信号与系统3.11抽样定理
- 格式:ppt
- 大小:157.00 KB
- 文档页数:8
信号与系统实验报告实验六抽样定理实验六抽样定理一、实验内容:(60分)1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。
(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m 三种情况下抽样信号的波形;程序如下:dt=0.1;f0=0.2;T0=1/f0;fm=5*f0;Tm=1/fm;t=-10:dt:10;f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]);title('ÔÁ¬ÐøÐźźͳéÑùÐźÅ');for i=1:3;fs=i*fm;Ts=1/fs;n=-10:Ts:10;f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end运行结果如下:(2)求解原连续信号和抽样信号的幅度谱;程序: dt=0.1;fm=1;t=-8:dt:8;N=length(t);f=sinc(t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2* pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-6:Ts:6;N=length(n);f=sinc(n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F) )]);end波形如下:(3)用时域卷积的方法(内插公式)重建信号。
一、实验目的1. 理解并验证信号抽样定理的基本原理。
2. 学习信号抽样过程中频谱的变换规律。
3. 掌握信号从抽样信号中恢复的基本方法。
4. 通过实验加深对信号处理理论的理解。
二、实验原理信号抽样定理,也称为奈奎斯特定理,指出如果一个带限信号的最高频率分量小于抽样频率的一半,那么通过适当的方法可以将这个信号从其抽样信号中完全恢复出来。
具体来说,如果一个连续信号 \( x(t) \) 的最高频率分量为 \( f_{max} \),那么为了不失真地恢复原信号,抽样频率 \( f_s \) 必须满足 \( f_s > 2f_{max} \)。
三、实验设备与软件1. 实验设备:信号发生器、示波器、信号源、滤波器等。
2. 实验软件:MATLAB或其他信号处理软件。
四、实验步骤1. 信号生成:使用信号发生器生成一个连续的带限信号,例如正弦波、方波等,并记录其频率和幅度。
2. 信号抽样:使用信号源对生成的带限信号进行抽样,设定抽样频率 \( f_s \),并记录抽样后的信号。
3. 频谱分析:对原始信号和抽样信号分别进行傅里叶变换,分析其频谱,观察抽样频率对信号频谱的影响。
4. 信号恢复:使用滤波器对抽样信号进行低通滤波,去除高频分量,然后对滤波后的信号进行逆傅里叶变换,观察恢复后的信号与原始信号的一致性。
5. 改变抽样频率:重复步骤2-4,分别使用不同的抽样频率进行实验,比较不同抽样频率对信号恢复效果的影响。
五、实验结果与分析1. 频谱分析:通过实验发现,当抽样频率 \( f_s \) 小于 \( 2f_{max} \) 时,抽样信号的频谱会发生混叠,无法恢复出原始信号。
当 \( f_s \) 大于\( 2f_{max} \) 时,抽样信号的频谱不会发生混叠,可以恢复出原始信号。
2. 信号恢复:通过低通滤波器对抽样信号进行滤波,可以有效地去除高频分量,从而恢复出原始信号。
滤波器的截止频率应设置在 \( f_{max} \) 以下。
一、实验目的1. 理解并掌握抽样定理的基本原理。
2. 通过实验验证抽样定理的正确性。
3. 学习如何通过抽样恢复原始信号。
4. 掌握信号频谱的观察与分析方法。
二、实验原理抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。
该定理指出,如果一个带限信号的最高频率分量为f_max,那么只要抽样频率f_s 满足f_s > 2f_max,那么通过这些抽样值就可以无失真地恢复出原始信号。
三、实验设备与工具1. 信号发生器2. 示波器3. 函数信号发生器4. 采样器5. 计算机及信号处理软件(如MATLAB)四、实验步骤1. 信号生成:使用信号发生器生成一个带限信号,确保其最高频率分量f_max小于1MHz。
2. 抽样:使用采样器对生成的信号进行抽样,设置不同的抽样频率f_s,分别为fs=1MHz、fs=2MHz和fs=4MHz。
3. 信号分析:使用示波器和函数信号发生器观察原始信号和抽样信号的波形,分析抽样频率对信号波形的影响。
4. 频谱分析:使用信号处理软件对原始信号和抽样信号进行频谱分析,观察其频谱特性。
5. 信号恢复:使用信号处理软件对抽样信号进行恢复,观察恢复信号与原始信号是否一致。
五、实验结果与分析1. 波形观察:当抽样频率fs=1MHz时,抽样信号与原始信号存在较大差异,信号波形发生明显畸变;当抽样频率fs=2MHz时,抽样信号与原始信号波形相似,但存在一定程度的失真;当抽样频率fs=4MHz时,抽样信号与原始信号基本一致,信号波形失真很小。
2. 频谱分析:当抽样频率fs=1MHz时,抽样信号的频谱存在混叠现象,无法恢复原始信号的频谱;当抽样频率fs=2MHz时,抽样信号的频谱与原始信号的频谱基本一致;当抽样频率fs=4MHz时,抽样信号的频谱与原始信号的频谱完全一致。
3. 信号恢复:当抽样频率fs=4MHz时,恢复信号与原始信号基本一致,证明了抽样定理的正确性。
六、实验结论1. 抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。
学生实验报告)实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。
见图4。
如果fs<fH,就会出现频谱混迭的现象,如图5所示。
在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。
采用标准抽样频率fs=8KHZ。
改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。
验证抽样定理的实验方框图如图6所示。
在图8中,连接(8)和(14),就构成了抽样定理实验电路。
由图6可知。
用一低通滤波器即可实现对模拟信号的恢复。
为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ2、多路脉冲调幅系统中的路际串话~多路脉冲调幅的实验方框图如图7所示。
在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。
分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。
N路抽样脉冲在时间上是互不交叉、顺序排列的。
各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。
本实验设置了两路分路抽样电路。
多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。
图7 多路脉冲调幅实验框图冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。
这样大的衰减带来的后果是严重的。
但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。
但我们知道平顶抽样将引起固有的频率失真。
PAM信号在时间上是离散的,但是幅度上趋势连续的。
而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。
本实验仅提供一个PAM系统的简单模式。
3、多路脉冲调幅系统中的路标串话路际串话是衡量多路系统的重要指标之一。
路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。