清华信号与系统关于初值定理的讨论
- 格式:ppt
- 大小:121.09 KB
- 文档页数:11
数字信号处理教程课后习题答案目录第一章离散时间信号与系统第二章Z变换第三章离散傅立叶变换第四章快速傅立叶变换第五章数字滤波器的基本结构第六章无限长单位冲激响应(IIR)数字滤波器的设计方法第七章有限长单位冲激响应(FIR)数字滤波器的设计方法第八章数字信号处理中有限字长效应第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。
分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y ②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个(③ 围的不同的不同时间段上求和范一定要注意某些题中在 n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。
)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。
分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ;③卷积和求解时,n 的分段处理。
利用初值定理求解动态电路初始值和终值解释说明1. 引言1.1 概述引言部分旨在介绍本篇文章的背景和主要内容。
动态电路是电子工程领域中一个重要的研究方向,它涉及到电路中信号随时间变化的情况。
准确求解动态电路的初始值和终值对于设计和分析电路性能具有重要意义。
1.2 文章结构本文包含五个主要部分,每个部分都涵盖了具体的内容。
首先,我们会介绍初值定理的概念和原理,以便理解如何利用初值定理求解动态电路的初始值和终值。
接下来,我们将探讨动态电路初始值和终值的求解方法,包括数字求解方法和近似解析求解方法,并进行实例分析与对比。
随后,我们将介绍计算机仿真在动态电路中的应用,包括仿真软件介绍、原理解析以及仿真结果分析与展示。
最后,我们将对整篇文章进行总结,并提出进一步研究方向。
1.3 目的本文旨在介绍利用初值定理求解动态电路初始值和终值的方法,并探讨计算机仿真在动态电路中的应用。
通过本文的阐述,读者将能够对动态电路初始值和终值求解有更全面的了解,并了解到计算机仿真在动态电路设计中的优势和局限性。
这篇文章将为电子工程领域对于动态电路求解方法的研究和实践提供一定的参考。
注意:上述内容是普通文本格式的回答,取消了标题的嵌套关系。
在实际写作中,你需要按照指定的大纲结构逐级展开论述。
2. 初值定理的概念和原理:2.1 初值定理的定义:初值定理是一种数学定理,用于描述动态系统中任意时刻的状态可以通过初始条件和系统动力学方程来确定。
简而言之,初值定理说明了一个动态系统在给定初始条件后,其后续行为是可预测的。
2.2 初值定理的原理解释:初值定理基于微分方程的概念,它建立了时间相关性和初始条件之间的关系。
对于一个连续时间下的动态电路系统,我们可以通过一组微分方程来描述电路元件之间的关系和变化规律。
这些微分方程通常包含各种电压、电流以及元件参数等项。
当给定动态电路系统在某个时刻t0 的初始条件(如节点电压、元件电流等),以及与该系统相关联的微分方程群时,根据初值定理可以推导出该系统在未来任意时刻t 的状态。
2014清华大学信号与系统考研资料心得1、清华大学2000-2012年信号与系统考研真题和部分年份真题答案(真题的作用不言而喻,是必备的第一手资料。
题答案是试卷题目答案,答案清晰,这份答案是市面上最全的版本;2、已录取的清华大学信号在复习中整理的笔记(几十页最新更新!3、内部讲义一份——由于是内部讲义,我不方便在此发布照片,有意向的同学可以联系我,到时候可以传照片以供鉴定。
这份讲义我当年动用了各种人际关系,花了N多钱,才买到,市场上直接买不到,希望引起各位学弟学妹的重视。
4、清华大学《信号与系统》郑君里版考研精华笔记(独家发布!!,共46页,此笔记是2012年的学长总结的笔记,对信号的理解和类型题总结,对清华《信号与系统》的精髓进行了总结。
重点非常明确,极具系统性,概括性强,逻辑清晰,笔记清晰,有利于把握课本重点,节约宝贵的复习,提高复习效率。
笔记按照章节对郑君里《信号与系统》清华院指定教材进行了总结和归纳,后面再分证明专题,专题演讲,一些结论,专业课冲刺必备公式,重点课后习题详解,进行了系统的讲解;是一份非常系统,全面的复习笔记;5、清华大学《信号与系统》郑君里版考研精华笔记(独家发布!!,共73页,由今年考取清华的研究生整理,自己比较小,内容很多,概括性很强,有系统,有条理,是市面上目前出售的过时的,不清晰的笔记所不能相提并论的;价值性,非常高;6、清华大学《信号与系统》6套全真考研模拟题及答案,此六套模拟题是严格按照清华、中科院、中科大这类的名校信号的难度编写而成(独家发布,难度较大,且配有答案,是清华大学信号与系统考研复习中,不可多得的材料,可用于复习巩固、测试检测对知识的掌握程度,提高拔高使用;7、清华大学《信号与系统》期中期末考试试题;8、清华大学《信号与系统》内部复习题集(独家发布!!,本资料覆盖大纲要求掌握的每个知识点,内容与考试大纲完全一致,分章节都有要点总结,习题都有详细解答,题型结构与真题一致,历年真题大量出自此资料中的原题,实难弄到!其价值远远大于历年真题。
Rucc 总结近期作业情况:5月31日这几次作业错误比较少,主要错误在12-7列写系统方程出错,好多人没有回答能否省略增益为1的通路;8-34,8-36的幅度响应图画错。
此外,作业中有个别抄袭现象。
问题1:两个周期信号线性迭加是否仍是周期函数?解答:如果两函数的周期是有理相关的,则线性迭加后仍然是周期的;但如果非有理相关,则线性迭加生成的信号就是非周期的。
证明:用反证法。
假设:sin x +sin πx 的周期为t ,即()()()()()()()()()()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⇔+-=-+⇔+=+++222222t sin t x cos t sin t x cos t x sin x sin x sin t x sin x sin x sin t x sin t x sin ππππππ 当x=-t /2时,有sin(t /2)=-sin(лt /2),显然等式只有在t=0时才成立。
假设不成立。
问题2:H.T.在负频率时为超前90度,怎样解释?解答:负频率是为了完备性而虚设的,只需将HT 的相频特性认为是奇函数即可,其群延迟为冲激函数,是物理不可实现的。
在实际应用中,都是近似的。
因此,只考虑正频率的情况,即HT 是-90度相位校正器。
问题3:非线性系统是否能够不失真?解答:非线性系统必然存在频率失真,可以工作在线性段,或利用其非线性失真,因此不存在无失真传输问题。
问题4:这两天复习信号时看了一下北航2001年的考研试题,其中有一道题提供的标准答案说“卷积的方法只适用于线性时不变系统”,我从卷积的推导中看不出为什么时不变是一个条件,而且我认为只要是线性的就可以了,不知道正不正确?解答:你的问题可能是:输出等于输入与系统冲激响应的卷积。
我们现在研究的是线性时不变系统的分析方法。
前面的课应该讲过而且推导过:线性时不变系统的零状态响应等于系统输入与冲激响应的卷积。
第六章 离散系统的Z域分析 6.1学习重点 1、离散信号z 域分析法—z变换,深刻理解其定义、收敛域以及基本性质;会根据z变换的定义以及性质求常用序列的z变换;理解z变换与拉普拉斯变换的关系。
2、熟练应用幂级数展开法、部分分式法及留数法,求z 反变换。
3、离散系统z 域分析法,求解零输入响应、零状态响应以及全响应。
4、z 域系统函数()z H 及其应用。
5、离散系统的稳定性。
6、离散时间系统的z 域模拟图。
7、用MATLAB 进行离散系统的Z 域分析。
6.2 教材习题同步解析 6.1 求下列序列的z 变换,并说明其收敛域。
(1)n 31,0≥n (2)n−−31,0≥n(3)nn−+ 3121,0≥n (4)4cos πn ,0≥n(5)+42sin ππn ,0≥n 【知识点窍】本题考察z 变换的定义式 【逻辑推理】对于有始序列离散信号[]n f 其z 变换的定义式为()[]∑∞=−=0n nzn f z F解:(1)该序列可看作[]n nε31()[][]∑∑∞=−∞=− == =010313131n n n nn n z z n n Z z F εε对该级数,当1311<−z ,即31>z 时,级数收敛,并有 ()13331111−=−=−z zz z F其收敛域为z 平面上半经31=z 的圆外区域 (2)该序列可看作[]()[]n n nnεε331−=−−()()[][]()[]()∑∑∞=−∞=−−=−=−=010333n nn nnnzzn n Z z F εε对该级数,当131<−−z ,即3>z 时,级数收敛,并有()()33111+=−−=−z zz z F 其收敛域为z 平面上半经3=z 的圆外区域(3)该序列可看作[][]n n nn n n εε+ = + −3213121()[][]()∑∑∑∞=−∞=−∞=−+ =+ = + =01010*********n nn n n nn n n n z z z n n Z z F εε对该级数,当1211<−z 且131<−z ,即3>z 时,级数收敛,并有 ()3122311211111−+−=−+−=−−z zz z z zz F 其收敛域为z 平面上半经3=z 的圆外区域(4)该序列可看作[]n n επ4cos()[]∑∑∑∑∞=−−∞=−−∞=−∞=−+=+== =0140140440*******cos 4cos n nj n nj nn j j n n z e z e z e e z n n n Z z F πππππεπ对该级数,当114<−ze j π且114<−−zejπ,即1>z 时,级数收敛,并有()122214cos 24cos 21112111212222441414+−−=+−−=−+−=−×+−×=−−−−z z zz z z z z e z z e z z z eze z F j j j j ππππππ其收敛域为z 平面上半经1=z 的圆外区域 (5)该序列可看作[][][]n n n n n n n n εππεππππεππ+=+= +2cos 2sin 222sin 4cos 2cos 4sin 42sin()[]()122212212212cos 22cos 2212cos 22sin 222cos 222sin 222cos 2sin 222222222200++=+++=+−−++−=+=+=∑∑∞=−∞=−z z z z z z z z z z z z z z z n z n n n n Z z F n nn n ππππππεππ 其收敛域为z 平面上半经1=z 的圆外区域 6.2 已知[]1↔n δ,[]a z z n a n −↔ε,[]()21−↔z z n n ε, 试利用z 变换的性质求下列序列的z 变换。
信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.下列说法不正确的是( D )。
A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。