信号和系统第5章习题答案解析
- 格式:doc
- 大小:199.50 KB
- 文档页数:6
习题五5-1 求下列齐次差分方程的解。
(1)()3(1)0,(0)1y k y k y +-== (2)()2(1)0,(0)3y k y k y --== 5-2 求下列齐次差分方程的解。
(1)()3(1)2(2)0,(1)2,(2)1y k y k y k y y +-+-=-=-= (2)()2(1)(2)0,(1)1,(2)3y k y k y k y y +-+-=-=-=- 5-3 求下列差分方程的零输入响应。
(1)()2(1)(2)()2(2),(0)(1)1y k y k y k f k f k y y +-+-=+-=-= (2)15()3(1)2(2)(),(1),(2)24y k y k y k f k y y +-+-=-=--= 5-4 用经典法求下列差分方程所描述因果离散系统的全响应。
(1)()3(1)2(2)6()y k y k y k f k +-+-=,()(),(1)1,(2)0f k k y y ε=-=-= (2)()4(1)4(2)()y k y k y k f k +-+-=,()2(),(0)0,(1)1k f k k y y ε===- 5-5 求下列差分方程所描述的LTI 离散系统的零输入响应、零状态响应和全响应。
(1) ()4(1)4(2)()(1)y k y k y k f k f k +-+-=+-()(),(0)1,(1)2f k k y y ε=== (2)()3(1)2(2)(),y k y k y k f k +-+-=()(),(1)1,(2)0f k k y y ε=-=--=(3)()2(1)(2)(),y k y k y k f k +-+-=1()3(),(1)3,(2)52kf k k y y ε⎛⎫=-=-=- ⎪⎝⎭5-6 下列差分方程所描述的系统,若激励()2cos 3k f k π⎛⎫= ⎪⎝⎭,k ≥。
求各系统的稳态响应。
第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。
证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。
可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。
如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。
因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。
5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。
m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。
sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。
sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。
何子述信号与系统习题解答第5章拉普拉斯变换(2012新)何子述老师2012年最新高等教育出版社出版《信号与系统习题解答》发布,对考研同学帮助极大!第5章拉普拉斯变换习题解答一、基本概念与基本运算习题题5.1 解:当f t u t 时,0能使信号g t 的傅里叶变换存在。
当f t u t 时,0能使信号g t 的傅里叶变换存在。
当f t 1时,找不到一个实数使信号g t f t e t绝对可积。
题5.2 解:(a)由拉普拉斯变换的定义式F(s) e 2tu t 1 e1j tdte 2te te j tdt1 s 2e, 2s 2(b)由拉普拉斯变换的定义式j ttδt12δt1eut1edt利用积分的分配律及单位冲激信号的筛选性,可得F s es 2e s ete te j tdt- 1e1 se 2e , 11 sss(c)由拉普拉斯变换的定义式F s e 2tsin 3t u t e-j tdte2tej3t e j3t t j teedt2j239, 2157何子述老师2012年最新高等教育出版社出版《信号与系统习题解答》发布,对考研同学帮助极大!(d)由拉普拉斯变换的定义式F sf t ej tdtete te j tdt 20e 2te te j t 2dts 12s 2e2 11 es 1 s 2,(e)由拉普拉斯变换的定义式e 2t j tedt不存在使上式积分收敛,故信号f(t) e 2t的拉普拉斯变换不存在。
(f)由拉普拉斯变换的定义式F s2δ j tt δ t 2 e dt2 s2 se 2s,题5.3 解:(a)有拉普拉斯变换对e 2tu t L 1s 2, 2 e 4tu t L1s 4, 4由拉普拉斯变换的线性,信号f t 的拉普拉斯变换为f t L11s 2s 4, 4 2 零极点图如图J5.3.1所示。
(b)有拉普拉斯变换对e2tsin 5t u t Ls 2 225, 2δ t L1,由拉普拉斯变换的线性,信号f t 的拉普拉斯变换为f t L15s s2 4s 34s 2 s 2 2225s2 4s 29 s 2 j5s 2 j5,1582何子述老师2012年最新高等教育出版社出版《信号与系统习题解答》发布,对考研同学帮助极大!零极点图如图J5.3.2所示。
5-6 解题过程: 令 ()()1c e t t πδω=,()()2sin c c t e t tωω= ()()11πωω==⎡⎤⎣⎦cE j e t F()()()()220πωωπωωωωωωω⎧<⎪==+−−=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎩,,其他c c c c c E j e t u u F 理想低通的系统函数的表达式 ()()()j H j H j e ϕωωω=其中 ()10c c H j ωωωωω⎧<⎪=⎨≥⎪⎩,,()0t ϕωω=−因此有()()()0t 110ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他 ()()()0t 220ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他()()12ωω=R j R j 则()()1112ωω−−=⎡⎤⎡⎤⎣⎦⎣⎦R j R j FF5-8 解题过程: 记 ()sin sin ωωωπωπ==⋅c c cc t t f t t t ()()0πωωωωωω⎧<⎪==⎡⎤⎨⎣⎦⎪≥⎩,,ccc F j f t F ()()()()sin 0ωωππωωωωωωωω⎧⎫⎡⎤⎪⎪==⎡⎤⎨⎬⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎧⋅<⎪==⎨⎪≥⎩,,c c cc td H j h t dt t j j F j F F故 ()0ωωωωπωωω⎧⋅<⎪=⎨⎪≥⎩c cc H j ,, ()20πωωϕωωω⎧<⎪=⎨⎪≥⎩c c,,()ωH j 和()ϕω的图形如解图。
5-11 解题过程:由题图5-11有()()()()211=−−∗⎡⎤⎣⎦v t v t T v t h t 据时域卷积定理有()()()()211ωωωωω−⎡⎤=−⎣⎦j TV j V j e V j H j(1)()()1=v t u t()()()()2=−−∗⎡⎤⎣⎦v t u t T u t h t由()()()101ωπ−==−⎡⎤⎣⎦h t H j Sa t t F,()()()λλ−∞∗=∫tf t u t f d ,有 ()()()()()00200''''''1111λλλλππλλλλππ−−∞−∞−−−−∞−∞=−−−=−∫∫∫∫t Ttt t Tt t v t Sa t d Sa t d Sa d Sa d又知()()−∞=∫yi S y Sa x dx ,所有()()()2001π=−−−−⎡⎤⎣⎦i i v t S t t T S t t (2)()12sin 22⎛⎞⎜⎟⎛⎞⎝⎠==⎜⎟⎝⎠t t v t Sa t()()111220πωω⎧<⎪==⎡⎤⎨⎣⎦⎪⎩V j F v t 其他则 ()()()()()021121120ωωωπωωωω−−−⎧−<⎪=−=⎨⎪⎩j t j Tj Te eV j V j H j e其他所以 ()()()()122001122ω−⎡⎤⎡⎤==−−−−⎡⎤⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦v t V j Sa t t T Sa t t F 5-18 解题过程:信号()g t 经过滤波器()ωH j 的频谱为()()()()()1sgn ωωωωω==−G G H j j G信号()g t 经过与()0cos ωt 进行时域相乘后频谱为()()()20012ωωωωω=++−⎡⎤⎣⎦G G G 信号()1g t 经过与()0sin ω−t 进行时域相乘后频谱为()()()()()()()()()()()310100000000021sgn sgn 21sgn sgn 2ωωωωωωωωωωωωωωωωωωωωω=−+−−⎡⎤⎣⎦=−++−−−⎡⎤⎣⎦=−−+++⎡⎤⎣⎦jG G G G G G G()()()()()()()()()()()()(){}23000000000011sgn sgn 2211sgn 1sgn 2ωωωωωωωωωωωωωωωωωωωωωωω=+=++−+−−+++⎡⎤⎡⎤⎣⎦⎣⎦=+−++−++⎡⎤⎡⎤⎣⎦⎣⎦V G G G G G G G G 又由于 ()()()00021sgn 0ωωωωωω>⎧⎪+−=⎨<⎪⎩则 ()()()()()0000ωωωωωωωωω=−−+++V G U G U 其图形如图所示5-20 解题过程:(1)系统输入信号为()δt 时,()()()0cos δωδ=t t t 所以虚框所示系统的冲激响应()h t 就是()i h t 即 ()()()()010sin 2ωπ−Ω−⎡⎤⎣⎦==⎡⎤⎣⎦−i t t h t H j t t F(2)输入信号与()0cos w t 在时域相乘之后()()()()()220200sin sin 1cos 2cos cos 2ωωωΩΩ+⎡⎤⎡⎤==⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t t e t t t t t 又由()ωi H j 的表达式可知0ωΩ 时,载波为02ω的频率成分被滤除 而且 ()0ϕωω=−t故 ()()()200sin 12⎡⎤Ω−=⎢⎥Ω−⎣⎦t t r t t t(3)输入信号()e t 与0cos ωt 在时域相乘之后()()()()220000sin sin 1cos sin cos sin 22ωωωωΩΩ⎡⎤⎡⎤==⋅⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t e t t t t t t t 0ωΩ 时,载波为02ω的频率成分被滤除故 ()0=r t(4)由于理想低通滤波器能够无失真的传输信号,只是时间上的搬移,故理想低通滤波器是线性时变系统;又 ()()=i h t h t 所以该系统是线性时变的。
《信号与系统》(第 3 版)习题解析高等教育出版社目录第 1 章习题解析 (2)第 2 章习题解析 (6)第 3 章习题解析 (16)第 4 章习题解析 (23)第 5 章习题解析 (31)第 6 章习题解析 (41)第 7 章习题解析 (49)第 8 章习题解析 (55)第 1 章习题解析1-1题 1-1 图示信号中, 哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c)(d)题 1-1图解 (a)、(c)、(d)为连续信号; (b)为离散信号; (d)为周期信号;其余为非周期信号; (a)、(b)、(c)为有始(因果)信号。
1-2 给定题 1-2 图示信号 f( t ),试画出下列信号的波形。
[提示: f( 2t )表示将 f( t )波形压缩,f( t)表示将 f( t )波形展宽。
]2(a) 2 f( t 2 )(b) f( 2t ) (c) f(t)2(d) f( t +1 )题1-2图解 以上各函数的波形如图 p1-2 所示。
图 p1-21-3如图1-3图示,R、L、C元件可以看成以电流为输入,电压为响应的简单线性系统S R、S L、 S C,试写出各系统响应电压与激励电流函数关系的表达式。
S RS LS C题 1-3图解各系统响应与输入的关系可分别表示为u R (t)R i R (t )u L (t)di L (t )L1dttu C (t )i C ( )dC1-4如题1-4图示系统由加法器、积分器和放大量为 a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
题 1-4图解 系统为反馈联接形式。
设加法器的输出为 x( t ),由于x(t ) f (t) ( a) y(t)且y(t ) x(t)dt ,x(t) y (t)故有y (t) f (t ) ay (t)即y (t ) ay(t ) f (t)1-5已知某系统的输入 f( t )与输出 y( t )的关系为 y( t ) = | f( t )|,试判定该系统是否为线性时不变系统?解 设 T 为系统的运算子,则可以表示为y(t) T[ f (t )]f (t)不失一般性,设 f( t ) = f 1( t ) + f 2 ( t ),则T[ f 1 (t)]f 1 (t)y 1 (t )T[ f 2 (t)] f 2 (t )y 2 (t )故有T[ f (t)] f 1 (t )f 2 (t ) y(t)显然f 1 (t ) f 2 (t)f 1 (t ) f 2 (t )即不满足可加性,故为非线性时不变系统。
第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。
答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。
答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。
答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。
答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。
《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅=t t i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S R S L S C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
第5章 连续时间信号的抽样与量化5.1 学习要求(1)掌握时域抽样过程及时域抽样定理,会求已知信号的奈奎斯特频率; (2)深刻理解连续时间信号的内插恢复过程; (3)理解频域采样定理;(4)了解连续时间信号的离散处理过程。
5.2 本章重点(1)时域抽样定理及信号恢复的条件; (2)连续时间信号的内插恢复过程;5.3 本章的知识结构5.4 本章的内容摘要5.4.1 时域抽样定理所谓“时域抽样”就是利用抽样脉冲序列)(t p 从时域连续信号)(t f 中抽取一系列的离散样值,这种离散信号通常称为抽样信号,以)(t f s 表示。
时域抽样过程可以看作相乘过程,即抽样信号可用连续时间信号)(t f 与一开关函数)(t p (即抽样脉冲序列)相乘来表示,抽样以后的信号(即抽样信号)的表示式为:)()()(t p t f t f s(1)矩形脉冲序列的抽样如果抽样脉冲序列是周期为s T ,幅度为1,宽度为τ的矩形脉冲序列)(t p ,则它的频谱密度)(ωp 为:∑∞-∞=-=n snn a p )(2)(ωωδπω其中)2(22sinτωττωτωτs s s s s n n Sa T n n T a =⋅=,ss T πω2=设原连续时间信号)(t f 的频谱密度为)(ωF ,则根据频域卷积定理得到抽样信号)(t f s 的频谱为:)()2()](*)([21)(s s n ss n F n Sa T p F F ωωτωτωωπω-==∑∞-∞= (2)冲激序列抽样在抽样脉冲序列)(t p 中,当脉冲宽度τ很小时,抽样脉冲序列可以近似看成是周期为sT 的单位冲激序列,通常把这种抽样称为冲激抽样或理想抽样。
设单位冲激序列)(t T δ为: ∑∞-∞=-=n sT nT t t )()(δδ输入的连续时间信号为)(t f ,则抽样信号为:()()()()()s T s s n f t f t t f nT t nT δδ∞=-∞=⋅=⋅-∑设原输入信号)(t f 的频谱密度为)(ωF ,而单位冲激序列)(t T δ的频谱密度)(ωδT 为:∑∞-∞=-=n s sT n T )(2)(ωωδπωδ 其中ss T πω2=则根据频域卷积定理得抽样信号)(t f s 的频谱为:∑∞-∞=-==n ssT s n F T F F )(1)](*)([21)(ωωωδωπω(3)时域抽样定理从前面可以看出,要想从抽样信号)(t f s 中恢复出被采样信号)(t f ,就要求能够从周期性延拓后的频谱中完整地分离出原信号的频谱,也就要求在频谱周期延拓过程中不发生频谱混迭现象,那么,如果被采样信号)(t f 是一频谱在),(m m ωω-以外为零的带限信号,则只要按照抽样频率m s ωω2≥或m s f f 2≥(其中s s T f 1=)进行等间隔抽样,抽样信号)(t f s 的频谱将不发生频谱混迭,从)(t f s 的频谱中就能完全地恢复原连续时间信号的)(t f 频谱,也可以说)(t f s 包含了原连续时间信号)(t f 的全部信息。
5.5 离散信号()f n 的波形如习题图5-3所示,试画出下列信号的波形。
(2)(1)(4)(2)(6)(1)(1)(8)(1)()(10)(1)(1)f n f n f n f n f n U n f n U n - +×- -- ---+习题图5-3(2)(1)f n -(4)(2)f n32211()10(2)102100n n n f n n f n n n =-ìï =- 3 =-ìïïï= = Þ = =ííïï = îïï î其他其他+×-(6)(1)(1)f n f n--(8)(1)()f n U n---+f n U n(10)(1)(1)5.17 求下列差分方程所描述的系统的单位样值响应。
1(1)()(2)()9y n y n f n --=解:单位样值响应是指当激励信号为()n d 时系统的零状态响应。
要求单位样值响应,输入()()f n n d =,代入差分方程得:1()(2)()(1)9h n h n n d --= LLL在0n >时,()0n d =,有1()(2)09h n h n --= 特征方程为:2121110,933l l l -= Þ =- =1211()()((2)33n nh n C C \ =-+ LLL0()0(())n h n h n < = Q 时,;因为单位样值响应是零状态响应1()(2)()91(0)(2)(0)191(1)(1)(1)09h n h n n h h h h d d d =-+ \ = -+== -+=由(1)式得: 121122(0)(1)1(0)12111(1)(0332h h h C C C h C C C ì =+==üïïïÞ ýí = -+=ïï=þïî将、代入(2)式得:1111()[((]()2323n nh n U n \ =-+5.18 求习题图5-5所示系统的单位样值响应。
第5章 连续时间信号的抽样与量化5.1 试证明时域抽样定理。
证明: 设抽样脉冲序列是一个周期性冲激序列,它可以表示为∑∞-∞=-=n sT nT t t )()(δδ由频域卷积定理得到抽样信号的频谱为:[])()(21)(ωδωπωT s F F *=()[]∑∞-∞=-=n ssn F T ωω1式中)(ωF 为原信号)(t f 的频谱,)(ωδT 为单位冲激序列)(t T δ的频谱。
可知抽样后信号的频谱)(ωs F 由)(ωF 以 s ω为周期进行周期延拓后再与s T 1相乘而得到,这意味着如果m s ωω2≥,抽样后的信号)(t f s 就包含了信号)(t f 的全部信息。
如果m s ωω2<,即抽样间隔ms f T 21>,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建原信号。
因此必须要求满足ms f T 21≤,)(t f 才能由)(t f s 完全恢复,这就证明了抽样定理。
5.2 确定下列信号的最低抽样频率和奈奎斯特间隔: (1))50(t Sa(2))100(2t Sa(3) )100()50(t Sa t Sa +(4))60()100(2t Sa t Sa +解:抽样的最大间隔m s f T 21=称为奈奎斯特间隔,最低抽样速率m s f f 2=称为奈奎斯特速率,最低采样频率m s ωω2=称为奈奎斯特频率。
(1))]50()50([50)50(--+↔ωωπu u t Sa ,由此知s rad m /50=ω,则π25=m f ,由抽样定理得:最低抽样频率π502==m s f f ,奈奎斯特间隔501π==s s f T 。
(2))2001(100)100(2ωπ-↔t Sa 脉宽为400,由此可得s rad m /200=ω,则π100=m f ,由抽样定理得最低抽样频率π2002==m s f f ,奈奎斯特间隔2001π==s s f T 。
(3))]50()50([50)50(--+↔ωωπu u t Sa ,该信号频谱的s rad m /50=ω)]100()100([100)100(--+↔ωωπu u t Sa ,该信号频谱的s rad m /100=ω)100()50(t Sa t Sa +信号频谱的s rad m /100=ω,则π50=m f ,由抽样定理得最低抽样频率π1002==m s f f ,奈奎斯特间隔1001π==s s f T 。
(4))]100()100([100)100(--+↔ωωπu u t Sa ,该信号频谱的100=m ω)1201(60)60(2ωπ-↔t Sa ,该信号频谱的s rad m /120=ω 所以)60()100(2t Sa t Sa +频谱的s rad m /120=ω, 则π60=m f ,由抽样定理得最低抽样频率π1202==m s f f ,奈奎斯特间隔1201π==s s f T 。
5.3 系统如题图 5.3所示,)1000()(1t Sa t f π=,)2000()(2t Sa t f π=,∑∞-∞=-=n nT t t p )()(δ,)()()(21t ft f t f =,)()()(t p t f t f s =。
(1)为从)(t f s 中无失真地恢复)(t f ,求最大采样间隔max T 。
(2)当max T T =时,画出)(t f s 的幅度谱)(ωs F 。
题图 5.3解:(1)先求)(t f 的频谱)(ωj F 。
)]1000()1000([10001)()1000()(11πωπωωπ--+=⇒=u u j F t Sa t f )(1t f)(t f时域相乘时域抽样)(2t f)(t p)(t f s)]2000()2000([20001)()2000()(22πωπωωπ--+=⇒=u u j F t Sa t f )]}3000()1000()[3000()]1000()1000([2000)]1000()3000()[3000{(1041)]2000()2000((20001))1000()1000((10001[21)()(21)(621πωπωπωπωπωππωπωπωππωπωπωπωπωωπω---+-+--+++-++⨯⨯=--+*--+=*=-u u u u u u u u u u j F j F j F由此知)(ωj F 的频谱宽度为π6000,且s rad m /3000πω=,则Hz f m 1500=,抽样的最大允许间隔s f T m 3000121max ==(2)∑∞-∞=-=n nT t t p )()(δ,所以为用冲激序列对连续时间信号为)(t f 进行采样,设原输入信号)(t f 的频谱密度为)(ωF ,而单位冲激序列的频谱密度为:∑∞-∞=-=n s n Tp )(2)(ωωδπω 其中Ts πω2=则根据频域卷积定理得抽样信号)(t f s 的频谱为:∑∞-∞=-==n s s n F T p F F )(1)](*)([21)(ωωωωπω而max T T =,则s rad T s /6000230002maxπππω=⨯==,幅度谱如下图所表示。
5.4 对信号)()(t u e t f t-=进行抽样,为什么一定会产生频率混叠效应?画出其抽样信号的频谱。
解: 由第三章知识知,该单边指数信号的频谱为:ωωj j F +=11)(其幅度频谱和相位频谱分别为211)(ωω+=j Fωωϕarctan )(-=单边非因果指数函数的波形)(t f 、 幅度谱)(ωj F 、相位谱)(ωϕ如下图所示,其中1=a 。
单边指数信号的波形和频谱显然该信号的频谱范围为整个频域,故无论如何抽样一定会产生频率混叠效应。
抽样后的频谱是将原信号频谱以抽样频率s ω为周期进行周期延拓,幅度变为原来的sT 1而得到。
图略。
5.5 题图5.5所示的三角形脉冲,若以20Hz 频率间隔对其频率抽样,则抽样后频率对应的时域波形如何?以图解法说明。
题图 5.5解:三角形脉冲的频谱可根据傅里叶变换的时域微分特性得到,具体求解可参考课本第三章。
由此可知,脉宽为τ幅度为E 的三角形脉冲其频谱为2)4(2ωττSa E。
其波形如图所示。
三角函数的频谱在)(t x 中,s ms 1.0100==τ易求得)(t x 的频谱为:2E τ()X j ω4πτ8πτ4πτ-8πτ-ω()ϕω0 50 -50 t /msx (t )2)025.0(05.0)(ωωESa j X =在)(404为整数k k k πτπω⋅==处,)(ωj X 为零,图略。
由频域卷积定理,抽样信号的频谱为:()[]∑∞-∞=-=n sss n j X T j X ωωω1)(其中s Hzf T s s 05.02011===,s rad f s s /402ππω==。
抽样后的频谱是将三角形频谱以s ω为周期做了周期延拓,幅度则变为原来的sT 1,可见发生了频谱混叠现象。
5.6 若连续信号)(t f 的频谱)(ωF 是带状的)(21ωω~,利用卷积定理说明当122ωω=时,最低抽样频率只要等于2ω就可以使抽样信号不产生频谱混叠。
证明:由频域卷积定理的抽样信号的频谱为[])()(21)(ωδωπωT s F F *=()[]∑∑∞-∞=∞-∞=-=-=n ssn ss n F T n w T F ωωωδπωπ1])(2*)([21抽样后的频谱是以抽样频率s ω为周期做了周期延拓,幅度则变为原来的sT 1。
由于频谱)(ωF 是带状的且122ωω=,所以当2ωω=s 时频谱不会混叠。
5.7 如题图5.7所示的系统。
求:(1)求冲激响应函数)(t h 与系统函数)(s H ;(2)求系统频率响应函数)(ωH ,幅频特性)(ωH 和相频特性)(ωϕ,并画出幅频和相频特性曲线;(3)激励[])()()(T t u t u t f --=,求零状态响应)(t y ,画出其波形; (4)激励∑+∞=-=)()()(n s nT t nT f t f δ,其中T 为奈奎斯特抽样间隔,)(nT f 为点上)(t f 的值,求响应)(t y 。
题图 5.7解:(1)由图可知()()()[]()t u T t f t f t y *--=两边求拉氏变换可得()()()se s F s Y Ts--=1所以()()se s H Ts--=1(2)图略(3))(t f 的拉氏变换为()se s F Ts--=1零状态响应得拉氏变换为()()()()221s e s F s H s Y Ts --==求拉氏反变换可得()()()()()()T t u T t T t u T t ut t y 222-++---=(4)由()()se s H Ts--=1可得()()T t u t u t h --=)(而()()()()()()()[]T t u t u nT t nT f t h t f t y sn ss ---==∑+∞=**0δ()()()[]T nT t u nT t u nT f ssn s----=∑+∞=0∑⎰延迟T)(t f+-)(t y。