ADS高低阻抗线微带滤波器设计-Lec05
- 格式:pdf
- 大小:668.34 KB
- 文档页数:5
应用ADS设计微带线带通滤波器1、微带带通微带线的基本知识微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。
微带线带通滤波器的电路结构的主要形式有5种:1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。
2、平行耦合微带线带通滤波器窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。
但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。
3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。
这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。
这种滤波器的精确设计较难。
4、1/4波长短路短截线滤波器5、半波长开路短截线滤波器下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。
2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。
整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。
关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。
但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。
基于ADS微带线带阻滤波器设计电磁波与微波技术课程设计课题:带阻滤波器的设计与仿真指导老师:姓名:学号:一:课程设计要求1. 1 设计题目:带阻滤波器的设计与仿真。
1.2 设计方式:分组课外利用ads软件进行设计。
1.3 设计时间:第一周至第十七周。
1.4 带阻滤波器中心频率:5.8GHz;相对带宽:9%;带内波纹:<0.2dB。
1.5 滤波器阻带衰减>25dB;在频率5.3GHz和6.3GHz处,衰减<3dB;输入输出阻抗:50Ω。
二:初步设计过程利用微带短截线带阻滤波器的理论基础,可以方便地设计出符合技术指标的微带短截线滤波器。
下面我们用ADS设计并仿真微带短截线带阻滤波器的原理图,。
微带短截线带阻滤波器的设计指标如下:中心频率:5.8GHz;相对带宽:9%;带内波纹: <0.2dB。
滤波器阻带衰减>25dB;在频率5.3GHz和6.3Hz处,衰减<3dB;输入输出阻抗:50Ω。
2.1创建原理图启动ADS软件创建一名为Filter_Stubl的原理图。
2.2 利用ADS的工具tools完成对微带线的计算利用ADS提供的工具tools,可以进行微带线物理尺寸和电参数之间的数值计算,若给定微带线的特性阻抗和电长度,可以计算微带线的宽度。
(1)设置微带线参数在【Microstrip Substrate】对话框中进行设置,设置好后在原理图中有:(2)在微带线元件面板上,选择一个微带线MLIN,插入原理图的画图区。
(3)在画图区中选中微带线MLIN,再选择【tools】调出【LineCalc】计算窗口。
算出所需参数(4) 通过上述计算得到的数据,是微带短截线带阻滤波器的尺寸。
2.3 设计原理图(1)保留前面设置的微带线参数,删除原理图中的一个微带线MLIN。
(2)在原理图的元件面板列表上,选择微带线【Tlines-Microstrip】元件面板上出现与微带线对应的元件图标。
一种基于ADS的微带低通滤波器优化设计的开题报告此次开题报告将针对一种基于ADS的微带低通滤波器优化设计进行研究。
滤波器是电子电路设计中常见的模块,其主要作用是把不需要的频率成分从输入信号中滤除,保留所需的信号。
而微带低通滤波器则是一种常见的微波电路设计模块,常用于通信、雷达、导航等领域中。
本次研究将借助ADS软件,对微带低通滤波器进行优化设计。
ADS (Advanced Design System)是美国Keysight Technologies公司开发的一款基于EDA技术的高端仿真软件,主要应用于射频和微波电路的设计与仿真。
通过利用ADS的仿真功能,可以较为准确地模拟出滤波器的性能参数,并利用优化算法寻求最优化设计方案,从而实现滤波器的优化。
本次研究的具体内容包括以下几个方面:1. 文献综述:针对微带低通滤波器的基本原理、设计方法和优化算法等方面进行全面综述,为后续研究提供理论基础和参考资料;2. 滤波器建模:基于ADS软件,通过建立滤波器电路模型,对滤波器的性能参数进行仿真分析,包括通带范围、插入损耗、阻带衰减等;3. 优化算法选择:针对滤波器的设计要求和设计参数,选择合适的优化算法,并建立相应的优化模型,自动寻求最优化设计方案;4. 优化设计实现:通过不断优化设计参数,直到滤波器的设计满足了预设的性能要求,完成滤波器优化设计;5. 仿真验证:对优化设计后的微带低通滤波器进行ADS仿真验证,评估滤波器的性能是否满足要求。
本次研究的意义在于探索一种新的、高效的微波电路滤波器的设计方法,并为通信、雷达、导航等微波电路应用领域提供一种优化设计的技术支持。
ADS微带低通滤波器-图文微带低通滤波器ADS仿真实验3100403028刘骥通信101一.实验目的1.了解微带低通滤波器的设计方法及原理2.熟悉ADS2022软件二.具体指标1.具有最平坦响应2.截止频率c2.5GHz3.在4GHz处的插入损耗必须大于20dB4.阻抗为50,采用6阶巴特沃兹低通原型,最高实际线阻抗为120,最低实际阻抗为20,采用的基片参数为d1.58mm,r4.2,tan0.02,铜导体的厚度为t0.035mm三.滤波器设计步骤1.根据设计要求确定低通原型元器件值2.采用阻抗和频率定标公式,用低阻抗和高阻抗线段代替串联电感和并联电容。
所需微带线的电长度l,以及实际微带线宽w和线长l可由ADS软件中的lineCalc工具计算得到3.根据得到的线宽和线长进行建模并仿真计算计算如下:|w4|110.6wwc2.5,由下图1.1看出,对于n=6的曲线,当(||1)0.6wc时,LA<20dB,故最大平坦滤波器级数n=6。
图1.1最大平坦滤波器原型的衰减与归一化频率的关系曲线根据表1.2列出低通原型值:g10.5176,g21.4142,g30.9318,g40.9318,g51.4142,g60.5176。
表1.2巴特沃兹滤波器低通原型元器件值四.滤波器原理图设计1.建工程,画微带线原理图画好的原理图如图2.电路参数的设置添加器件MSUB,双击MSUB,添加参数如图打开tool->LineCalc->StartLineCalc,计算各个微带先的长(l)和宽(w),在ubtrateparameter窗口设置介质的参数,参数值根据前面MSUB控件填写。
在electrical填入Z0(微带线特性阻抗),E_Eff(微带线电长度),然后单机Syntheize栏中的箭头,物理尺寸参数设置栏会显示得到的微带线线长和线宽(注意:在Syntheize前要把Phyical中的W和L的单位设置为mm),其中各支节的Z0(即图Zi)和E_Eff(即图βli度)参考值如下图1.7图1.7值,如图1.8图1.8接着添加S-PARAMETERS,START=0GHz,Stop=5GHz,Step=0.01GHz。
项目名称:基于ADS优化的微带带通滤波器设计一、实验目的(1) 了解低通滤波器、带通滤波器、高通滤波器等滤波器原理(2) 利用ADS2008 软件设计,以切比雪夫滤波器为原型,设计一种微带线带通滤波器。
二、实验设备(1) PC 机一台;(2) ADS2008 软件;三、实验内容和要求(1) 设计一个微带线带通滤波器,以切比雪夫低通滤波器为原型;(2) 中心频率:2G+学号*50MHz ;(2G+10*50MHz=2.5GHz )(3) 相对带宽:8%;(2.5GHz*8 %=200MHz )四、实验原理1. 滤波器原理滤波器的基础是谐振电路,它是一个二端口网络,对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。
典型的频率响应包括低通、高通、带通和带阻特性。
镜像参量法和插入损耗法是设计集总元件滤波器常用的方法。
对于微波应用,这种设计通常必须变更到由传输线段组成的分布元件。
Richard 变换和Kuroda 恒等关系提供了这个手段。
2. 微带线微带线(microstrip1ine) 是现在混合微波集成电路和单片微波集成电路使用最频繁的一种平面传输线。
它可用光科程序制作,且容易与其他无源微波电路和有源微波器件集成,从而实现微波部件和系统的集成化。
微带线是在金属化厚度为h 的介质基片的一面制作宽度为W ,厚度为t 的导体带,另一面作接地金属平板而构成的。
3. 耦合微带线当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称为耦合传输线。
耦合微带传输线由靠得很近的 3 个导体构成。
这种结构介质厚度为d,介质相对介电常数为η,,在介质的下面为公共导体接地板,在介质的上面为 2 个宽度为W、相距为S 的中心导体带。
五、实验步骤与结果1. 设定滤波器指标中心频率: 2.5GHz通带带宽:200MHz (2.4~2.6GHz )输入输出的阻抗:50Ω插入损耗:小于2dB阻带衰减:在距离中心频率300MHz 处的衰减大于50dB相对带宽:8%(表示信号带宽为0.2GHz)带内输入输出端口反射系数:小于-15dB4. 滤波器选用与微带线的计算2.dB 切比雪夫滤波器, 5 阶。
基于ADS仿真设计的微带带通滤波器引言在射频通信系统中,无论是发射机还是接收机,都需要选择特定频率的信号进行处理,滤除其他频率的干扰信号,这就需要使用滤波电路来分离有用信号和干扰信号。
因此,高性能的滤波器对设计一个好的射频通信系统具有重要意义。
微带电路由于体积小、重量轻、频带宽、易于与射频电路匹配等优点,近年来在滤波电路中得到了广泛的应用。
本文借助ADs2005a(AdvancedDesignsystem)仿真软件,设计出了一种边缘耦合的平行耦合线带通滤波器。
基本原理边缘耦合的平行耦合线由两条相互平行且靠近的微带线构成。
根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容,平行耦合线还需要考虑组合电容和电感。
每条微带线的特征阻抗为z0相互耦台的部分长度为L,微带线的宽度为w,微带之间的距离为s,偶模特征阻抗为乙,奇模特征阻抗为z0。
使用单个单元电路不能获得良好的频率特性,可以采用如图1所示的对称级联的方法获得良好的频率特性。
级联微带带通滤波电路的主要设计步骤如下:1 确定滤波器的参数:根据要一般来说,理论值的仿真结果和实际结果都有很大出入,需要进行优化。
可以使用Tune工具进行优化,或者采用Optim 工具。
观察最终的优化结果,直到达到设计要求。
设计过程设计要求中心频率为5GHz,带宽为8%,通带内的纹波为3dB,要求在5.3GHz处具有不小于30dB的衰减。
微带电路板参数如下:厚度1.27mm,介质相对介电常数为Er=9.8,相对磁导率为Mur=1,金属电导率Cond=(S/m),金属层厚度T=0.03mm,损耗正切角TanD=0,表面粗糙度Rough=0mm。
计算参数1.1.5.3GHz的归一化频率为Ω=1.476。
根据要求选择滤波器原型为3dB等纹波切比雪夫低通滤波电路,在Ω=1.476处,具有大于30dB的衰减,查表可知至少需要选择5阶滤波电路,本文即选择5阶滤波电路。
对应的归一化参数为:g0=1.0,g1=g5=3.4817,g2=g4=0.7618,g3=4.538,g6=10 2.通过计算可得奇模和偶模阻抗,如表1所示(单位Ω)。
1.绪论 (1)1.1 微带滤波器简介 (1)1.2微带滤波器的主要参数 (2)2. ADS (3)2.1 ADS简介 (3)2.2 ADS的仿真功能 (4)3. 基于ADS的微带滤波器设计 (4)3.1微带滤波器的设计要求 (4)3.2 滤波器的仿真设计 (5)3.3 Richards转换 (10)3.4 分布元件仿真 (13)3.5 制版图 (15)4心得体会 (16)参考文献 (18)1.绪论我们利用微波滤波器只让频率正确的的信号通过阻碍频率不同的信号的特性来区分信号。
滤波器的性能对微波电路系统的性能指标有很大的影响,因此设计微波电路系统时设计出具有高性能的滤波器很重要。
微带电路在微波电路系统应用广泛路。
具有个体,质量轻、频带分布宽等特点,其中用微带做滤波器是其主要应用之一,微带滤波器当中最基本的滤波器是微带低通滤波器,而别的滤波器可以通过低通滤波器为原型转化过来。
其中最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。
因此本节将重点研究如何设计并优化微带滤波器1.1 微带滤波器简介滤波器是一个的二端口网络,对频率适合的信号进行传输,对频率不匹配的信号进行发射衰减,从而实现信号频谱过滤。
典型的频率响应包括低通、高通、带通、带阻衰减。
如图1-1所示.还可以从不同角度对滤波器进行分类:(1)按功能分,低通滤波器,高通滤波器,带通滤波器,带阻滤波器,可调滤波器。
(2)按用的元件分,集总参数滤波器,分布参数滤波器,无源滤波器,有源滤波器,晶体滤波器,声表面波滤波器,等。
1.2微带滤波器的主要参数(1)中心频率:一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。
窄带滤波器常以插损最小点为中心频率计算通带带宽。
(2)截止频率:指低通滤波器的通带右边频点及高通滤波器的通带左边频点。
通常以1dB或3dB相对损耗点来标准定义。
(3)通带带宽:指需要通过的频谱宽度,BWxdB=(f2-f1)。
ADS仿真:微带滤波器的设计关键字:ADS 仿真滤波器微波滤波器是用来分离不同频率微波信号的一种器件。
它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。
1 微带滤波器的原理微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。
最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。
微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。
这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。
2 滤波器的分类最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。
图12.1给出了这四种滤波器的特性曲线。
按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。
3 微带滤波器的设计指标微带滤波器的设计指标主要包括:1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。
2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。
3中心频率:fc或f0。
4截止频率。
下降沿3dB点频率。
5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。
6微分时延(differential delay):两特定频率点群时延之差以ns计。
7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。