ads设计的滤波器.
- 格式:doc
- 大小:609.50 KB
- 文档页数:12
基于ADS的微带线带通滤波器设计摘要:该文章讨论的是基于ADS软件的平行耦合微带线带通滤波器的设计过程。
利用集总参数低通原型滤波器经过一系列转化可以得到微带线带通滤波器的特性,运用传输线原理和导纳变换公式获得带通滤波器的相关参数,并借助功能强大的ADS软件对微带线带通滤波器的原理图和版图进行设计制作。
该软件只需要输入相应的原始数据,便可方便得到频率响应等相关特性。
我们也可以借助ADS软件对其进行优化仿真,以得到更加优质的带通滤波器。
关键词:带通滤波器;微带线;传输线;ADS1.引言随着近年来无线通信技术的迅猛发展,微波滤波器已经成为作为辨别分离有用和无用资源的重要部件,并大量使用于通信系统领域,其性能的优越直接影响整个通信系统的质量。
现代通信对微波滤波器的整体要求越来越高,以求得到更加微小化、轻量化、集成化的高性能低成本的滤波器。
本文设计运用微带滤波器印刷电路的方法,可以满足尺寸小、成本低且性能稳定的要求,被广泛运用于无线通信系统中。
目前在无线通信系统领域中,微波滤波器的种类日益增多,性能和设计方法各有差异。
但总体来看,微波滤波器的设计大都采用从集总参数的低通原型滤波器出发经过一系列变换得到的。
本章讨论的是平行耦合微带线带通滤波器的设计,它同样是基于集总参数低通原型滤波器出发,经过等效变换可以得到与带通滤波器相应的低通原型模型,再经过阻抗倒置变换或导纳变换便可以得到相应的带通滤波器的设计模型及相关参数。
本文首先介绍微带线带通滤波器的设计原理,然后根据基本原理推导出滤波器的相关参数,再运用ADS软件进行制作、优化和仿真,最后将完整的设计图纸和相关参数拿到工厂加工制成成品。
为了验证该微带线带通滤波器的设计和仿真的正确性,本文采用网络分析仪对该滤波器进行了相关测试,测试结果和仿真效果相吻合。
2.微带线带通滤波器的设计原理及设计过程根据滤波器综合理论,低通原型滤波器是设计其他滤波器的基础。
本文设计的带通滤波器同样是在低通原型滤波器的基础上经过变换得到的。
•引言•微波滤波器基本原理•ADS 软件在微波滤波器设计中的应用•微波滤波器制作工艺流程•调试技巧与常见问题解决方案•实验案例分析与讨论•总结与展望目录01引言微波滤波器概述微波滤波器是一种用于控制微波频率响应的二端口网络,广泛应用于无线通信、雷达、卫星通信等领域。
微波滤波器的主要功能是允许特定频率范围内的信号通过,同时抑制其他频率范围的信号,从而实现信号的选频和滤波。
微波滤波器的性能指标包括插入损耗、带宽、带内波动、带外抑制等,这些指标直接影响着通信系统的性能。
设计制作与调试重要性设计是微波滤波器制作的首要环节,良好的设计能够确保滤波器的性能指标满足系统要求。
制作是将设计转化为实物的过程,制作精度和质量直接影响着滤波器的最终性能。
调试是对制作完成的滤波器进行性能调整和优化,使其达到最佳工作状态的过程。
本教程旨在介绍微波滤波器的设计、制作与调试过程,帮助读者掌握相关知识和技能。
教程内容包括微波滤波器的基本原理、设计方法、制作流程和调试技巧等。
通过本教程的学习,读者将能够独立完成微波滤波器的设计、制作与调试,为实际工程应用打下基础。
教程目的和内容02微波滤波器基本原理低通滤波器高通滤波器带通滤波器带阻滤波器微波滤波器分类工作原理及性能指标工作原理性能指标常见类型微波滤波器特点集总参数滤波器分布参数滤波器陶瓷滤波器晶体滤波器03ADS软件在微波滤波器设计中的应用ADS软件简介及功能模块ADS(Advanced Design System)是一款领先的电子设计自动化软件,广泛应用于微波、射频和高速数字电路的设计、仿真与优化。
ADS软件包含多个功能模块,如原理图设计、版图设计、电磁仿真、系统级仿真等,可满足不同设计阶段的需求。
ADS软件支持多种微波滤波器类型的设计,如低通、高通、带通、带阻等,具有强大的设计能力和灵活性。
微波滤波器设计流程确定滤波器类型和性能指标根据实际需求选择合适的滤波器类型,并确定滤波器的性能指标,如中心频率、带宽、插入损耗、带外抑制等。
ads波导腔体滤波器设计
ADS软件可以用于波导腔体滤波器的设计。
下面简单介绍一下设计过程:
1. 确定滤波器的参数,包括中心频率、通带带宽、阻带带宽和衰减。
2. 在ADS软件中新建一个“layout”工程,在其中选择一个合适的波导宽度。
3. 将波导布满整个布局区域,并在中央添加两个矩形缺口,调整宽度和长度以达到带宽要求。
4. 运用仿真和优化工具进行电磁仿真和优化。
如果需要更精细的仿真结果,可以引入三维电磁仿真软件。
5. 通过布局编辑器进行布局优化和参数调整,如增加爬行线和扇形盖板、调整缺口形状等。
6. 通过ADS软件的“加工输出”功能将布局数据输出到CNC机器进行加工。
7. 完成加工后,进行测试和调试。
如果滤波器不满足要求,可以返回到步骤3到步骤6进行优化。
以上是波导腔体滤波器设计的基本流程,当然具体细节还需要根据具体情况进行调整。
在设计过程中,需要注意滤波器的可制造性和可靠性。
同时,在设计过程中要注意避免过度优化导致生产成本过高。
基于ADS的集总参数带通滤波器的优化设计作者:杨柱朱倩倩艾治余王攀赵小平来源:《山东工业技术》2014年第14期摘要:滤波器在通信系统中应用较为广泛,利用滤波器的选频作用,可以滤除通信中的干扰噪声或测试中进行频谱分析。
本文利用ADS软件设计一款带通滤波器,并对其进行优化和瞬态仿真分析。
经过分析得出,在满足其他各项设计指标要求的前提下,优化后的滤波器选频特性得到明显提高。
关键词:带通滤波器;ADS;优化仿真;瞬时仿真1引言在现代通信系统中,滤波器的应用领域很广泛,如电视频道信号的选取,多音响装置的频谱分析器等,滤波器作为无线通信应用领域的一个重要器件,其性能指标往往直接影响到整个通信系统的优劣,伴随着移动通信、雷达、卫星通信等各通信系统的增多,电磁环境逐渐异常复杂化,从而使得通信系统中频带资源愈发短缺,导致频率间隔变得越发密集。
怎样无失真的从逐渐短缺的频带资源内获取所需的信号并抑制其他无用或有害的信号,为滤波器的设计提出了苛刻的要求。
虽然各滤波器在电子器件和技术的飞速发展的推动下层出不穷,但怎样制造小体积低成本易加工量产并满足指标要求的滤波器渐渐成为工程应用中的核心问题,集总参数滤波器以其自身优势作为首选应用在通信系统和设备中。
集总参数是指当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个理想R、L、C元件来加以描述的电路参数。
集总参数带通滤波器是指由集总参数元件构建的滤波器,其特性由构建此带通滤波器的集总参数元件值来确定。
本文阐述了利用ADS( Advanced Design System )软件设计带通滤波器的方法、流程以及仿真过程,结合带通滤波器的一般原理和最小二乘误差法,以期寻找一种更为通用的、频带高度利用和相邻信道低干扰的带通滤波器的设计方案,同时给出其仿真结果。
2 工作原理带通滤波器[5]是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器。
ADS微带低通滤波器-图文微带低通滤波器ADS仿真实验3100403028刘骥通信101一.实验目的1.了解微带低通滤波器的设计方法及原理2.熟悉ADS2022软件二.具体指标1.具有最平坦响应2.截止频率c2.5GHz3.在4GHz处的插入损耗必须大于20dB4.阻抗为50,采用6阶巴特沃兹低通原型,最高实际线阻抗为120,最低实际阻抗为20,采用的基片参数为d1.58mm,r4.2,tan0.02,铜导体的厚度为t0.035mm三.滤波器设计步骤1.根据设计要求确定低通原型元器件值2.采用阻抗和频率定标公式,用低阻抗和高阻抗线段代替串联电感和并联电容。
所需微带线的电长度l,以及实际微带线宽w和线长l可由ADS软件中的lineCalc工具计算得到3.根据得到的线宽和线长进行建模并仿真计算计算如下:|w4|110.6wwc2.5,由下图1.1看出,对于n=6的曲线,当(||1)0.6wc时,LA<20dB,故最大平坦滤波器级数n=6。
图1.1最大平坦滤波器原型的衰减与归一化频率的关系曲线根据表1.2列出低通原型值:g10.5176,g21.4142,g30.9318,g40.9318,g51.4142,g60.5176。
表1.2巴特沃兹滤波器低通原型元器件值四.滤波器原理图设计1.建工程,画微带线原理图画好的原理图如图2.电路参数的设置添加器件MSUB,双击MSUB,添加参数如图打开tool->LineCalc->StartLineCalc,计算各个微带先的长(l)和宽(w),在ubtrateparameter窗口设置介质的参数,参数值根据前面MSUB控件填写。
在electrical填入Z0(微带线特性阻抗),E_Eff(微带线电长度),然后单机Syntheize栏中的箭头,物理尺寸参数设置栏会显示得到的微带线线长和线宽(注意:在Syntheize前要把Phyical中的W和L的单位设置为mm),其中各支节的Z0(即图Zi)和E_Eff(即图βli度)参考值如下图1.7图1.7值,如图1.8图1.8接着添加S-PARAMETERS,START=0GHz,Stop=5GHz,Step=0.01GHz。
ads设计的滤波器1 课题背景随着信息化浪潮的推进,现代社会产⽣了巨⼤的信息要求,通信技术正在向⾼速、多频段、⼤容量⽅向发展。
⽬前移动通信中所使⽤的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。
在宽带移动化⽅⾯,IEEE802⼯作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常⽤的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。
为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要⾥程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统⼀⽆线电频段。
这正是S波段的应⽤,因此如何研究出⾼性能,⼩型化的滤波器是⽬前电路设计的的关键之⼀。
当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,⽽且可以构成带通和带阻滤波器。
平⾏耦合微带传输线由两个⽆屏蔽的平⾏微带传输线紧靠在⼀起构成,由于两个传输线之间电磁场的相互作⽤,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。
平⾏耦合微带线可以构成带通滤波器,这种滤波器是由四分之⼀波长耦合线段构成,它是⼀种常⽤的分布参数带通滤波器。
当两个⽆屏蔽的传输线紧靠⼀起时,由于传输线之间电磁场的相互作⽤,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。
根据传输线理论,每条单独的微带线都等价为⼩段串联电感和⼩段并联电容。
每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。
单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。
如果将多个单元级联,级联后的⽹络可以具有良好的滤波特性。
射频系统仿真实验报告射频滤波器设计姓名:学号:一、设计要求设计一个三阶原型Butterworth 低通滤波器。
要求:H f =10GHz ,电长度4πθ=。
二、设计方案在三阶原型Butterworth 低通滤波器的基础上,采用kuroda 变换。
变为可实现的结构。
1) 三阶原型Butterworth 低通滤波器:注:并联元件的单位是电纳,串联元件的单位是电抗2) 传输线实现集总参数的电感电容:θtg jZ jX Z L L 0== (8λ的短路线) θjtg 记为S θtg jY jB Y c c 0== (8λ的开路传输线)3) 插入单位元件后再进行Kuroda 规则变换。
目的是变成可实现的物理结构。
采用如下变换:取121Z Z Z N +=时两者等效。
所以Z=1的单位元件并联Y=1的8λ开路传输线变为:Z=1/2的8λ短路传输线和Z=1/2的单位元件相串联。
上图交换为如下:4) 再插入一个单位元件,如下图:⇔利用Kuroda 规则:取121Z Z Z N +=即可。
所以Z=1的单位元件串联Z=1/2的8λ短路传输线变为:并联的Y=3的8λ开路传输线和Z=1.5的单位元件。
所以Z=1/2的单位元件串联Z=2的8λ短路传输线变为:并联的Y=8/5的8λ开路传输线和Z=2.5的单位元件。
整个电路如下图:5) 阻抗交换:采用8λ开路传输线单位值Ω⨯50。
∴ 变换后特征阻抗为:⇔0.333333 16.66671.5 75.0000 0.625 31.25002.5 125.0000 1 50.00006) 物理尺寸计算得到另外4段微带线尺寸如下:归一化值 Z 的特征阻抗宽度W 长度P 单位:mil 频率:10GHz 电长度:45°1/3 Ω67.16 126.6 103.098 1.5 Ω75 15.0051 110.234 5/8 Ω25.31 58.2277 105.493 2.5 Ω125 4.3755113.6 1Ω5029.9473107.84三、仿真分析①Project 导航条内。
课程设计报告题目:基于ADS的微带滤波器设计姓名:学号:班级:电子101专业:电子信息工程指导老师:提交时间: 2014-01-051.绪论我们利用微波滤波器只让频率正确的的信号通过阻碍频率不同的信号的特性来区分信号。
滤波器的性能对微波电路系统的性能指标有很大的影响,因此设计微波电路系统时设计出具有高性能的滤波器很重要。
微带电路在微波电路系统应用广泛路。
具有个体,质量轻、频带分布宽等特点,其中用微带做滤波器是其主要应用之一,微带滤波器当中最基本的滤波器是微带低通滤波器,而别的滤波器可以通过低通滤波器为原型转化过来。
其中最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。
因此本节将重点研究如何设计并优化微带滤波器1.1 微带滤波器简介滤波器是一个的二端口网络,对频率适合的信号进行传输,对频率不匹配的信号进行发射衰减,从而实现信号频谱过滤。
典型的频率响应包括低通、高通、带通、带阻衰减。
如图1-1所示.还可以从不同角度对滤波器进行分类:(1)按功能分,低通滤波器,高通滤波器,带通滤波器,带阻滤波器,可调滤波器。
(2)按用的元件分,集总参数滤波器,分布参数滤波器,无源滤波器,有源滤波器,晶体滤波器,声表面波滤波器,等。
1.2微带滤波器的主要参数(1)中心频率:一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。
窄带滤波器常以插损最小点为中心频率计算通带带宽。
(2)截止频率:指低通滤波器的通带右边频点及高通滤波器的通带左边频点。
通常以1dB或3dB相对损耗点来标准定义。
(3)通带带宽:指需要通过的频谱宽度,BWxdB=(f2-f1)。
f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。
通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。
分数带宽=BW3dB/f0×100%,(4)纹波:指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。
写一篇用ads进行微波射频滤波器设计与仿真的实验心得
100字
作为一名电子工程师,我经常使用ADS(Advanced Design System)软件进行微波射频滤波器的设计与仿真。
在此,我想分享我的实验心得。
实验目的在于设计并验证一个微波射频滤波器,以满足现代通信系统的需求。
ADS软件具有强大的微波电路设计和仿真功能,为我们提供了便捷的工具。
首先,在ADS中,我们选择合适的滤波器类型(如Butterworth、Chebyshev等),并根据设计指标设置滤波器的频率响应参数。
接下来,利用ADS内置的微带线模型和射频器件库,构建滤波器的电路结构。
在仿真阶段,我们通过调整滤波器的参数,观察其对频率响应、传输特性等性能指标的影响。
根据仿真结果,优化滤波器的设计,直至满足预设指标。
实验过程中,我深刻体会到ADS软件在微波射频滤波器设计中的优势。
通过仿真,我们能快速评估滤波器设计的可行性,并有效提高设计效率。
同时,实验也提醒我要不断学习和掌握ADS的新功能,以便更好地应对实际工程需求。
总之,运用ADS进行微波射频滤波器设计与仿真,不仅提高了我的技术水平,还使我深刻认识到软件在现代通信技术发展中的重要性。
项目名称:基于ADS优化的微带带通滤波器设计一、实验目的(1) 了解低通滤波器、带通滤波器、高通滤波器等滤波器原理(2) 利用ADS2008软件设计,以切比雪夫滤波器为原型,设计一种微带线带通滤波器。
二、实验设备(1) PC机一台;(2) ADS2008软件;三、实验内容和要求(1) 设计一个微带线带通滤波器,以切比雪夫低通滤波器为原型;(2) 中心频率:2G+学号*50MHz;(2G+10*50MHz=2.5GHz)(3) 相对带宽:8%;(2.5GHz*8%=200MHz)四、实验原理1.滤波器原理滤波器的基础是谐振电路,它是一个二端口网络,对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。
典型的频率响应包括低通、高通、带通和带阻特性。
镜像参量法和插入损耗法是设计集总元件滤波器常用的方法。
对于微波应用,这种设计通常必须变更到由传输线段组成的分布元件。
Richard变换和Kuroda恒等关系提供了这个手段。
2.微带线微带线(microstrip1ine)是现在混合微波集成电路和单片微波集成电路使用最频繁的一种平面传输线。
它可用光科程序制作,且容易与其他无源微波电路和有源微波器件集成,从而实现微波部件和系统的集成化。
微带线是在金属化厚度为h的介质基片的一面制作宽度为W,厚度为t的导体带,另一面作接地金属平板而构成的。
3.耦合微带线当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称为耦合传输线。
耦合微带传输线由靠得很近的3个导体构成。
这种结构介质厚度为d,介质相对介电常数为η,,在介质的下面为公共导体接地板,在介质的上面为2个宽度为W、相距为S的中心导体带。
五、实验步骤与结果1.设定滤波器指标中心频率:2.5GHz通带带宽:200MHz(2.4~2.6GHz)输入输出的阻抗:50Ω插入损耗:小于2dB阻带衰减:在距离中心频率300MHz处的衰减大于50dB相对带宽:8%(表示信号带宽为0.2GHz)带内输入输出端口反射系数:小于-15dB2.滤波器选用与微带线的计算0.5dB切比雪夫滤波器,5阶。
ADS仿真:微带滤波器的设计关键字:ADS 仿真滤波器微波滤波器是用来分离不同频率微波信号的一种器件。
它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。
1 微带滤波器的原理微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。
最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。
微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。
这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。
2 滤波器的分类最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。
图12.1给出了这四种滤波器的特性曲线。
按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。
3 微带滤波器的设计指标微带滤波器的设计指标主要包括:1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。
2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。
3中心频率:fc或f0。
4截止频率。
下降沿3dB点频率。
5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。
6微分时延(differential delay):两特定频率点群时延之差以ns计。
7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。
一款基于ADS仿真软件设计的L频段同轴介质谐振器型电调滤波器针对实际工程应用中L频段接收或发射信道有较高的选频滤波要求,加之设备小型化要求中有严格的体积限制,不能使用宽带滤波器和较大体积的滤波器,采用电调滤波器是一个不错的选择。
然而传统电调滤波器采用的谐振电路中的电感在L频段使用时,会出现很多问题,影响产品性能。
本文就针对这一问题,提出了一种同轴介质谐振器型电调滤波器,并采用ADS(Advanced Design System)进行了研发初期的仿真分析,大大提高了产品质量和研发效率。
标签:电调滤波器;同轴介质谐振器;ADS;L频段;EDA设计1 引言电调滤波器在通信系统中具有重要的地位,广泛应用于电台通信、测量测绘、雷达技术以及电子对抗技术等领域,提高发射和接收相关性能指标。
在射频发射信道或接收信道中,需要在射频信号放大前进行选频滤波,抑制干扰、杂散、交调等无用信号,防止这些无用信号被后级的放大器放大,影响设备整体性能。
电调滤波器是通过动态可调整的电压对滤波器的选通频点进行动态选择,并有体积小、选择性较高的特点。
本文涉及的是一种应用在L频段的电调滤波器。
频率较低时电调滤波器一般是由n组电感线圈、变容二极管和高Q电容组成的调谐回路组成,利用改变变容二极管的反向偏置电压来控制带通滤波器的选通频率,来实现信道中选通有用信号、衰减带外无用信号的作用。
由于在L频段应用普通电感线圈会因为电感Q值不高的特性而影响电调滤波器整体指标,进而不能达到通信设备对信道的指标要求,造成接收灵敏度降低,发射杂散抑制指标不达标等问题。
ADS软件是美国Agilent公司推出的电路和系统分析软件,可实现包括时域和频域、线性和非线性、模拟和数字、器件级和系统级等多方面仿真,解决了射频电路设计领域困扰设计工程师的大多数问题,是一款强大的射频电路设计与仿真工具软件。
本文将采用ADS(Advanced Design System)辅助设计软件,对一款L频段同轴介质谐振器型电调滤波器进行仿真应分析旨在提供一种利用ADS 仿真软件进行高频段同轴介质谐振器型电调滤波器设计的思路和方法,从而减少设计迭代,提高设计速度。
基于ads的平行耦合微带线带通滤波器的设计及优化平行耦合微带线带通滤波器是一种常用的微波滤波器。
它由多个耦合微带线和微带线构成,具有较好的带通特性和较小的插入损耗。
设计和优化这种滤波器通常采用ADS软件,下面分为两个部分进行详细解释。
1.设计部分(1)确定滤波器参数首先需要确定滤波器的工作频率范围、中心频率、通带和阻带带宽等参数。
这些参数可以根据具体应用需求进行确定。
(2)选择线路结构根据确定的滤波器参数,选择合适的线路结构。
常用的线路结构有串联、平行、串平联和并联等,平行耦合结构是实现带通滤波器较为常用的一种。
(3)确定线路尺寸确定线路结构后,需要根据工作频率、介质常数和板厚等参数,计算出每条线路的宽度和长度。
这里需要考虑线路的带宽和损耗等因素,通常采用求解电磁场分布的方法进行计算。
(4)设计耦合结构在平行耦合结构中,需要设计合适的耦合结构来实现合适的耦合强度。
常用的耦合结构有传输线耦合、缝隙耦合、开放环耦合等。
(5)确定滤波器连接方式根据线路结构和耦合结构的设计,确定滤波器的连接方式和序列。
这里需要考虑滤波器的带宽和衰减等因素。
2.优化部分滤波器的优化常常包括两个方面:性能优化和制造优化。
(1)性能优化针对滤波器的频率响应、损耗和抑制等性能,可以采用ADS软件提供的优化工具进行优化。
这里可以采用基于突变搜索和梯度搜索的不同优化算法,以达到滤波器尽可能优化的目的。
(2)制造优化制造优化主要是针对滤波器的制造工艺和工艺容差进行优化,以达到成本和生产效率方面的优化。
通常还需要考虑滤波器的布局、线宽度和间距等制造要素。
在整个设计和优化的过程中,需要进行仿真和测试,以验证滤波器的性能和有效性。
同时,需要充分考虑不同要素的交互影响和优化目标的平衡。
1 课题背景随着信息化浪潮的推进,现代社会产生了巨大的信息要求,通信技术正在向高速、多频段、大容量方向发展。
目前移动通信中所使用的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。
在宽带移动化方面,IEEE802工作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常用的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。
为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要里程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统一无线电频段。
这正是S波段的应用,因此如何研究出高性能,小型化的滤波器是目前电路设计的的关键之一。
当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。
平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。
平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,它是一种常用的分布参数带通滤波器。
当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。
根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。
每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。
单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。
如果将多个单元级联,级联后的网络可以具有良好的滤波特性。
如图1.1所示。
图1.1 级联后的传输线微带线滤波器具有重量轻、频带宽、结构紧凑和易于集成等特点,广泛应用于各种微波通电路中。
传统的设计方法是通过经验公式和查表来求得相关设计参数,方法复杂烦琐,精度不高,性能指标不尽如人意。
近年来,随着微波电路辅助设计软件的不断发展,微带线滤波器的设计也进入了一个崭新的阶段。
计算机模拟辅助设计可以绕开复杂的理论计算和推导,利用电磁场仿真软件进行微带线滤波器的设计。
近年来, 微波电路计算机辅助设计软件的应用越来越广泛, Agilent 公司的高级设计系统(Advanced DesignSystem———ADS)软件就是其中的佼佼者, 它也是国内各大学和研究所在微波电路和通信系统仿真方面使用最多的软件之一。
ADS仿真设计软件可以模拟整个信号通路,完成从电路到系统的各级仿真。
它把广泛的经过验证的射频、混合信号和电磁设计工具集成到一个灵活的环境中,包括从原理图到PCB板图的各级仿真,当任何一级仿真结果不理想时,都可以回到原理图中重新进行优化,并进行再次仿真,直到仿真结果满意为止,保证了实际电路与仿真电路的一致性。
2 设计过程微带线带通滤波器是一种分布参数滤波器,它是由微带线或耦合微带线组成,具有体积小、重量轻、价格低、性能稳定可靠等优点,在微波工程中应用广泛。
带通滤波器的设计的流程图如图2.1所示。
图2.1 设计流程图2.1 原型滤波器的元件值的归一化及其计算带通滤波器的设计通常先把带通滤波器频率取归一化,参考频率一般取带通滤波器的频带宽度,从而寻找相应的低通模型设计出符合设计参数要求的低通滤波器,再进行频率和元件变换得到相应的带通滤波器。
(1)根据需要的的滤波器通带和阻带衰减,选择低通滤波器原型,由此确定滤波器的阶数N ,然后选取低通滤波器原型参数。
(2)确定上、下边频和归一化带宽。
假设下边频为w1,上边频为w2,中心频率为w0,归一化带宽为∆,∆= W 2-W1W 0其中本设计中w2=26GHz ,w1=24GHZ , w0=25GHZ ∆=W 2-W1W 0=26-2425=0.08 (3)计算耦合微带线各节偶膜和奇膜的特性阻抗。
i J =n J = 平行耦合微带线的偶膜特性阻抗0e Z 和奇膜特性阻抗0o Z 为20e 00i 0i i Z Z [1Z J (Z J )]=++20o 00i 0i i Z Z [1Z J (Z J )]=-+经过计算,平行耦合微带线带通滤波器为3阶,即需要4节耦合微带线级联。
同时波纹为0.5dB 的切比雪夫滤波器元件参数表如表2.2所示。
表2.2 0.5dB 的切比雪夫滤波器元件参数表得到1g =1.5963,2g =1.0967,3g =1.5963波纹为0.5dB 的切比雪夫滤波器阻带衰减特性图如图2.3所示。
图2.3 0.5dB 的切比雪夫滤波器阻带衰减特性图由于1g =1.5963,2g =1.0967,3g =1.5963经过计算得到各节奇偶特性阻抗数值(单位为欧姆)如表2.4所示。
表2.4 奇偶特性阻抗数值2.2 原理图的绘制(1) 创建项目(2) 创建原理图(3) 利用ADS 的计算工具TOOLS 完成对平行耦合微带线的计算在【LineCalc 】计算窗口中将Type 项选择为MLIN ,输入的基板参数为H:基板厚度(1mm )Er:基板相对介电常数(2.7)Mur:磁导率(1)Cond:金属电导率(5.8e+7)Hu:封装高度(1.0e+33mm )T:金属层厚度(0.05mm )Tand:损耗角正切(0.0003)Roungh:表面粗糙度(0mm)然后输入中心频率为25GHz,特性阻抗Z0为50Ohm ,相位延迟E_Eff 为90dB ,计算出微带线的线宽W =3.034400mm,长度L=1.390610mm 。
继续使用【LineCalc 】计算窗口进行计算,将Type 项选择为MCLIN ,输入奇膜和偶膜的特性阻抗,计算出微带线导体带的宽度W ,间隔S ,微带线的长度L ,如表2.5所示。
CL1 CL2 CL3 CL4W 2.354090mm 2.903140mm 2.903140mm 2.354090mm S 0.229490mm 1.005390mm 1.005390mm 0.229490mm L 1.433730mm 1.398760mm 1.398760mm 1.433730mm 表2.5 微带线导体带的宽度W,间隔S,微带线的长度L数值(4)设计原理图首先建立滤波器的主要结构,即4个平行耦合微带线,再选择2个普通微带线插入,插入参数设置控件并修改为指定参数。
将4节微带线修改为上述计算出的数字,并设置参数仿真控制器的扫频参数,进行原理图仿真,其原理图如图2.6所示。
图2.6 原理图2.3 原理图仿真及优化(1)点击仿真按钮,得到的仿真图如图2.7所示。
图2.7 仿真图从图中可以看出来,中心频率25GHz出现了明显的偏移现象,并且频率在26GHz 时衰减超过3dB。
这是由于在设计平行耦合微带带通滤波器没有考虑边缘场效应的影响,为此需要进行优化设定优化目标以及优化控制器参数。
耦合线的微带线长L、宽W和缝隙S是滤波器设计和优化的主要参数,在优化中要用变量代替,便于修改和优化。
(2)优化在原理图设计窗口中选择一个优化控件Optim插入到原理图中,并且同时在元件面板列表中选择4个优化目标控件,如图2.8所示。
图2.8 优化控件以及优化目标优化设计完成后的原理图如图2.9所示。
图2.9 优化之后原理图如果一次优化不能满足技术指标的要求,则需要修改变量的取值范围,重新进行优化,直到满足要求为止。
点击仿真按钮,得到的仿真图如图2.10所示。
图2.10 仿真图可以从仿真信息窗口得到符合要求的滤波器的各参数的确定值如图2.11所示。
图2.11 优化之后各参数优化仿真后,观察反射系数S11 和传输系数 S21这两条曲线,滤波器的中心频率为25GHz,滤波器的通带为24GHz-26GHz,在通带范围内衰减在3 以内,并且滤波器在中心频率25GHz反射系数衰减是最大。
从而说明优化的滤波器已经达到设计指标的要求,设计成功。
3 心得体会刚拿到这个project的时候,一头雾水,MATLAB,ADS,HFSS这三个软件,本科阶段都没有学习过,所以刚开始感觉困难。
我就向舍友寻求帮助,正好有个舍友本科的毕业设计是用MATLAB设计的滤波器,她让我参考吴镇扬老师编写的《数字信号处理》里面设计滤波器的程序,结果最后只能编写出来传输系数这条曲线。
准备换成HFSS试试,就到图书馆借了几本参考书,照着书上的例题,设计了一个交叉耦合滤波器,在设计这个交叉耦合滤波器的过程中学到了好多以前没有接触到的知识,感觉非常开心。
后来同学介绍用ADS设计滤波器容易些,于是到图书馆借了几本相关参考书,首先照着上面的例题设计滤波器。
最后终于完成了符合技术指标的滤波器。
在设计过程中,出现了两个主要问题,第一个就是计算奇偶膜特性阻抗的时候,中心频率忘记修改了,最后把中心频率修改为25GHz,就可以正确计算出奇偶膜的特性阻抗。
第二个问题是优化的时候没有设计变量的范围,一直提示错误。
最后通过看书和请教同学查出了错误原因,设计出变量的范围,优化成功了。
通过这次课题设计,使我不仅学到了通信专业相关知识,更重要的是掌握了ADS的基本使用方法。
对课堂学习的理论知识更深一步的了解和巩固了。
并且这次设计,也大大提升了我的动手能力和解决问题的能力。
因为换了个新环境,感觉挺陌生,但是在设计的过程中增进了我和同学之间的感情,让我慢慢融入到新环境中。
参考文献[1] 徐兴福.ADS2008射频电路设计与仿真实例.北京:电子工业出版社,2009.[2] 黄玉兰,常树茂.ADS射频电路仿真与实例详解.北京:人民邮电出版社,2011.。