2020年高三数学三轮复习回归基础专题-函数,基本初等函数I的图像与性质
- 格式:doc
- 大小:138.10 KB
- 文档页数:1
⾼数总结:基本初等函数图像及其性质基本初等函数图像及其性质⼀、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数n4)如果m>n 图形于x 轴相切,如果m5)当α为负有理数时,n 为偶数时,函数的定义域为⼤于零的⼀切实数;n 为奇数时,定义域为去除x=0以外的⼀切实数。
三、指数函数xa y =(x 是⾃变量,a 是常数且0>a ,1≠a ),定义域是R ;[⽆界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上⽅; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的⼤⼩⽐较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ?=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越⼤,xa y =的图像越靠近y 轴;b.2.当10<的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=?m n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m n m(2))1,,,0(11*>∈>==-n Z n m a a amnm nm yxf x xxx g ?=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [⽆界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式⼦N a log 叫做对数式。
51∴log a b =2 或2.∵ a> b>1,∴ log a b<log a a =答案】 4; 22020 年高考数学(理)总复习:基本初等函数性质及应用题型一 求函数值 题型要点解析】 已知函数的解析式, 求函数值, 常用代入法, 代入时,一定要注意函数的对应法则与自 变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化. -1 例 1.若函数 f (x )= a |2x -4|(a>0,且 a ≠1),满足 f (1)= 19,则 f (x )的单调递减区间是 ( )A . (-∞, 2]B . [2,+∞ )C .[ -2,+∞ )D . (-∞,- 2] 解析】 由 f (1)= 91,得 a 2= 19,解得 a = 31或 a =- 31(舍去 ),即 f (x )= 9 9 3 3 1 2 x 41 由于 y 3=|2x -4|在(-∞ ,2]上递减,在 [2,+∞)上递增,所以 f (x )在(-∞,2]上递增,在 [2,+∞) 上递减. 答案】 B 3x 2+ln 1+x 2+x , x ≥ 0, 例 2.已知函数 f (x )= 若 f (x -1)<f (2x +1),则 x 的取值范 3x 2+ln 1+x 2-x , x<0, 围为 若 x>0,则- x<0,f (-x )=3(-x )2+ln ( 1+ -x 2+x )=3x 2+ln ( 1+x 2+x ) =f (x ),同理可得, x<0 时, f ( - x ) = f (x ),且 x =0 时,f (0)=f (0),所以 f (x )是偶函数.因为当 解析】 x>0时,函数 f (x )单调递增,所以不等式 f (x -1)<f (2x +1)等价于 |x - 1|<|2x +1|,整理得 x (x + 2)>0 ,解得 x>0 或 x<-2. 答案】 (-∞,- 2)∪ (0,+∞ ) 例 3 .已知 5a>b>1,若 log a b + log b a =2, a b = b a ,则 a=,b =1∵logab +log b a = log a b + logab 2解析】题组训练一求函数值1.已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞ )单调递增.若实数 a 满足1 f(log2 a)+f (log2a)≤2f(1),则 a 的最小值是( )A.32B. 11C.I2D. 211【解析】log 2a=-log 2a,f (log 2 a)+f (log 2 a)≤2f(1),所以2f(log2 a)≤2f(1),所以|log211a|≤1,解得12≤a≤2,所以 a 的最小值是21,故选 C.【答案】C-12.若函数f(x)=a x-2-2a(a>0,a≠ 1)的图象恒过定点x0, ,则函数f(x)在[0,3]上的最3小值等于 ______ .【解析】令x-2=0得x=2,且f(2)=1-2a,所以函数f(x)的图象恒过定点(2,1-2a),1 1 -2因此x0=2,a=31,于是f(x)=13x-2-32,f(x)在R 上单调递减,故函数f(x)在[0,3]上的最小1 值为f(3) =-3.I 【答案】-13题型二比较函数值大小【题型要点解析】三招破解指数、对数、幂函数值的大小比较问题(1) 底数相同,指数不同的幂用指数函数的单调性进行比较;(2) 底数相同,真数不同的对数值用对数函数的单调性比较;(3) 底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图即 b>c>1;设 f(x)=x 3-3x ,则 f(3)=0,∴x =3 是 f(x)的零点, ∵f ′(x)=3x 2-3x · ln ,3∴f ′(3)=27 - 27ln 3<0,f ′(4)=48-81ln 3<0,∴函数 f(x)在(3,4)上是单调减函数, ∴ f( π)f<(3) =0, π3<3π,∴ a<b ;又∵ e π<πe <π3,∴ c<a ;综上 b>a>c.故选 D.答案】象比较大小.例 1 .已知 a =b =c =125,则 ( )A . a<b<cB . b<c<aC .c<b<aD . b<a<c解析】 因为 a =243,245, c =1 25253,显然有 b<a ,又 a22=43<53=c , 故 b<a<c.答案】例 2 .已知 a = π3,b = 3π,c = e π, 则 a 、 b 、 c 的大小关系为 ( A . a>b>c B .a>c>b C .b>c>aD . b>a>c解析】a = π3,b = 3π,c = e π,∴函数 y =x π是 R 上的增函数,且 3>e>1,∴ 3π>e π, ∴π3-3π<0,即题组训练二 比较函数值大小1.若 a>b>1,0<c<1,则 ( )A .a c <b cB .ab c <ba cC .alog b c<blog a cD . log a c<log b c解析】 对 A :由于 0<c<1, ∴函数 y =x c 在 R 上单调递增,则 a>b>1? a c >b c ,A 错误;对 B :由于- 1<c - 1<0,∴函数y =x c -1在(1,+∞ )上单调递减,又∴ a>b>1,∴a c -1<b c 1? ba c <ab c,B 错误;对 C :要比较aln c bln c ln c alogb c 和 blog a c ,只需比较 ln b和ln a,只需比较bln bln c和,只需bln b 和aln a;构造函数f(x)=xln x(x>1),则f′(x)=ln x+1>1>0 ,f( x)在(1,aln a11+∞ )上单调递增,因此f(a)>f(b)>0? aln a>bln b>0? aln a<bln b,又由0<c<1 得ln c<0,∴ ln c ln c ln c ln caln a>bln b? blog a c>alog b c,C 正确;对D:要比较log a c 和log b c,只需比较ln a和ln b,而函11数y=ln x在(1,+∞ )上单调递增,故a>b>1? ln a>ln b>0? ln a<ln b,又由0<c<1得ln c<0,∴l ln n c a>l l n n c b? log a c>log b c,D 错误.故选 C.【答案】C2.设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是f(x),g(x)的零点,则( )A .g(a)<0<f(b) B.f(b)<0<g(a)C.0<g(a)<f(b) D.f(b)<g(a)<0【解析】依题意,f(0) =-3<0,f(1)=e-2>0,且函数f(x)是增函数,因此函数f(x)的零点在区间(0,1)内,即0<a<1.g(1)=-3<0,g(2)=ln 2+3>0,函数g(x)的零点在区间(1,2)内,即1<b<2,于是有f(b)>f(1)>0.又函数g(x)在(0,1)内是增函数,因此有g(a)<g(1)<0,g(a)<0<f(b),选 A.【答案】A题型三求参数的取值范围【题型要点解析】利用指、对数函数的图象与性质可以求解的两类热点问题及其注意点(1) 对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时、常利用数形结合思想求解.(2) 一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(3) 注意点:利用对数函数图象求解对数型函数性质及对数方程、不等式问题时切记图象的范围、形状一定要准确,否则数形结合时将误解.对于含参数的指数、指数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.1<2.故选 C.答案】 C题组训练三 求参数的取值范围- x + 6, x ≤ 2, 例 1 .若函数 f(x)= 3+log a x ,x>2(a>0,且 a ≠1)的值域是 [4,+∞ ),则实数 a 的取值范围是 ______ .【解析】 当 x ≤2 时, f(x)=-x +6,f(x)在(-∞,2]上为减函数,∴ f(x)∈[4+∞).当x>2 时,若 a ∈ (0,1) ,则 f(x)=3+log a x 在(2,+ ∞ )上为减函数, f(x)∈(-∞,3+ log a 2),显1- 2a x + 3a ,x <1,例 1.已知 f(x)=ln x , x ≥ 1的值域为 R ,那么 a 的取值范围是 ( )A . (-∞,- 1]B.1,12C. 1,12D.0,12解析】 要使函数 f(x)的值域为 R ,需使1-2a >0,1a <2,ln 1≤ 1- 2a + 3a ,∴- 1 ≤ aa ≥-1,例2.设函数 f(x)= x +x1, x ≤ 0,2x,x>0,则满足f(x)+f x 1>1的 x 的取值范围是 2解析】 1由题意, 当 x> 21时,f (x)+ f111=2x +2x - >1 恒成立, 即 x> 满足题意;1当 0<x ≤12时,11 1 f(x)+f x=2x +x - + 1>1 恒成立,即 0<x ≤ 满足题意;当 x ≤0 时,222f(x)+ f x 12 1 1 1 1=x +1+x -2+1>1,解得 x>-4,即- 4<x ≤0.综上,x 的取值范围是 ,答案】1, 4答案】 C示不满足题意,∴ a>1,此时 f (x )在 (2,+∞)上为增函数, f (x )∈(3+log a 2,+∞ ),由题意可 知(3+log a 2,+ ∞)? [4 ,+ ∞ ),则 3+log a 2≥ 4,即 log a 2≥1,∴1<a ≤2.答案】 (1,2]21 x2- 2x +a ,x<2, 4x -3,x ≥12a ≥ - 1.分离参数得 a ≥-x 2+2x -1=- (x - 1)2,函数 y =-(x -1)2开口向下,且对称轴为 x11= 1,故在, 上单调递增,所以函数在 x = 处有最大值,最大值为-221即 a ≥- 1.4答案】专题训练】 、选择题1.定义在 R 上的函数 f (x )满足 f (-x )=- f (x ),f (x -2)=f (x +2),且 x ∈( - 1,0)时, f (x )1=2x + 5,则 f (log 220)等于 ( )A .14 C .- 1 D .- 5【解析】 由 f(x - 2)= f(x +2),得 f(x)=f(x +4),因为 4<log 220<5 ,所以 f(log 220)=f(log 2204 4 1-4)=- f(4-log 220)=-f(log 2 5)=- (2log 25+ 5)=- 1.例 2.设函数 f (x ) =的最小值为- 1,则实数 a 的取值范围是解析】1当 x ≥21时, 4x -3 为增函数,最小值为11f =- 1,故当 x< 时, x 2- 2x +22 21, =- 4,42.定义在R 上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0,则下列结论正确的是( )A.f(0.32)<f(20.3)<f(log 25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log 25)<f(20.3)【解析】∵对任意的x1,x2∈(-∞,0),f x1 - f x2 且x1≠ x2,都有<0 ,x1-x2∴f(x)在(-∞,0)上是减函数.又∵ f(x)是R 上的偶函数,∴f(x)在(0,+∞)上是增函数.∵ 0<0.32 <20.3<log 25,∴ f(0.32)<f(20.3)<f(log25).故选 A.【答案】A1 3.已知f(x)是奇函数,且f(2-x)=f(x),当x∈[2,3] 时,f(x)=log2(x-1),则f等于3()A .2-log23B .log23-log 27C.log 27-log 23 D.log23- 2【解析】因为f(x)是奇函数,且f(2-x)=f(x) ,所以f(x-2)=-f(x),所以f(x-4)=f(x),1 1 5所以 f 1= f 2 1=f53 3 3f x1 - f x23答案】 A又当 x ∈[2,3]时, f(x)= log 2(x - 1),1所以 f=log 23- 2,故选 D.3【答案】 D14.已知函数 y = f( x)是 R 上的偶函数,设 a =ln π, b =(ln π2 3), c = ln π,当对任意的 x 1,x 2∈(0,+∞ )时,都有 (x 1-x 2) ·f ([x 1)- f (x 2)]<0 ,则 ( )A .f(a)>f(b)>f(c)B .f(b)>f(a)>f(c)C .f(c)>f(b)>f(a)D . f(c)>f(a)>f(b)【解析】 由 (x 1-x 2)[f(x 1)-f(x 2)]<0 可知,f x 1 - f x 2-x <0,所以 y =f(x)在(0,+ ∞ )上单调递减.又因为函数 y = f(x)是 R 上的偶函 x 1 -2=2ln π,所以 |b|>|a|>|c|,因此 f(c)>f(a)>f(b),故选 D.【答案】 D5.已知函数 y = f( x)的图象关于 y 轴对称,且当 x ∈ ( -∞, 0)时,f(x)+xf ′(x)<0 成立, a = (20.2 ) ·f(20.2), b = (log π3) ·f(log π3), c = (log 39) ·f(log 39),则 a ,b ,c 的大小关系是 ( )A . b>a>cB . c>a>bC .c>b>aD . a>c>b【解析】 因为函数 y =f(x)关于 y 轴对称, 所以函数 y =xf(x)为奇函数. 因为 [xf(x)]′=f(x)+ xf ′ ( x),且当 x ∈(-∞,0)时, [xf(x)]′=f(x)+xf ′ (x)<0,则函数 y =xf(x)在(-∞,0)上单调递减;因为 y = xf (x)为奇函数,所以当 x ∈ (0,+ ∞ )时,函数 y = xf( x)单调递减.因为 1<20.2<2,0<log π3<1, log 39=2,所以 0<log π3<20.2<log 39,所以 b>a>c ,选 A.所以 f 7 = log 2 733 41 =log 23=2- log 23,x21数,所以y=f(x)在(-∞,0)上单调递增,由于a=ln =-ln π<-1,b=(ln π) 2,c=ln π π答案】A6.设a=0.23,b=log0.30.2,c=log30.2,则a,b,c 大小关系正确的是( )A .a>b>c B.b>a>cC.b>c>a D.c>b>a【解析】根据指数函数和对数函数的增减性知,因为0<a=0.23<0.20=1,b=log0.30.2>log0.30.3=1,c=log30.2<log 31=0,所以b>a>c,故选 B.【答案】Ba,a- b ≤2,+7.对任意实数a,b 定义运算“ Δ”:aΔb=设f(x)=3x 1Δ(1-x),若函b,a-b>2,数f(x)与函数g(x)=x2-6x 在区间(m,m+1)上均为减函数,则实数m 的取值范围是( )A .[-1,2] B.(0,3]C.[0,2] D.[1,3]-x+1,x>0 ,【解析】由题意得f(x) =x+1x+1,x≤0,3∴函数f(x)在(0,+∞)上单调递减,函数g(x)=(x-3)2-9 在(-∞,3]上单调递减,若m≥0,函数f(x)与g( x)在区间(m,m+1)上均为减函数,则得0≤m≤2,故选 C.m+1≤3,【答案】Cfx ,x>0,8.已知函数f(x) =a|log2 x|+1(a≠0),定义函数F(x)=给出下列命题:f -x ,x<0,①F(x)=|f(x)|;②函数F(x)是偶函数;③当a<0 时,若0<m<n<1,则有F(m)-F(n)<0 成立;④当a>0 时,函数y=F(x)-2有 4 个零点.其中正确命题的个数为( )A .0 B.1C.2 D. 3fx ,x>0 【解析】①∵函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=,∴ |f(x)|=f -x ,x<0 |a |log2x|+1|,∴ F(x)≠|f(x)|,①不对;f -x ,x<0②∵ F(-x)==F(x),∴函数F(x)是偶函数,故②正确;fx ,x>0③∵当a<0 时,若0<m<n<1,∴ |log2m|>|log2n|,∴ a|log2m|+1<a|log2n|+1,即F(m)<F( n) 成立,故F(m)-F(n)<0 成立,所以③正确;f x ,x>0,④∵ f(x)=a|log2x|+1(a≠0),定义函数F(x)=f -x ,x<0,∴x>0 时,(0,1)单调递减,(1,+∞)单调递增,∴x>0 时,F(x)的最小值为F(1)=1,故x>0 时,F(x)与y=-2有 2 个交点,∵函数F(x)是偶函数,∴ x<0 时, F (x)与y=-2有2个交点,故当a>0时,函数y=F(x)-2有4个零点,所以④正确.答案】D二、填空题1.已知奇函数f(x)在R 上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c 的大小关系为____ .【解析】依题意a=g(-log25.1)=( -log25.1) f·( -log 25.1)=log25.1f(log 25.1)=g(log 25.1).因为f(x)在R 上是增函数,可设0<x1< x2,则f(x1)<f(x2).从而x1f(x2)<x2f( x2),即g(x1)< g(x2).所以g(x)在(0,+∞ )上亦为增函数.又log25.1>0,20.8>0,3>0,且log25.1<log28=3,20.8<21<3,而20.8<21=log24<log25.1,所以3> log25.1 > 20.8> 0,所以c> a>b.答案】b<a<cx,x≤122.已知函数f(x)=若不等式f(x)≤5-mx 恒成立,则实数m 的取值ln x- 1 ,1<x≤ 2范围是_______【解析】设g(x)=5-mx,则函数g(x) 的图象是过点(0,5) 的直线.在同一坐标系内画出函数y=f(x)和g(x) =5-mx的图象,如图所示.∵不等式f(x)≤5-mx恒成立,∴函数y=f(x)图象不在函数g(x)=5-mx 的图象的上方.结合图象可得,① 当m<0时不成立;②当m=0时成立;③当m>0时,需满足当x=2时,55g(2)=5-2m≥0,解得0<m≤2.综上可得0≤m≤2.∴实数m 的取值范围是0,52 .xln 1+x +x2,x≥03.已知函数f(x)=2,若f(-a)+f(a)≤2f(1),则实数 a 的取值范-xln 1-x +x2,x<0围是( )A.(-∞,-1]∪[1 ,+∞ ) B.[-1,0]C.[0,1] D.[-1,1]xln 1+x +x2,x≥0解析】函数f(x)=2-xln 1-x +x2,x<0将x 换为-x,函数值不变,即有f(x)图象关于y 轴对称,即f(x)为偶函数,有f(-x)=xf(x),当x≥0 时,f(x)=xln(1+x)+x2的导数为f′(x)=ln (1 +x)+1+x+2x≥0,则f( x)在[0 ,++∞)递增,f(-a)+f(a)≤2f(1),即为2f(a)≤2f(1),可得f(|a|))≤f(1),可得|a|≤1,解得-1≤a≤1.答案】D3a - 1 x-4a ,x<1 ,4.已知函数f(x)=在R 上不是单调函数,则实数 a 的取值范log a x,x≥1围是_______ .【解析】当函数f(x)在R 上为减函数时,有3a-1<0 且0<a<1 且(3a-1) ·+14a≥log a1,11解得7≤a< 3,当函数f(x)在R 上为增函数时,有3a-1>0 且a>1 且(3a-1) ·+14a≤log a1,a73无解.11 ∴当函数 f(x)在 R 上为单调函数时,有 17≤a<13,∴当函数 f(x)在 R 上不是单调函数时,731 1 1 1有 a>0 且 a ≠1 且 a<7或 a ≥3即 0<a< 7或3≤ a<1 或 a>1.7 3 7 35.定义函数 y = f(x), x ∈I ,若存在常数 M ,对于任意 x 1∈ I ,存在唯一的 x 2∈ I ,使得 f x 1 + f x 2 f x1 +2f x2=M ,则称函数 f(x)在 I 上的“均值”为 M ,已知 数 f(x)=log 2x 在[1,22 016]上的“均值”为解析】 根据定义,函数 y = f(x), x ∈ I ,若存在常数21当 x 1∈[1,22 016]时,选定 x 2=2x1 ∈[1,22 016],可得 M =21log 2(x 1x 2)=1 008.x 12答案】 1 00811,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即 b 2b =bb 2.∴2b =b 2,∴b =2,a =4.f( x)= log 2x , x ∈ [1,2 2 016] ,则函M ,对于任意 x 1∈ I ,存在唯一f x 1 + f x 2的 x 2∈I ,使得 1 22=M ,则称函数 f(x)在 I 上的 “均值” 为 M ,令 x 1x 2=1·22 016=22 016, 22 016。
高中数学基本初等函数图像和性质一次函数(0)y kx b b =+≠的图象和性质二次函数()()20f x ax bx c a =++≠的图像和性质指数函数x y a =(0,1)a a >≠图象和性质对数函数log a y x =(0,1,0)a a x >≠>图像和性质性值域 (),-∞+∞ 恒过定点 ()1,0即log 10a =单调性 在定义域上为减函数 在定义域上为增函数补充性质 “同”正“异”负正弦函数 x y sin =1.定义域:R ;2.值域:[-1,1].3.单调性:在区间[2,2]()22k k k Z ππππ-++∈内,函数单调递增;在区间3[2,2]()22k k k Z ππππ++∈()k Z ∈内,函数单调递减;4.对称性:对称轴2x k ππ=+,对称中心(,0),k k Z π∈.5.周期性:2T π=;6.奇偶性:由sin()sin x x -=-知,正弦函数是奇函数;余弦函数 x y cos =1.定义域:R.2.值域:[-1,1].3.单调性:在区间[]2,2()k k k Z πππ-∈内,函数单调递增;在区间[]2,2()k k k Z πππ+∈内,函数单调递减;4.对称性:对称轴x k π=,对称中心(,0),2k k Z ππ+∈.5.周期性:π=T ;6.奇偶性:由cos()cos x x -=知,余弦函数是偶函数;正切函数 x y tan =1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ; 2.值域:R3.单调性:在开区间z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2内,函数单调递增。
4.对称性:对称中心:(,0),2k k Z π∈,没有对称轴. 5.周期性:π=T ;6.奇偶性:由()x x tan tan -=-知,正切函数是奇函数;。
五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在内总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6 正弦函数图形图1-1-7 余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。
初等函数的图像与性质初等函数是指由有限次的四则运算、乘方运算、指数函数、对数函数和三角函数构成的函数。
初等函数是数学中常见且重要的函数类型,其图像与性质对于理解和应用数学具有重要的指导意义。
本文将从图像和性质两个方面来探讨初等函数的特点。
一、初等函数的图像初等函数的图像是通过绘制函数的曲线来描述其特点。
不同类型的初等函数具有不同的图像特点,以下将逐一介绍几种常见的初等函数及其图像特点。
1. 线性函数线性函数的一般形式为y = ax + b,其中a和b为常数。
线性函数的图像为一条直线,其斜率决定了直线的倾斜程度,斜率正负决定了直线的方向,截距则决定了直线与y轴的交点位置。
2. 平方函数平方函数的一般形式为y = x^2。
平方函数的图像为抛物线,开口方向由系数a的正负决定,当a大于0时抛物线开口向上,当a小于0时抛物线开口向下。
3. 指数函数指数函数的一般形式为y = a^x,其中a为常数且a大于0且不等于1。
指数函数的图像为一条不断上升(a大于1)或不断下降(a小于1)的曲线。
当a大于1时,函数的增长速度越来越快;当0 < a < 1时,函数的递减速度越来越慢。
4. 对数函数对数函数的一般形式为y = logₐ(x),其中a为常数且a大于0且不等于1。
对数函数的图像为一条不断上升(a大于1)或不断下降(a小于1)的曲线。
对数函数与指数函数互为反函数,即对数函数的图像是指数函数的镜像。
5. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
三角函数的图像是周期性的波动曲线,其中正弦函数和余弦函数的曲线在[-π, π]范围内完成一次周期性波动,而正切函数的曲线在[-π/2, π/2]范围内完成一次周期性波动。
二、初等函数的性质初等函数具有一些常见的性质,这些性质可以帮助我们推导和理解数学问题。
下面将介绍几个常见的初等函数性质。
1. 奇偶性奇偶性是指函数的图像关于y轴对称的性质。
若函数满足f(-x) =f(x),则称该函数为偶函数;若函数满足f(-x) = -f(x),则称该函数为奇函数。
内蒙古伊图里河高级中学高三数学复习:第2讲 函数、基本初等函数的图象与性质主干知识整合1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质,是函数中最常涉及的性质,特别注意定义中的符号语言;(2)奇偶性:偶函数其图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数其图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.特别注意定义域含0的奇函数f (0)=0;(3)周期性:f (x +T )=f (x )(T ≠0),则称f (x )为周期函数,T 是它的一个周期.2.对称性与周期性的关系(1)若函数f (x )的图象有两条对称轴x =a ,x =b (a ≠b ),则函数f (x )是周期函数,2|b -a |是它的一个正周期,特别地若偶函数f (x )的图象关于直线x =a (a ≠0)对称,则函数f (x )是周期函数,2|a |是它的一个正周期;(2)若函数f (x )的图象有两个对称中心(a,0),(b,0) (a ≠b ),则函数f (x )是周期函数,2|b -a |是它的一个正周期,特别,若奇函数f (x )的图象关于点(a,0)(a ≠0)对称,则函数f (x )是周期函数,2|a |是它的一个正周期;(3)若函数f (x )的图象有一条对称轴x =a 和一个对称中心(b,0)(a ≠b ),则函数f (x )是周期函数,4|b -a |是它的一个正周期,特别是若偶函数f (x )有对称中心(a,0)(a ≠0),则函数f (x )是周期函数,4|a |是它的一个正周期,若奇函数f (x )有对称轴x =a (a ≠0),则函数f (x )是周期函数,4|a |是它的一个正周期.3.函数的图象(1)指数函数、对数函数和幂函数、一次函数、二次函数等初等函数的图象的特点;(2)函数的图象变换主要是平移变换、伸缩变换和对称变换.4.指数函数、对数函数和幂函数的图象和性质(注意根据图象记忆性质)指数函数y =a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况;对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况;幂函数y =x α的图象和性质,分幂指数α>0,α=0,α<0三种情况.要点热点探究探究点一 函数的性质的应用例1 (1)[2011·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3(2)设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________. (1)A (2)-14【解析】 (1)法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3,故选A.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.(2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32的值是0+⎝ ⎛⎭⎪⎫-14=-14. 【点评】 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的实际通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.本题第(2)小题中,实际上就是用已知条件给出了这个函数,解决问题的基本思路有两条:一条是把这个函数在整个定义域上的解析式求出,然后再求解具体的函数值;一条是推证函数的性质,把求解的函数值转化到已知函数解析式的区间上的函数值.本题根据对任意t ∈R 都有f (t )=f (1-t )还可以推证函数y =f (x )的图象关于直线x =12对称,函数又是奇函数,其图象关于坐标原点对称,这样就可以画出这个函数在⎣⎢⎡⎦⎥⎤-12,32上的图象,再根据周期性可以把这个函数的图象拓展到整个定义域上,进而通过函数的图象解决求指定的函数值,研究这个函数的零点等问题,在复习中要注意这种函数图象的拓展.变式题:设偶函数f (x )对任意x ∈R ,都有f (x +3)=-1f x,且当x ∈[-3,-2]时,f (x )=4x ,则f =( )A .10 C .-10 D .-110B 【解析】 根据f (x +3)=-1f x ,可得f (x +6)=-1f x +3=-1-1f x=f (x ),所以函数y =f (x )的一个周期为6.所以f =f (108-=f (-=f =f (-+3)=-1f -=110. 例2 [2011·安徽卷] 函数f (x )=ax m (1-x )n 在区间[0,1]上的图象如图2-1所示,则m ,n 的值可能是( )图2-1A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1B 【解析】 由图可知a >0.当m =1,n =1时,f (x )=ax (1-x )的图象关于直线x =12对称,所以A 不可能;当m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x 2-4x +1)=a (3x -1)(x -1),所以f (x )的极大值点应为x =13<,由图可知B 可能. 当m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3),f ′(x )=a (2x -3x 2)=-ax (3x -2),所以f (x )的极大值点为x =23>,所以C 不可能; 当m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4),f ′(x )=a (3x 2-4x 3)=-ax 2(4x -3),所以f (x )的极大值点为x =34>,所以D 不可能,故选B.【点评】 函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力.利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点,看下面的变式.变式题:[2011·山东卷] 函数y =x2-2sin x 的图象大致是( )图2-2C 【解析】 由f (-x )=-f (x )知函数f (x )为奇函数,所以排除A ;又f ′(x )=12-2cos x ,当x 在x 轴右侧,趋向0时,f ′(x )<0,所以函数f (x )在x 轴右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x =2π应在函数的减区间上,所以选C. 探究点三 基本初等函数性质及其应用例3 [2011·辽宁卷] 设函数f (x )=⎩⎪⎨⎪⎧ 21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)D 【解析】 当x ≤1时,f (x )≤2化为21-x ≤2,解得0≤x ≤1;当x >1时,f (x )=1-log 2x <1<2恒成立,故x 的取值范围是[0,+∞),故选D.【点评】 本题要注意在分段函数上分段处理的方法,另外就是要注意在解对数方程或者不等式时一定要注意其真数大于零的隐含条件.高考对指数函数、对数函数和幂函数的性质的考查主要是应用,应用这些函数的性质分析函数图象、解不等式、比较数值的大小等,如下面的变式.变式题:[2011·天津卷] 已知a =,b =,c =⎝ ⎛⎭⎪⎫15,则( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >bC 【解析】 令m =,n =,l =log 3103,在同一坐标系下作出三个函数的图象,由图象可得m >l >n ,又∵y =5x为单调递增函数,∴a >c >b .创新链接2 抽象函数解题思路所谓抽象函数问题就是不给出函数的解析式,只给出函数满足的一些条件的函数问题,这类问题的主要题型是推断函数的其他性质、研究特殊的函数值、解与函数的解析式有关的不等式等.抽象函数问题的难点就是没有给出函数的解析式,需要我们根据函数满足的一些已知条件推断函数的性质,然后根据函数的性质解决问题,可以说推断函数性质是我们解决抽象函数问题的一个基本思想.如果是选择题或者填空题可以找到满足已知条件的具体函数,通过具体函数解决一般性问题.例4 定义在R 上的偶函数f (x )满足f (x +1)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于直线x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0).其中正确命题的序号是________.(请把正确命题的序号全部写出来)【分析】根据给出的函数值的等式,f (x +1)=-f (x ),把其中的x 替换成x +1后,再次使用上面关系可得f (x +2)=f (x ),再根据函数是偶函数可得f (x +2)=f (-x ),即可得函数图象关于直线x =1对称,再根据函数是偶函数,其图象还关于y 轴对称,即可根据函数在已知区间上的单调性推断该函数在未知区间上的单调性.【答案】 ①②④【解析】 由f (x +1)=-f (x )⇒f (x +2)=-f (x +1)=f (x ),故函数f (x )是周期函数,命题①正确;由于函数f (x )是偶函数,故f (x +2)=f (-x ),函数图象关于直线x =x +2-x 2=1对称,故命题②正确;由于函数f (x )是偶函数,故函数在区间[0,1]上递减,根据对称性,函数在[1,2]上应该是增函数(也可根据周期性判断),故命题③不正确;根据周期性,f (2)=f (0),命题④正确.【点评】 解这类抽象函数试题,关键是对函数值等式的变换,通过变换首先得到其周期性,再根据函数的性质对各个结论作出判断.本题中关系式f (x +1)=-f (x ),可以变换为f (x +1)=-f (-x ),这个等式说明函数图象关于点⎝ ⎛⎭⎪⎫12,0中心对称. 变式题:(1)已知定义域为R 的函数f (x )满足f (-x )=-f (x +4),当x >2时,f (x )单调递增,如果x 1+x 2<4且(x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负(2)[2011·辽宁卷] 函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)(1)A (2)B 【解析】 (1)根据不等式(x 1-2)(x 2-2)<0,可得x 1,x 2的值一个大于2、一个小于2.由题意知x 1,x 2地位是对等的,不妨设x 1<2,x 2>2,当x 1<2,x 2>2,x 1+x 2<4时,可得2<x 2<4-x 1.又x >2时函数f (x )单调递增,所以f (x 2)<f (4-x 1)=-f (x 1),即f (x 1)+f (x 2)<0.(2)设G (x )=f (x )-2x -4,所以G ′(x )=f ′(x )-2,由于对任意x ∈R ,f ′(x )>2,所以G ′(x )=f ′(x )-2>0恒成立,所以G (x )=f (x )-2x -4是R 上的增函数,又由于G (-1)=f (-1)-2×(-1)-4=0,所以G (x )=f (x )-2x -4>0,即f (x )>2x +4的解集为(-1,+∞),故选B.规律技巧提炼1.(1)已知函数f (x )满足对任意x 有f (x +a )=-f (x )(a ≠0),则可得f (x +2a )=-f (x +a )=f (x ),即可推知2a 是这个函数的一个周期;(2)已知函数f (x )满足对任意x 都有f (x +a )=1f x ,f (x +a )=-1f x(a ≠0),同样可推知2a 为其周期;(3)已知函数f (x )满足对任意x ,都有f (x +a )=1+f x 1-f x(a ≠0,f (x )≠1),则采用f (x +2a ),f (x +4a )进行推理可得其一个周期是4a .2.如果函数f (x )满足对任意x 都有f (a +x )=f (b -x ),则这个函数图象本身是一个轴对称图形,关于直线x =a +b 2对称,反之亦然;如果函数f (x )满足对任意x 都有f (a +x )=-f (b -x ),则这个函数图象本身是一个中心对称图形,对称中心是⎝ ⎛⎭⎪⎫a +b 2,0,反之亦然.注意这个结论中b =a 的情况.3.由偶函数y =f (x )的图象关于直线x =a (a ≠0)对称可得函数解析式满足f (a +x )=f (a -x ),进而f (2a +x )=f (-x )=f (x ),即可得到函数y =f (x )的一个周期是2a ;当奇函数f (x )的图象关于点(a,0)(a ≠0)对称时,可得f (a +x )=-f (a -x ),以x +a 代x 得,f (2a +x )=-f (-x )=f (x ),也可推出2a 是函数f (x )的一个周期.教师备用例题备选理由:例1是考查以映射的观点看待函数以及函数的三要素,鉴于这个问题不是高考考查的重点,我们在正文中没有列入这个探究点,可用此题补充这个知识点;例2虽然是2009的高考试题,可这个题目是高考考查抽象和函数性质中较为深入的一个试题,试题具有较大的难度,其解法体现了解决一类抽象函数问题的基本方法;例3的目的是考查使用函数性质的思想意识,就是透过具体的函数解析式发现和使用函数性质,这种意识也要注意培养;例4,试图通过这个题提供一个解决区域内整点个数的一般方法.例1 给定k ∈N *,设函数f :N *→N *满足:对于任意大于k 的正整数n ,f (n )=n -k .(1)设k =1,则其中一个函数f 在n =1处的函数值为________;(2)设k =4,且当n ≤4时,2≤f (n )≤3,则不同的函数f 的个数为________.【答案】 a (a 为正整数) 16【解析】 由于函数f (n )在n >1时的解析式是f (n )=n -1,根据给出的函数值必须是正整数,可得只要f (1)的值为正整数即可,即此时函数f (n )=⎩⎪⎨⎪⎧a a 为正整数n =1,n -1n >1. 当k =4时,函数在n >4时的解析式是f (n )=n -4,在n =1,2,3,4时,由于函数值满足f (n )=2,3,故f (1),f (2),f (3),f (4)的取值各自有两种可能,因此这个函数在n ≤4时,f (1),f (2),f (3),f (4)取值的可能性有16种,所以有16个这样不同的函数.【点评】 本题考查函数概念的理解,即在函数定义域确定的情况下,函数的值域可以不同,从而得到的函数也不相同,本题的目的是考查考生对函数三要素的理解程度.例2 函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( )A .f (x )是偶函数B .f (x )是奇函数C .f (x )=f (x +2)D .f (x +3)是奇函数【解析】 D 由已知条件知f (-x +1)=-f (x +1),f (-x -1)=-f (x -1).由f (-x +1)=-f (x +1)⇒f (-x +2)=-f (x );由f (-x -1)=-f (x -1)⇒f (-x -2)=-f (x ).由此得到f (-x +2)=f (-x -2),即f (x +2)=f (x -2),由此可得f (x +4)=f (x ),即函数f (x )是以4为周期的周期函数.这样f (x +3)=f (x -1),故函数f (x +3)是奇函数.例3 设f (x )=x 3+x ,x ∈R ,当0≤θ≤π2时,f (m sin θ)+f (1-m )>0恒成立,则实数m 的取值范围是( )A .(0,1)B .(-∞,0) D .(-∞,1)【解析】 D 根据函数的性质,不等式f (m sin θ)+f (1-m )>0,即f (m sin θ)>f (m -1),得m sin θ>m -1在⎣⎢⎡⎦⎥⎤0,π2上恒成立.当m >0时,即sin θ>m -1m 恒成立,只要0>m -1m 即可,解得0<m <1;当m =0时,不等式恒成立;当m <0时,只要sin θ<m -1m ,即1<m -1m ,只要-1m>0即可,解得m <0.综上可知:m <1.例4 [2011·北京卷] 设A (0,0),B (4,0),C (t +4,4),D (t,4)(t ∈R).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}【解析】 C 显然四边形ABCD 内部(不包括边界)的整点都在直线y =k (k =1,2,3)落在四边形ABCD 内部的线段上,由于这样的线段长等于4,所以每条线段上的整点有3个或4个,所以9=3×3≤N (t )≤3×4=12.如图(1),图(2),当四边形ABCD 的边AD 上有5个整点时,N (t )=9;如图(3),当四边形ABCD 的边AD 上有2个整点时,N (t )=11;如图(4),当四边形ABCD 的边AD 上有1个整点时,N (t )=12.故应选C.。
高中函数图像性质总结一、指数函数)10(≠>=a a a y x且1、指数函数的图象和性质2、第一象限:底数越大,图像越高二、xy a log =1、对数函数的图象和性质2、当a>1时,a越大,图像越靠近x轴;当0<a<1时,a越大,图像越远离x轴。
三、幂函数性质1、所有的幂函数图象都过点(1,1)。
除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.;注:当α>0时过定点(0,0)和(1,1);当α<0时过定点(1,1)2、α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数3、α<0时,幂函数的图象在区间(0,+∞)上是减函数.4、任何两个幂函数最多有三个公共点5、图像性质:在第一象限幂函数图像表现为:α>0时,α越大,图像越陡;α<0时,α越大,图像越靠近y轴远离x轴。
四、一元二次函数:1、图像和性质(-∞,+∞) [4ac -b 24a,+∞)2顶点式:f(x)=a(x-h)2+k,定点坐标(h,k)分解式:f(x)=a(x-x1)(x-x2), 一元二次方程的两根为x1,x2一般式:f(x)=ax2+bx+c,(a≠0).1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
2024年高考数学总复习第二章《函数与基本初等函数》§2.7函数的图象最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).概念方法微思考1.函数f (x )的图象关于直线x =a 对称,你能得到f (x )解析式满足什么条件?提示f (a +x )=f (a -x )或f (x )=f (2a -x ).2.若函数y =f (x )和y =g (x )的图象关于点(a ,b )对称,求f (x ),g (x )的关系.提示g (x )=2b -f (2a -x )题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.(×)(2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.(×)(3)函数y =f (x )与y =-f (x )的图象关于原点对称.(×)(4)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.(×)题组二教材改编2.[P35例5(3)]函数f (x )=x +1x的图象关于()A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案C 解析函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.3.[P32T2]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是.(填序号)答案③解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除①.因交通堵塞停留了一段时间,与学校的距离不变,故排除④.后来为了赶时间加快速度行驶,故排除②.故③正确.4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是.答案(-1,1]解析在同一坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].题组三易错自纠5.下列图象是函数y 2,x <0,-1,x ≥0的图象的是()答案C6.把函数f (x )=ln x 的图象上各点的横坐标扩大到原来的2倍,得到的图象的函数解析式是________________.答案y =解析根据伸缩变换方法可得,所求函数解析式为y =7.(2018·太原调研)若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________.答案(0,+∞)解析在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知,当a >0时,方程|x |=a -x 只有一个解.题型一作函数的图象分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解(1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 1个单位,再向上平移2个单位得到,如图④所示.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.题型二函数图象的辨识例1(1)函数y =x 2ln|x ||x |的图象大致是()答案D 解析从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x 0,1e 上单调递减,在区间1e,+∞ D.(2)设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)答案C 解析题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C.思维升华函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.跟踪训练1(1)函数f (x )=1+log 2x 与g (x )=12x 在同一直角坐标系下的图象大致是()答案B 解析因为函数g (x )=12为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B.(2)函数y =1ln|e x -e -x |的部分图象大致为()答案D 解析令f (x )=1ln|e x -e -x |,则f (-x )=1ln|e -x -e x |=1ln|e x -e -x |=f (x ),∴f (x )是偶函数,图象关于y 轴对称,排除B ,C.当x >1时,y =1ln|e x -e -x |=1ln (e x -e -x ),显然y >0且函数单调递减,故D 正确.题型三函数图象的应用命题点1研究函数的性质例2(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是()A .f (x )是偶函数,单调递增区间是(0,+∞)B .f (x )是偶函数,单调递减区间是(-∞,1)C .f (x )是奇函数,单调递减区间是(-1,1)D .f (x )是奇函数,单调递增区间是(-∞,0)答案C 解析将函数f (x )=x |x |-2x去掉绝对值,得f (x )x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________.答案(4,+∞)解析画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ,故取不到等号),所以ab >4.命题点2解不等式例3函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为.答案-π2,-1∪1,π2解析当x ∈0,π2y =cos x >0.当x ∈π2,4y =cos x <0.结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x为偶函数,所以在[-4,0]上,f (x )cos x<0-π2,-1,所以f (x )cos x<0-π2,-1∪1,π2命题点3求参数的取值范围例4(1)已知函数f (x )12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是.答案(0,1]解析作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是.答案解析先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练2(1)(2018·昆明检测)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案C 解析画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是.答案[-1,+∞)解析如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).高考中的函数图象及应用问题高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提.一、函数的图象和解析式问题例1(1)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()答案B 解析当x ∈0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈π4,3π4时,1+5,22.∵22<1+5,∴D ,故选B.(2)已知函数f (x )的图象如图所示,则f (x )的解析式可以是()A .f (x )=ln|x |x B .f (x )=e x xC .f (x )=1x2-1D .f (x )=x -1x答案A 解析由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.(3)(2018·全国Ⅱ)函数f (x )=e x -e -x x 2的图象大致为()答案B 解析∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -x x 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.二、函数图象的变换问题例2已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()答案D 解析方法一先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象;然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y=-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.方法三当x =0时,y =-f (2-0)=-f (2)=-4.故选D.三、函数图象的应用例3(1)已知函数f (x )|,x ≤m ,2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是.答案(3,+∞)解析在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m-m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.(2)不等式3sin π2x-12log x<0的整数解的个数为.答案2解析不等式3sin π2x12log x<0,即3sinπ2x<12log x.设f(x)=3sinπ2x,g(x)=12log x,在同一坐标系中分别作出函数f(x)与g(x)的图象,由图象可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin π2x12log x<0的整数解的个数为2.(3)已知函数f(x)sinπx,0≤x≤1,log2020x,x>1,若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.答案(2,2021)解析函数f(x)sinπx,0≤x≤1,log2020x,x>1的图象如图所示,不妨令a<b<c,由正弦曲线的对称性可知a+b=1,而1<c<2020,所以2<a+b+c<2021.1.(2018·浙江)函数y=2|x|sin2x的图象可能是()答案D解析由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B.令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是()答案C解析当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为()答案A解析先作出函数f(x)=log a x(0<a<1)的图象,当x>0时,y=f(|x|+1)=f(x+1),其图象由函数f(x)的图象向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图象关于y轴对称翻折到y轴左边,得到x<0时的图象,故选A.4.若函数f(x)ax+b,x<-1,ln(x+a),x≥-1的图象如图所示,则f(-3)等于()A.-12B.-54C.-1D.-2答案C解析由图象可得-a+b=3,ln(-1+a)=0,得a=2,b=5,∴f(x)2x+5,x<-1,ln(x+2),x≥-1,故f(-3)=2×(-3)+5=-1,故选C.5.函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-1答案D解析与y=e x的图象关于y轴对称的函数为y=e-x.依题意,f(x)的图象向右平移一个单位,得y=e-x的图象.∴f(x)的图象由y=e-x的图象向左平移一个单位得到.∴f(x)=e-(x+1)=e-x-1.6.(2018·承德模拟)已知函数f(x)的定义域为R,且f(x)2-x-1,x≤0,f x-1),x>0,若方程f(x)=x+a有两个不同实根,则实数a的取值范围为() A.(-∞,1)B.(-∞,1]C .(0,1)D .(-∞,+∞)答案A解析当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为.答案{x |x ≤0或1<x ≤2}解析画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0>1,x )≤0<1,x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =.答案-2解析由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是.答案-13,解析由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10.给定min{a ,b },a ≤b ,,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m与函数y =f (x )的图象有3个交点,则实数m 的取值范围为.答案(4,5)解析作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y=m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )2(1-x )+1,-1≤x <0,3-3x +2,0≤x ≤a的值域为[0,2],则实数a 的取值范围是.答案[1,3]解析先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12.已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围.解(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知函数f (x )2+2x -1,x ≥0,2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是()A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0答案D解析函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.14.已知函数f (x )=x |x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是.答案解析f (x )+1x -1,x >1,1+11-x,x <1,g (x )+x ,x ≥0,,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x=x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x -∞,5-12∪1+52,+∞15.已知函数f (x )-x 2+x ,x ≤1,13logx ,x >1,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为____________.答案-∞,74∪94,+∞解析对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )-x 2+x ,x ≤1,13log x ,x >1的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是-∞,74∪94,+∞16.已知函数f (x )(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,求实数k 的取值范围.解由题意知,直线y =kx 与函数y =f (x )(x ∈[0,6])的图象至少有3个公共点.函数y =f (x )的图象如图所示,由图知k ,1 6.。
基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在内总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12反余弦函数,定义域为[-1,1],值域为,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14反余切函数,定义域为,值域,为有界函数,在其定义域内单调减少的非奇非偶函数。