ADS滤波器设计
- 格式:docx
- 大小:159.81 KB
- 文档页数:5
•引言•微波滤波器基本原理•ADS 软件在微波滤波器设计中的应用•微波滤波器制作工艺流程•调试技巧与常见问题解决方案•实验案例分析与讨论•总结与展望目录01引言微波滤波器概述微波滤波器是一种用于控制微波频率响应的二端口网络,广泛应用于无线通信、雷达、卫星通信等领域。
微波滤波器的主要功能是允许特定频率范围内的信号通过,同时抑制其他频率范围的信号,从而实现信号的选频和滤波。
微波滤波器的性能指标包括插入损耗、带宽、带内波动、带外抑制等,这些指标直接影响着通信系统的性能。
设计制作与调试重要性设计是微波滤波器制作的首要环节,良好的设计能够确保滤波器的性能指标满足系统要求。
制作是将设计转化为实物的过程,制作精度和质量直接影响着滤波器的最终性能。
调试是对制作完成的滤波器进行性能调整和优化,使其达到最佳工作状态的过程。
本教程旨在介绍微波滤波器的设计、制作与调试过程,帮助读者掌握相关知识和技能。
教程内容包括微波滤波器的基本原理、设计方法、制作流程和调试技巧等。
通过本教程的学习,读者将能够独立完成微波滤波器的设计、制作与调试,为实际工程应用打下基础。
教程目的和内容02微波滤波器基本原理低通滤波器高通滤波器带通滤波器带阻滤波器微波滤波器分类工作原理及性能指标工作原理性能指标常见类型微波滤波器特点集总参数滤波器分布参数滤波器陶瓷滤波器晶体滤波器03ADS软件在微波滤波器设计中的应用ADS软件简介及功能模块ADS(Advanced Design System)是一款领先的电子设计自动化软件,广泛应用于微波、射频和高速数字电路的设计、仿真与优化。
ADS软件包含多个功能模块,如原理图设计、版图设计、电磁仿真、系统级仿真等,可满足不同设计阶段的需求。
ADS软件支持多种微波滤波器类型的设计,如低通、高通、带通、带阻等,具有强大的设计能力和灵活性。
微波滤波器设计流程确定滤波器类型和性能指标根据实际需求选择合适的滤波器类型,并确定滤波器的性能指标,如中心频率、带宽、插入损耗、带外抑制等。
ads波导腔体滤波器设计
ADS软件可以用于波导腔体滤波器的设计。
下面简单介绍一下设计过程:
1. 确定滤波器的参数,包括中心频率、通带带宽、阻带带宽和衰减。
2. 在ADS软件中新建一个“layout”工程,在其中选择一个合适的波导宽度。
3. 将波导布满整个布局区域,并在中央添加两个矩形缺口,调整宽度和长度以达到带宽要求。
4. 运用仿真和优化工具进行电磁仿真和优化。
如果需要更精细的仿真结果,可以引入三维电磁仿真软件。
5. 通过布局编辑器进行布局优化和参数调整,如增加爬行线和扇形盖板、调整缺口形状等。
6. 通过ADS软件的“加工输出”功能将布局数据输出到CNC机器进行加工。
7. 完成加工后,进行测试和调试。
如果滤波器不满足要求,可以返回到步骤3到步骤6进行优化。
以上是波导腔体滤波器设计的基本流程,当然具体细节还需要根据具体情况进行调整。
在设计过程中,需要注意滤波器的可制造性和可靠性。
同时,在设计过程中要注意避免过度优化导致生产成本过高。
基于ADS的集总参数带通滤波器的优化设计作者:杨柱朱倩倩艾治余王攀赵小平来源:《山东工业技术》2014年第14期摘要:滤波器在通信系统中应用较为广泛,利用滤波器的选频作用,可以滤除通信中的干扰噪声或测试中进行频谱分析。
本文利用ADS软件设计一款带通滤波器,并对其进行优化和瞬态仿真分析。
经过分析得出,在满足其他各项设计指标要求的前提下,优化后的滤波器选频特性得到明显提高。
关键词:带通滤波器;ADS;优化仿真;瞬时仿真1引言在现代通信系统中,滤波器的应用领域很广泛,如电视频道信号的选取,多音响装置的频谱分析器等,滤波器作为无线通信应用领域的一个重要器件,其性能指标往往直接影响到整个通信系统的优劣,伴随着移动通信、雷达、卫星通信等各通信系统的增多,电磁环境逐渐异常复杂化,从而使得通信系统中频带资源愈发短缺,导致频率间隔变得越发密集。
怎样无失真的从逐渐短缺的频带资源内获取所需的信号并抑制其他无用或有害的信号,为滤波器的设计提出了苛刻的要求。
虽然各滤波器在电子器件和技术的飞速发展的推动下层出不穷,但怎样制造小体积低成本易加工量产并满足指标要求的滤波器渐渐成为工程应用中的核心问题,集总参数滤波器以其自身优势作为首选应用在通信系统和设备中。
集总参数是指当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个理想R、L、C元件来加以描述的电路参数。
集总参数带通滤波器是指由集总参数元件构建的滤波器,其特性由构建此带通滤波器的集总参数元件值来确定。
本文阐述了利用ADS( Advanced Design System )软件设计带通滤波器的方法、流程以及仿真过程,结合带通滤波器的一般原理和最小二乘误差法,以期寻找一种更为通用的、频带高度利用和相邻信道低干扰的带通滤波器的设计方案,同时给出其仿真结果。
2 工作原理带通滤波器[5]是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器。
写一篇用ads进行微波射频滤波器设计与仿真的实验心得ADS在微波射频滤波器设计与仿真中的应用心得进入实验室,我首次接触到了使用ADS(Advanced Design System)进行微波射频滤波器的设计与仿真。
微波射频技术是电子通信领域的核心技术之一,而滤波器则是其中的关键部件,用于筛选和过滤特定频率的信号。
为了更深入地理解这一技术,并探索滤波器的设计奥妙,我参与了这次富有挑战性的实验。
实验过程中,我首先学习了ADS软件的基本操作和设计原理。
通过模拟不同的滤波器结构,如带通、带阻等,我逐渐感受到了滤波器设计的复杂性和精确性。
在仿真环节,我不断调整滤波器的参数,如中心频率、带宽等,以观察其对信号频谱的影响。
随着数据的不断变化,我意识到设计的每一步都需谨慎思考和精确计算。
当然,实验过程并非一帆风顺。
在初次设计时,我曾因为参数设置不当导致仿真结果偏离预期。
正是这些小挫折,使我更加深刻地认识到了理论学习和实际操作之间的紧密联系。
每当遇到问题时,我都会回顾相关理论知识,或向导师和同伴请教,从而找到解决问题的方法。
这次实验让我体会到了科研工作的严谨性和探索性。
通过ADS进行微波射频滤波器设计与仿真,我不仅学会了如何使用专业软件进行科研工作,更加深入地理解了滤波器的工作原理和设计方法。
同时,我也明白了理论知识和实践操作相辅相成
的重要性。
展望未来,我希望能够进一步深入研究微波射频技术,探索更多的滤波器设计方法,并应用到实际工程中。
我相信,随着技术的不断进步和自身的不懈努力,我将能够在这一领域取得更加卓越的成果。
ADS滤波器设计实验一设计一个满足如下条件的耦合微带线带通滤波器:中心频率f0:2.45GHz,上下边频与中心频率的差值△ f:±50MHz,当f=f0时,li≤-1.5dB;当f=f0±300MHz时,li≥-30dB,微带线介质层厚度h:1mm;介质层介电常数:2.65,输入输出阻抗Zin,Zout均为:50Ω。
要求 1、提供设计原理(即耦合微带线滤波器的设计原理)2、具体的设计过程(用ADS软件分别仿真原理级电路和Layout 板级电路)3、提供两种电路的仿真结果并比较(S11 和 S21)4、设计结果的分析与误差解释5、提供一个包含上述 1-4 要求的 word 文档,并提供 ADS 的耦合微带滤波器设计源文件滤波器是用来分离不同频率信号的一种器件。
它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。
平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。
一、设计原理:耦合微带线:当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。
根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。
每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。
级连耦合微带线:由于单个耦合微带线滤波器不能提供良好的滤波器响应及陡峭的通带-阻带过渡。
然而可以通过级连这些基本单元最终得到高性能的滤波器,如图1图1集总参数滤波器设计:先计算带通滤波器归一化频率Ω=f0fℎ−fl ·(ff0+f0f),这样就把带通滤波器设计问题转化为低通滤波器设计问题(都是在归一化频率下进行设计),根据需要选择滤波器种类和阶数,查表可得归一化参数g0,g1,g2……gN,gN+1.将集总参数滤波器转化为耦合微带线滤波器:1、先根据上下边频fl和fh,以及中心频率f0=(fl+fh)/2,确定滤波器带宽:BW=(fh-fl)/f02、根据带宽指标计算下列参数:3、利用上述参数计算耦合微带线奇模偶模特性阻抗Z0o丨i,i+1=Z0[1-Z0Ji,i+1+ (Z0 Ji,i+1)²]Z0e丨i,i+1 = Z0[1+Z0Ji,i+1+ (Z0 Ji,i+1)²]4、计算完奇模偶模特征阻抗后利用ADS的微带线计算器即可计算出微带线几何尺寸W,S,L。
ADS微带低通滤波器-图文微带低通滤波器ADS仿真实验3100403028刘骥通信101一.实验目的1.了解微带低通滤波器的设计方法及原理2.熟悉ADS2022软件二.具体指标1.具有最平坦响应2.截止频率c2.5GHz3.在4GHz处的插入损耗必须大于20dB4.阻抗为50,采用6阶巴特沃兹低通原型,最高实际线阻抗为120,最低实际阻抗为20,采用的基片参数为d1.58mm,r4.2,tan0.02,铜导体的厚度为t0.035mm三.滤波器设计步骤1.根据设计要求确定低通原型元器件值2.采用阻抗和频率定标公式,用低阻抗和高阻抗线段代替串联电感和并联电容。
所需微带线的电长度l,以及实际微带线宽w和线长l可由ADS软件中的lineCalc工具计算得到3.根据得到的线宽和线长进行建模并仿真计算计算如下:|w4|110.6wwc2.5,由下图1.1看出,对于n=6的曲线,当(||1)0.6wc时,LA<20dB,故最大平坦滤波器级数n=6。
图1.1最大平坦滤波器原型的衰减与归一化频率的关系曲线根据表1.2列出低通原型值:g10.5176,g21.4142,g30.9318,g40.9318,g51.4142,g60.5176。
表1.2巴特沃兹滤波器低通原型元器件值四.滤波器原理图设计1.建工程,画微带线原理图画好的原理图如图2.电路参数的设置添加器件MSUB,双击MSUB,添加参数如图打开tool->LineCalc->StartLineCalc,计算各个微带先的长(l)和宽(w),在ubtrateparameter窗口设置介质的参数,参数值根据前面MSUB控件填写。
在electrical填入Z0(微带线特性阻抗),E_Eff(微带线电长度),然后单机Syntheize栏中的箭头,物理尺寸参数设置栏会显示得到的微带线线长和线宽(注意:在Syntheize前要把Phyical中的W和L的单位设置为mm),其中各支节的Z0(即图Zi)和E_Eff(即图βli度)参考值如下图1.7图1.7值,如图1.8图1.8接着添加S-PARAMETERS,START=0GHz,Stop=5GHz,Step=0.01GHz。
ADS滤波器设计
实验一
设计一个满足如下条件的耦合微带线带通滤波器:
中心频率f0:2.45GHz,上下边频与中心频率的差值△ f:±50MHz,当f=f0时,li≤-1.5dB;当f=f0±300MHz时,li≥-30dB,微带线介质层厚度h:1mm;介质层介电常数:2.65,输入输出阻抗Zin,Zout均为:50Ω。
要求 1、提供设计原理(即耦合微带线滤波器的设计原理)
2、具体的设计过程(用ADS软件分别仿真原理级电路和Layout 板级电路)
3、提供两种电路的仿真结果并比较(S11 和 S21)
4、设计结果的分析与误差解释
5、提供一个包含上述 1-4 要求的 word 文档,并提供 ADS 的耦合微带滤波器设计源文件
滤波器是用来分离不同频率信号的一种器件。
它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。
平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。
一、设计原理:
耦合微带线:当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。
根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。
每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。
级连耦合微带线:由于单个耦合微带线滤波器不能提供良好的滤波器响应及陡峭的通带-阻带过渡。
然而可以通过级连这些基本单元最终得到高性能的滤波器,如图1
图1
集总参数滤波器设计:先计算带通滤波器归一化频率Ω=f0
fℎ−fl ·(f
f0
+f0
f
),这样就把带通滤波
器设计问题转化为低通滤波器设计问题(都是在归一化频率下进行设计),根据需要选择滤波器种类和阶数,查表可得归一化参数g0,g1,g2……gN,gN+1.
将集总参数滤波器转化为耦合微带线滤波器:
1、先根据上下边频fl和fh,以及中心频率f0=(fl+fh)/2,确定滤波器带宽:BW=(fh-fl)/f0
2、根据带宽指标计算下列参数:
3、利用上述参数计算耦合微带线奇模偶模特性阻抗
Z0o丨i,i+1 = Z0[1-Z0Ji,i+1 + (Z0 Ji,i+1)²]
Z0e丨i,i+1 = Z0[1+Z0Ji,i+1 + (Z0 Ji,i+1)²]
4、计算完奇模偶模特征阻抗后利用ADS的微带线计算器即可计算出微带线几何尺寸W,S,L。
二、具体设计过程
参数选取:
设计要求f=f0时,li<-1.5dB,所以可采用0.5dB波纹的切比雪夫滤波器
带通滤波器归一化频率Ω=f0
fℎ−fl ·(f
f0
+f0
f
),其中f0=2.45Ghz,fh=2.5Ghz,fl=2.4Ghz
设计要求当f=f0±300Mhz,即f=2.75Ghz和f=2.15Ghz时,li≥-30dB;f=2.75Ghz时,|Ω|=5.67,f=2.15Ghz时,|Ω|=6.42,查表可知N=3满足条件。
N=3时,g1=1.5963,g2=1.0967,g3=1.5963,g4=1.0000,BW=(hf-fl)/f0=0.041.
计算耦合微带线滤波器参数:
代入奇模偶模特性阻抗公式,可得下表:
三、仿真结果比较
原理图如下:
调整参数后,原理图级最终仿真结果为:
原理图级仿真结果
Layout图如下:
将原理图级转化为layout级后,直接仿真的仿真结果(不满足设计要求):
未调整参数的Layout级仿真结果
调整layout参数后的仿真结果(调整后的参数在具体设计过程中已给出):
调整layout参数后的仿真结果
四、设计结果分析和误差解释:
由集总参数滤波器参数计算出奇模偶模特征阻抗,再计算微带线尺寸W,L,S,直接用该参数仿真会产生较大误差,误差主要来自于:
1、计算滤波器阶数以及切比雪夫原型的元件值图表存在误差。
2、计算奇模偶模特征阻抗数据四舍五入引入误差。
3、理论计算没有考虑基片损耗,但ADS是一个工程软件,设计和仿真时会考虑基片损耗、
外界干扰等因素,使每一节耦合微带线Q值降低,带宽与理论情况不同,这是主要产生误差的因素。
由原理图级转换为版图级后直接仿真,仿真结果出现较大偏差,误差可能来自于:
1、ADS原理图级和版图级元件和基板的仿真模型不同,所以在进行原理图级和原理图级仿
真时,尽可能保证substrate建模精准(介电常数、厚度等)
2、原理图仿真只是平面电路的仿真,而layout仿真是电磁仿真,后者可信度更高一些。