份感悟和自信。
高考题源解密:让我悄悄的告诉你,往年高考真题,课本原型材料,生产生活科技 (3)3. (2005全国 23).(16分)原地起跳时,先屈腿下蹲,然后突然蹬地。
高三物理知识点练习题集锦
1. 一辆汽车以20 m/s的速度行驶了2小时,求汽车的位移是多少?
2. 一颗重物从5米高的地方自由落下,求它落地时的速度。
3. 一个质量为2千克的物体以10 m/s的速度运动,求它的动能。
4. 一辆车以20 m/s的速度匀速行驶了5秒钟,求它的加速度是多少?
5. 在一个水平地面上,一个质量为5千克的物体受到10牛的水平力推动,求物体
的加速度。
6. 一辆汽车质量为1000千克,以20 m/s的速度行驶,受到10,000牛的制动力,求汽车的加速度。
7. 当一个物体的质量为10千克,重力为100牛时,求物体所在的地方的重力加速度。
8. 一个物体受到5牛的向下的重力,并受到10牛的向上的支持力,求物体的重力
加速度。
9. 一个质量为10千克的物体受到5牛的重力,求物体的重力加速度。
10. 当一个质量为2千克的物体受到5牛的推力和5牛的摩擦力,求物体的加速度。
以上是一些与高三物理知识点相关的练习题,涉及运动学、动力学和力学等方面。
通过做这些练习题,可以帮助巩固物理知识,提高解题能力。
大家可以尝试一下,看
看自己对这些知识点的掌握程度如何。
祝大家顺利通过物理考试!。
高三物理高考试题及答案一、选择题1. 下列哪个物理量具有矢量性质?a) 电流b) 温度c) 力d) 时间答案: c) 力2. 一辆汽车以8 m/s的速度行驶,经过10 s后速度变为16 m/s,汽车的加速度是多少?a) 0.8 m/s²b) 1.2 m/s²c) 1.6 m/s²d) 2.0 m/s²答案: c) 1.6 m/s²3. 若一个物体受到的合外力为零,则可以推断该物体的状态是:a) 静止b) 匀速直线运动c) 加速直线运动d) 循环运动答案: b) 匀速直线运动4. 下列哪个公式可用于计算力的大小?a) F = m × ab) F = ρVc) F = P × Ad) F = E / t答案: a) F = m × a5. 以下哪项描述了牛顿第二定律的内容?a) 物体在外力作用下保持匀速直线运动b) 物体做的功等于物体动能的变化c) 物体所受合外力等于物体质量与加速度的乘积d) 两个物体相互作用力大小相等、方向相反答案: c) 物体所受合外力等于物体质量与加速度的乘积6. 在一个封闭系统内,若合外力为零,则该系统的动量:a) 保持不变b) 增加c) 减小d) 变为零答案: a) 保持不变7. 在一个真空中,丢掷一颗不发生自转的篮球和一个自旋方向与自转方向相同的篮球,哪个篮球在空中停留的时间更长?a) 自转的篮球b) 不自转的篮球c) 时间相同d) 无法确定答案: a) 自转的篮球8. 下列哪个物理量不属于谐振动?a) 弹簧的伸长量b) 振动的周期c) 质点的位移d) 频率答案: a) 弹簧的伸长量9. 以下哪个选项最能正确描述“电流”的性质?a) 电流大小与电荷的大小有关b) 电流的方向与电荷的正负有关c) 电流的大小与电荷的正负有关d) 电流方向与电荷的大小无关答案: c) 电流的大小与电荷的正负有关10. 在平行板电容器的正极板上施加较高的电位,负极板上施加较低的电位,电子从正极板向负极板移动。
高考物理经典名题练习班级考号姓名总分1、甲、乙两个储气罐储存有同种气体(可视为理想气体).甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p.现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等.求调配后(i)两罐中气体的压强;(ii)甲罐中气体的质量与甲罐中原有气体的质量之比.2、在磁感应强度为 B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变,放射出的α粒子在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q 分别表示α粒子的质量和电荷量,M 表示新核的质量,放射性原子核用表示,新核的元素符号用Y表示,该衰变过程释放的核能都转化为α粒子和新核Y 的动能,则()A.新核Y 和α粒子的半径之比B.α粒子的圆周运动可以等效成一个环形电流,环形电流大小(Wewuli)C.新核的运动周期D.衰变过程的质量亏损为3、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为,长为,导轨平面与水平面的夹角为,在导轨的中部刷有一段长为的薄绝缘涂层,匀强磁场的磁感应强度大小为,方向与导轨平面垂直,质量为的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。
导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为,其他部分的电阻均不计,重力加速度为,求:(1)导体棒与涂层间的动摩擦因数;(2)导体棒匀速运动的速度大小;(3)整个运动过程中,电阻产生的焦耳热。
4、如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。
若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。
学.科网物块与桌面间的动摩擦因数为()A. B. C. D.5、如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa 水平,b点为抛物线顶点。
已知h=2m,,s=。
高三物理学科中的常见典型例题分析物理学作为一门自然科学,涵盖了广泛的知识领域,对于高三学生来说,理解和掌握常见的典型例题是提高物理学科成绩的关键。
本文将分析几个高三物理学科中常见的典型例题,以帮助学生对物理学知识的理解和应用。
一、力学题1. 问题描述:一个质量为m的小球沿水平方向以速度v撞向质量为M的静止小球,两小球发生碰撞后,小球以v'的速度向后弹回。
求小球受到的平均冲力。
分析:根据动量守恒定律,碰撞前后的总动量应保持不变。
设质量为m的小球碰撞前的速度为v,碰撞后的速度为v',质量为M的小球碰撞前的速度为0,则有mv = mv' + Mv',根据这个式子,可以求出v'。
解答方法:通过数学计算可以得出碰撞后的速度v'为 v' =\(\frac{v}{1 + \frac{m}{M}}\)。
根据牛顿第三定律,小球受到的平均冲力与碰撞时间有关,可以用力的作用时间与冲量的关系给出。
小球受到的平均冲力为 F = \(\frac{\Delta p}{\Delta t}\),其中动量变化 \(\Deltap = mv' - mv\),冲量 \(\Delta t = \frac{2m}{v'}\),代入数值,即可得到小球受到的平均冲力。
二、电磁学题2. 问题描述:一个带电粒子在磁场中运动形成有限宽度的束,在另一个磁场中穿过一个“薄堵”,由X射线薄堵探测器接收,并在屏幕上显示出来。
当薄堵被位于中心位置的带电粒子轰击时,显示一个亮点。
当薄堵由中心移入X射线束时,亮点变暗。
根据这个现象,说明薄堵的材料、运动方向和磁场的方向。
分析:根据已知情况,带电粒子在穿过薄堵时会放射出X射线,而中心位置上的带电粒子轰击时显示亮点,说明薄堵材料对X射线不透明。
而当薄堵由中心移入X射线束时,显示亮点变暗,说明带电粒子的轨迹受到磁场的偏转作用。
解答方法:根据以上分析,可以得出薄堵的材料应具有阻挡X射线的特性,如铅、铁等金属材料;而带电粒子的移动方向应垂直于薄堵的方向;磁场的方向则与亮点显示的变暗方向相符,即带电粒子的轨迹受到磁场的偏转作用。
高中物理典型例题集锦(一)编者按:笔者结合多年的高三教学经验,记录整理了部分高中物理典型例题,以2003年《考试说明》为依据,以力学和电学为重点,编辑如下,供各校教师、高三同学参考。
实践证明,考前浏览例题,熟悉做过的题型,回顾解题方法,可以提高复习效率,收到事半功倍的效果。
力学部分1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。
绳上挂一个光滑的轻质挂钩。
它钩着一个重为12牛的物体。
平衡时,绳中张力T=____分析与解:本题为三力平衡问题。
其基本思路为:选对象、分析力、画力图、列方程。
对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。
所以,本题有多种解法。
解法一:选挂钩为研究对象,其受力如图1-2所示设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。
解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。
以两个拉力为邻边所作的平行四边形为菱形。
如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛。
想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。
)2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等。
在轻绳两端C、D分别施加竖直向下的恒力F=mg。
先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变。
(1)当物块下落距离h为多大时,物块的加速度为零?(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?(3)求物块下落过程中的最大速度Vm和最大距离H?分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。
因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小。
当物块的合外力为零时,速度达到最大值。
之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。
当物块下降速度减为零时,物块竖直下落的距离达到最大值H。
当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。
对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。
(1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。
因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知:h=L*tg30°=L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2]克服C端恒力F做的功为:W=F*h’ [3]由[1]、[2]、[3]式联立解得:W=(-1)mgL(3)出物块下落过程中,共有三个力对物块做功。
重力做正功,两端绳子对物块的拉力做负功。
两端绳子拉力做的功就等于作用在C、D端的恒力F所做的功。
因为物块下降距离h时动能最大。
由动能定理得:mgh-2W= [4] 将[1]、[2]、[3]式代入[4]式解得:Vm=当物块速度减小为零时,物块下落距离达到最大值H,绳C、D上升的距离为H’。
由动能定理得:mgH-2mgH’=0,又H’=-L,联立解得:H=。
3、如图3-1所示的传送皮带,其水平部分 ab=2米,bc=4米,bc与水平面的夹角α=37°,一小物体A与传送皮带的滑动摩擦系数μ=0.25,皮带沿图示方向运动,速率为2米/秒。
若把物体A轻轻放到a点处,它将被皮带送到c点,且物体A一直没有脱离皮带。
求物体A从a点被传送到c点所用的时间。
分析与解:物体A轻放到a点处,它对传送带的相对运动向后,传送带对A的滑动摩擦力向前,则 A 作初速为零的匀加速运动直到与传送带速度相同。
设此段时间为t1,则:a1=μg=0.25x10=2.5米/秒2 t=v/a1=2/2.5=0.8秒设A匀加速运动时间内位移为S1,则:设物体A在水平传送带上作匀速运动时间为t2,则设物体A在bc段运动时间为t3,加速度为a2,则:a2=g*Sin37°-μgCos37°=10x0.6-0.25x10x0.8=4米/秒2解得:t3=1秒(t3=-2秒舍去)所以物体A从a点被传送到c点所用的时间t=t1+t2+t3=0.8+0.6+1=2.4秒。
4、如图4-1所示,传送带与地面倾角θ=37°,AB长为16米,传送带以10米/秒的速度匀速运动。
在传送带上端A无初速地释放一个质量为0.5千克的物体,它与传送带之间的动摩擦系数为μ=0.5,求:(1)物体从A运动到B所需时间,(2)物体从A 运动到B 的过程中,摩擦力对物体所做的功(g=10米/秒2)分析与解:(1)当物体下滑速度小于传送带时,物体的加速度为α1,(此时滑动摩擦力沿斜面向下)则:t1=v/α1=10/10=1米当物体下滑速度大于传送带V=10米/秒时,物体的加速度为a2,(此时f沿斜面向上)则:即:10t2+t22=11 解得:t2=1秒(t2=-11秒舍去)所以,t=t1+t2=1+1=2秒(2)W1=fs1=μmgcosθS1=0.5X0.5X10X0.8X5=10焦W2=-fs2=-μmgcosθS2=-0.5X0.5X10X0.8X11=-22焦所以,W=W1+W2=10-22=-12焦。
想一想:如图4-1所示,传送带不动时,物体由皮带顶端A从静止开始下滑到皮带底端B用的时间为t,则:(请选择)A. 当皮带向上运动时,物块由A滑到B的时间一定大于t。
B. 当皮带向上运动时,物块由A滑到B的时间一定等于t。
C. 当皮带向下运动时,物块由A滑到B的时间可能等于t。
D. 当皮带向下运动时,物块由A滑到B的时间可能小于t。
答案:(B、C、D)5、如图5-1所示,长L=75cm的静止直筒中有一不计大小的小球,筒与球的总质量为4千克,现对筒施加一竖直向下、大小为21牛的恒力,使筒竖直向下运动,经t=0.5秒时间,小球恰好跃出筒口。
求:小球的质量。
(取g=10m/s2)分析与解:筒受到竖直向下的力作用后做竖直向下的匀加速运动,且加速度大于重力加速度。
而小球则是在筒内做自由落体运动。
小球跃出筒口时,筒的位移比小球的位移多一个筒的长度。
设筒与小球的总质量为M,小球的质量为m,筒在重力及恒力的共同作用下竖直向下做初速为零的匀加速运动,设加速度为a;小球做自由落体运动。
设在时间t内,筒与小球的位移分别为h1、h2(球可视为质点)如图5-2所示。
由运动学公式得:又有:L=h1-h2代入数据解得:a=16米/秒2又因为筒受到重力(M-m)g和向下作用力F,据牛顿第二定律:F+(M-m)g=(M-m)a 得:6、如图6-1所示,A、B两物体的质量分别是m1和m2,其接触面光滑,与水平面的夹角为θ,若A、B与水平地面的动摩擦系数都是μ,用水平力F推A,使A、B一起加速运动,求:(1)A、B间的相互作用力(2)为维持A、B间不发生相对滑动,力F的取值范围。
分析与解:A在F的作用下,有沿A、B间斜面向上运动的趋势,据题意,为维持A、B间不发生相对滑动时,A处刚脱离水平面,即A不受到水平面的支持力,此时A与水平面间的摩擦力为零。
本题在求A、B间相互作用力N和B受到的摩擦力f2时,运用隔离法;而求A、B组成的系统的加速度时,运用整体法。
(1)对A受力分析如图6-2(a)所示,据题意有:N1=0,f1=0因此有:Ncosθ=m1g [1] , F-Nsinθ=m1a [2]由[1]式得A、B间相互作用力为:N=m1g/cosθ(2)对B受力分析如图6-2(b)所示,则:N2=m2g+Ncosθ[3] , f2=μN2 [4]将[1]、[3]代入[4]式得: f2=μ(m1+ m2)g取A、B组成的系统,有:F-f2=(m1+ m2)a [5]由[1]、[2]、[5]式解得:F=m1g(m1+ m2)(tgθ-μ)/m2故A、B不发生相对滑动时F的取值范围为:0<F≤m1g(m1+ m2)(tgθ-μ)/m2想一想:当A、B与水平地面间光滑时,且又m1=m2=m时,则F的取值范围是多少?(0<F≤2mgtgθ=。
7、某人造地球卫星的高度是地球半径的15倍。
试估算此卫星的线速度。
已知地球半径R=6400km,g=10m/s2。
分析与解:人造地球卫星绕地球做圆周运动的向心力由地球对卫星的引力提供,设地球与卫星的质量分别为M、m,则:= [1]又根据近地卫星受到的引力可近似地认为等于其重力,即:mg= [2][1]、[2]两式消去GM解得:V===2.0X103 m/s说明:n越大(即卫星越高),卫星的线速度越小。
若n=0,即近地卫星,则卫星的线速度为V0==7.9X103m/s,这就是第一宇宙速度,即环绕速度。
8、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的内径大得多。
在圆管中有两个直径与细管内径相同的小球(可视为质点)。
A球的质量为m1,B 球的质量为m2。
它们沿环形圆管顺时针运动,经过最低点时的速度都为V0。
设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与V0应满足的关系式是。
分析与解:如图7-1所示,A球运动到最低点时速度为V0,A球受到向下重力mg和细管向上弹力N1的作用,其合力提供向心力。
那么,N1-m1g=m1 [1]这时B球位于最高点,速度为V1,B球受向下重力m2g和细管弹力N2作用。
球作用于细管的力是N1、N2的反作用力,要求两球作用于细管的合力为零,即要求N2与N1等值反向,N1=N2 [2],且N2方向一定向下,对B球:N2+m2g=m2[3]B球由最高点运动到最低点时速度为V0,此过程中机械能守恒:即m2V12+m2g2R=m2V02 [4]由[1][2][3][4]式消去N1、N2和V1后得到m1、m2、R与V0满足的关系式是:(m1-m2)+(m1+5m2)g=0 [5]说明:(1)本题不要求出某一物理量,而是要求根据对两球运动的分析和受力的分析,在建立[1]-[4]式的基础上得到m1、m2、R与V0所满足的关系式[5]。
(2)由题意要求两球对圆管的合力为零知,N2一定与N1方向相反,这一点是列出[3]式的关键。
且由[5]式知两球质量关系m1<m2。