信号与系统3.11抽样定理
- 格式:ppt
- 大小:157.00 KB
- 文档页数:8
信号与系统实验报告实验六抽样定理实验六抽样定理一、实验内容:(60分)1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。
(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m 三种情况下抽样信号的波形;程序如下:dt=0.1;f0=0.2;T0=1/f0;fm=5*f0;Tm=1/fm;t=-10:dt:10;f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]);title('ÔÁ¬ÐøÐźźͳéÑùÐźÅ');for i=1:3;fs=i*fm;Ts=1/fs;n=-10:Ts:10;f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end运行结果如下:(2)求解原连续信号和抽样信号的幅度谱;程序: dt=0.1;fm=1;t=-8:dt:8;N=length(t);f=sinc(t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2* pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-6:Ts:6;N=length(n);f=sinc(n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F) )]);end波形如下:(3)用时域卷积的方法(内插公式)重建信号。
一、实验目的1. 理解并验证信号抽样定理的基本原理。
2. 学习信号抽样过程中频谱的变换规律。
3. 掌握信号从抽样信号中恢复的基本方法。
4. 通过实验加深对信号处理理论的理解。
二、实验原理信号抽样定理,也称为奈奎斯特定理,指出如果一个带限信号的最高频率分量小于抽样频率的一半,那么通过适当的方法可以将这个信号从其抽样信号中完全恢复出来。
具体来说,如果一个连续信号 \( x(t) \) 的最高频率分量为 \( f_{max} \),那么为了不失真地恢复原信号,抽样频率 \( f_s \) 必须满足 \( f_s > 2f_{max} \)。
三、实验设备与软件1. 实验设备:信号发生器、示波器、信号源、滤波器等。
2. 实验软件:MATLAB或其他信号处理软件。
四、实验步骤1. 信号生成:使用信号发生器生成一个连续的带限信号,例如正弦波、方波等,并记录其频率和幅度。
2. 信号抽样:使用信号源对生成的带限信号进行抽样,设定抽样频率 \( f_s \),并记录抽样后的信号。
3. 频谱分析:对原始信号和抽样信号分别进行傅里叶变换,分析其频谱,观察抽样频率对信号频谱的影响。
4. 信号恢复:使用滤波器对抽样信号进行低通滤波,去除高频分量,然后对滤波后的信号进行逆傅里叶变换,观察恢复后的信号与原始信号的一致性。
5. 改变抽样频率:重复步骤2-4,分别使用不同的抽样频率进行实验,比较不同抽样频率对信号恢复效果的影响。
五、实验结果与分析1. 频谱分析:通过实验发现,当抽样频率 \( f_s \) 小于 \( 2f_{max} \) 时,抽样信号的频谱会发生混叠,无法恢复出原始信号。
当 \( f_s \) 大于\( 2f_{max} \) 时,抽样信号的频谱不会发生混叠,可以恢复出原始信号。
2. 信号恢复:通过低通滤波器对抽样信号进行滤波,可以有效地去除高频分量,从而恢复出原始信号。
滤波器的截止频率应设置在 \( f_{max} \) 以下。
一、实验目的1. 理解并掌握抽样定理的基本原理。
2. 通过实验验证抽样定理的正确性。
3. 学习如何通过抽样恢复原始信号。
4. 掌握信号频谱的观察与分析方法。
二、实验原理抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。
该定理指出,如果一个带限信号的最高频率分量为f_max,那么只要抽样频率f_s 满足f_s > 2f_max,那么通过这些抽样值就可以无失真地恢复出原始信号。
三、实验设备与工具1. 信号发生器2. 示波器3. 函数信号发生器4. 采样器5. 计算机及信号处理软件(如MATLAB)四、实验步骤1. 信号生成:使用信号发生器生成一个带限信号,确保其最高频率分量f_max小于1MHz。
2. 抽样:使用采样器对生成的信号进行抽样,设置不同的抽样频率f_s,分别为fs=1MHz、fs=2MHz和fs=4MHz。
3. 信号分析:使用示波器和函数信号发生器观察原始信号和抽样信号的波形,分析抽样频率对信号波形的影响。
4. 频谱分析:使用信号处理软件对原始信号和抽样信号进行频谱分析,观察其频谱特性。
5. 信号恢复:使用信号处理软件对抽样信号进行恢复,观察恢复信号与原始信号是否一致。
五、实验结果与分析1. 波形观察:当抽样频率fs=1MHz时,抽样信号与原始信号存在较大差异,信号波形发生明显畸变;当抽样频率fs=2MHz时,抽样信号与原始信号波形相似,但存在一定程度的失真;当抽样频率fs=4MHz时,抽样信号与原始信号基本一致,信号波形失真很小。
2. 频谱分析:当抽样频率fs=1MHz时,抽样信号的频谱存在混叠现象,无法恢复原始信号的频谱;当抽样频率fs=2MHz时,抽样信号的频谱与原始信号的频谱基本一致;当抽样频率fs=4MHz时,抽样信号的频谱与原始信号的频谱完全一致。
3. 信号恢复:当抽样频率fs=4MHz时,恢复信号与原始信号基本一致,证明了抽样定理的正确性。
六、实验结论1. 抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。