高中一年级数学(上册)期末考试试题
- 格式:doc
- 大小:1.45 MB
- 文档页数:10
2022-2023学年天津市红桥区高一上学期期末数学试题一、单选题1.已知集合,,则( ).{}1,1,2,4A =-{}1B x x =≤A B = A .B .C .D .{}1,2-{}1,2{}1,4{}1,1-【答案】D【分析】依次检验集合中的元素是否属于集合,从而求得.A B A B ⋂【详解】因为,,{}1,1,2,4A =-{}1B x x =≤当时,满足,故;=1x -1x =1x ≤1B -∈当时,满足,故;1x =1x =1x ≤1B ∈当时,不满足,故;2x =2x =1x ≤2∉B 当时,不满足,故;4x =4x =1x ≤4B ∉所以.{}1,1A B =- 故选:D.2.函数的最小正周期是( ).π2sin 24x y ⎛⎫=+ ⎪⎝⎭A .B .C .D .π2π2π4π【答案】D 【分析】用周期公式计算.【详解】由题意,;12,42T πωπω=∴==故选:D.3.的否定是( )R,20x x ∀∈>A .B .C .D .R,20x x ∃∈>R,20x x ∃∈≤R,20x x ∀∈<R,20x x ∀∈≤【答案】B【分析】利用全称命题的否定可得结论.【详解】解:命题“”为全称命题,该命题的否定为“”.R,20x x ∀∈>R,20x x ∃∈≤故选:B.4.下列四个函数中,在区间上是减函数( ).()0,∞+A .B .C .D .0.5log y x=()21y x =-y x =2x y =【答案】A【分析】分别考虑对应函数的单调性即可求解.【详解】对于A :因为0<0.5<1,所以函数在区间上是减函数,符合题意;0.5log y x =()0,∞+对于B :,函数在单调递减,单调递增,不符合题意;()21y x =-()0,1()1,+∞对于C :函数在区间上是增函数,不符合题意;y x=()0,∞+对于D :函数在区间上是增函数,不符合题意.2x y =()0,∞+故选:A.5.设,则“”是“”的( )x R ∈1x <01x <<A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】利用集合的包含关系判断可得出结论.【详解】 ,因此,“”是“”的必要不充分条件.{}1x x < {}01x x <<1x <01x <<故选:B.6.设,,,则a ,b ,c 的大小关系为( ).0.73a =0.813b -⎛⎫= ⎪⎝⎭3log 2c =A .B .C .D .a b c>>b a c >>c a b >>b c a>>【答案】B 【分析】根据指数函数的单调性和对数函数的单调性并与特殊值比较即可求解.【详解】,0.70331a =>=,0.80.81313b -⎛⎫==> ⎪⎝⎭,3330log 1log 2log 31c =<=<=又,0.80.733b a =>=所以.b ac >>故选:B.7.若,则( ).tan 2α=1sin cos αα=A .5B .C .D .255212【答案】C【分析】根据同角三角函数基本关系式即可求解.【详解】因为,tan 2α=所以,sin 2cos αα=sin 2cos αα=再由,22sin cos 1αα+=解得,sin α=cos α=知与同号sin 2cos αα=sin αcos α所以,15sin cos 2αα=故选:C.8.已知函数在上具有单调性,则实数k 的取值范围为().()225f x x kx =+-[]2,4-A .B .4k ≤-2k ≥C .或D .或4k ≤-2k ≥4k <-2k >【答案】C【分析】首先求出二次函数的对称轴,再结合题意求解即可.【详解】函数的对称轴为,()225f x x kx =+-x k =-因为函数在上具有单调性,()225f x x kx =+-[]2,4-所以或,即或.4k -≥2k -≤-4k ≤-2k ≥故选:C9.若的值为( )sin 4πα⎛⎫-= ⎪⎝⎭cos 4πα⎛⎫+ ⎪⎝⎭A B .CD.【答案】D【解析】利用诱导公式进行变换,即可得答案;【详解】由题意可得cos sin 424πππαα⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦sin sin 44ππαα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭故选:D.【点睛】本题考查诱导公式求值,考查运算求解能力.二、填空题10._______.sin120︒=【解析】利用正弦的诱导公式计算.【详解】,sin120sin(18060)sin 60︒=︒-︒=︒11.函数的定义域是________.()()ln 1f x x =-【答案】##()1,+∞{}1x x >【分析】利用对数的真数大于零可求得原函数的定义域.【详解】对于函数,,解得,故函数的定义域为.()()ln 1f x x =-10x ->1x >()f x ()1,+∞故答案为:.()1,+∞12.已知,则的最小值为_________.2x >-92x x ++【答案】4【分析】利用拼凑法结合均值不等式即可求解.【详解】,99222422x x x x +=++-≥-=++当且仅当即即时等号成立,92(2)2x x x +=>-+()229x +=1x =所以的最小值为4,92x x ++故答案为:4.13.若,则__________.3cos 5α=-cos 2=α【答案】##725-0.28-【分析】用二倍角公式展开代入计算.2cos 22cos 1αα=-【详解】22337cos cos 22cos 1215525ααα⎛⎫=-∴=-=⨯--=- ⎪⎝⎭ 故答案为:725-14.已知函数 ,则______.3log (0)()2(0)x x x f x x ,,>⎧=⎨≤⎩1[()]3f f =【答案】12【分析】由题意,根据函数的解析式,先求得,进而求得.()f x 1()13f =-11[()]32f f =【详解】由题意,函数,所以,()3log ,02,0x x x f x x >⎧=⎨≤⎩3()lo 113g 13f ==-所以,故答案为.111[()](1)232f f f -=-==12【点睛】本题主要考查了分段函数的求值问题,其中解答中正确利用分段函数的分段条件,合理代入求值是解答的关键,着重考查了推理与计算能力,属于基础题.15.若函数,函数有两个零点,则实数k 的取值是()0.52log ,0143,1x x f x x x x <≤⎧=⎨-+->⎩()()g x f x kx =-__________.【答案】和04-【分析】根据图象以及判别式求得正确答案.【详解】由得,即与的图象有两个公共点,()()0g x f x kx =-=()f x kx =()y f x =y kx =画出的图象如下图所,(),y f x y kx ==由图可知,当时,与有两个公共点,0k =()y f x =y kx =当时,与有一个公共点,0k <()y f x =y kx =当时,0k >由消去并化简得,243y kx y x x =⎧⎨=-+-⎩y ()2430x k x +-+=由,()22443840k k k ∆=--⨯=-+=解得,4k =-4k =+综上所述,有两个零点,则实数k 的值是和()()g x f x kx =-04-故答案为:和04-三、解答题16.已知,.5sin 13α=π,π2α⎛⎫∈ ⎪⎝⎭(1)求的值;sin 2α(2)求的值.πcos 6⎛⎫- ⎪⎝⎭α【答案】(1)120169-【分析】(1)先利用平方关系求出,再利用二倍角的正弦公式即可得解;cos α(2)利用两角差的余弦公式计算即可得解.【详解】(1)因为,所以,π,π2α⎛⎫∈ ⎪⎝⎭cos 0α<因为,所以,5sin 13α=12cos 13α==-所以.512120sin 22sin cos 21313169ααα⎛⎫==⨯⨯-=- ⎪⎝⎭(2)由(1)知,,5sin 13α=12cos 13α=-所以.πππcos cos cos sin sin 666ααα⎛⎫-=+ ⎪⎝⎭125113132=-⨯=17.(1)计算:;5lg 2lg 53log 5ln1++-(2)已知,且,求a 的值.35a b =111a b +=【答案】(1);(2)43log 15【分析】(1)利用对数的运算性质求解即可.(2)利用对数的换底公式求解即可.【详解】(1)5lg 2lg 53log 5ln1lg10304++-=+-=(2)设,()035a b k k ==>所以,.3log a k =5log b k =所以,即.351111log 3log 5log 151log log k k k a b k k +=+=+==15k =所以.3log15a =18.已知函数.()π46f x x ⎛⎫=+ ⎪⎝⎭(1)求的单调区间;()f x (2)求在区间上的最大值与最小值.()f x ππ,88⎡⎤-⎢⎥⎣⎦【答案】(1)的单调递增区间为,单调递减区间为()f x ()ππππ,Z 26212k k k ⎡⎤-+∈⎢⎥⎣⎦.()ππππ,Z 21223k k k ⎡⎤++∈⎢⎥⎣⎦(2)时时有最小值.π12x =()f x π8x =-()f x 【分析】(1)利用正弦函数的单调性,利用整体代入的方法求得的单调区间;()f x (2)根据函数的关系式,利用函数的定义域确定函数的最大和最小值.【详解】(1)由,解得,所以的()πππ2π42πZ 262k x k k -≤+≤+∈()ππππZ 26212k k x k -≤≤+∈()f x 单调递增区间为;()ππππ,Z 26212k k k ⎡⎤-+∈⎢⎥⎣⎦由,解得,所以的单调递减区间()ππ3π2π42πZ 262k x k k +≤+≤+∈()ππππZ 21223k k x k +≤≤+∈()f x 为()ππππ,Z 21223k k k ⎡⎤++∈⎢⎥⎣⎦(2),时,,()π46f x x ⎛⎫=+ ⎪⎝⎭ππ,88x ⎡⎤∈-⎢⎥⎣⎦ππ2π4,633x ⎡⎤+∈-⎢⎥⎣⎦当即时ππ462x +=π12x =()f x当即时有最小值ππ463x +=-π8x =-()f x 19.已知函数.()()121x f x m m =+∈-R (1)判断函数在内的单调性,并证明你的结论;()f x (),0∞-(2)若函数在定义域内是奇函数,求实数m 的值.()f x 【答案】(1)函数在内的单调递减,证明详见解析()f x (),0∞-(2)12【分析】(1)利用函数单调性的定义证得的单调性.()f x (2)由列方程来求得的值.()()f x f x -=-m 【详解】(1)函数在内的单调递减,证明如下:()f x (),0∞-任取()()121212110,2121x x x x f x f x m m <<-=+----,()()2112222121x x x x -=--其中,2112220,210,210x x x x ->-<-<所以,()()()()12120,f x f x f x f x ->>所以函数在内的单调递减.()f x (),0∞-(2)的定义域是,()f x {}|0x x ≠若函数在定义域内是奇函数,则,()f x ()()f x f x -=-即,112121x x m m -⎛⎫+=-+ ⎪--⎝⎭,11121221212121122121x xx x x x x x m ----=-=-=+=------所以.12m =。
高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
2022-2023学年湖北省武汉市江岸区高一上学期期末数学试题一、单选题1.已知集合{}11A x x =-<,{}B x x a =<,若A B ⊆,则a 的取值范围( ) A .0a ≤ B .2a ≥ C .2a > D .2a ≤【答案】B【分析】根据集合间的包含关系求参数的取值范围. 【详解】由11x -<解得111x -<-<即02x <<, 所以{}02A x x =<<, 因为A B ⊆,所以2a ≥, 故选:B.2.命题“x +∀∈R ,都有x e +∈R ”的否定是( ) A .x +∃∈R ,使得x e +∉R B .x +∃∉R ,使得x e +∉R C .x +∃∈R ,使得x e +∈R D .x +∃∉R ,使得x e +∈R【答案】A【分析】全称改存在,再否定结论即可.【详解】命题“x +∀∈R ,都有x e +∈R ”的否定是“x +∃∈R ,使得x e +∉R ”. 故选:A3.已知cos140m ︒=,则tan50︒等于( )AB C D 【答案】B【分析】利用诱导公式化简,求出sin50,cos50︒︒,然后利用同角三角函数的商数关系即可求得. 【详解】()cos140cos 9050sin500m ︒=︒+︒=-︒=<,则sin50m ︒=-,cos50∴︒sin 50tan 50cos50︒∴︒==︒.故选:B.4.已知函数()tan 4(,R)f x a x a b =+∈且3(lg log 10)5f =,则(lglg3)f =( )A .-5B .-3C .3D .随,a b 的值而定【答案】C【分析】先推导()()8f x f x +-=,再根据3lg log 10lg lg 30+=求解即可【详解】由题意,()()()tan 4tan 48f x a x a x f x =+++-+=-,又3lg10lg log 10lg lg3lg lg3lg10lg3⎛⎫+=⋅== ⎪⎝⎭,故3(lg log 10)(lg lg3)8f f +=.又3(lg log 10)5f =,故(lg lg3)853f =-= 故选:C5.已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( )A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B【分析】分函数()f x 在R 上的单调递减和单调递增求解.【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数, 所以函数()f x 在R 上不可能是增函数, 综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B6.已知m 为正实数,且22tan 15sin m x x +≥对任意的实数ππ,2x x k k ⎛⎫≠+∈ ⎪⎝⎭Z 均成立,则m 的最小值为( ) A .1B .4C .8D .9【答案】D 【分析】()22222max tan 1515sin tan sin sin ≥mx m x x x x+⇒≥-,后利用同角三角函数关系及基本不等式可得答案. 【详解】由22tan 15sin m x x +≥对任意的实数ππ,2x x k k ⎛⎫≠+∈ ⎪⎝⎭Z 均成立, 可得()222max 15sin tan sin m x x x ≥-.()()()22422222221cos sin 15sin tan sin 151cos 151cos cos cos x xx x x x x xx--=--=--2211716179cos cos x x ⎛⎫ ⎪⎝⎭=-+≤-=,当且仅当22116cos cos x x=,即21cos 4x =时取等号.则9m ≥.故选:D7.设sin7a =,则( )A .222log aa a <<B .22log 2a a a <<C .22log 2aa a << D .22log 2aa a <<【答案】D【分析】分别判断出21142a <<2a <211log 2a -<<-,即可得到答案. 【详解】()sin7sin 72a π==-.因为7264πππ<-<,所以12a <<所以21142a <<;因为2x y =在R 1222a =<<因为2log y x =在()0,∞+上为增函数,且12a <<2221log log log 2a <<211log 2a -<<-;所以22log 2aa a <<.故选:D8.设函数()()()cos cos f x m x n x αβ=+++,其中m ,n ,α,β为已知实常数,x ∈R ,若()π002f f ⎛⎫== ⎪⎝⎭,则( )A .对任意实数x ,()0f x =B .存在实数x ,()0f x ≠C .对任意实数x ,()0f x >D .存在实数x ,()0f x <【答案】A【分析】根据π(0)()02f f ==,可推出cos cos ,sin sin m n m n αβαβ=-=-,整理化简后可得m n =或m n =-,分类讨论,结合三角函数诱导公式化简,即可判断答案.【详解】由题意知π(0)()02f f == ,即cos cos sin sin 0m n m n αβαβ+=--= ,即cos cos ,sin sin m n m n αβαβ=-=- ,两式两边平方后可得 22m n =,故m n =或m n =-,若0m n =≠ ,则cos cos sin sin αβαβ=-=-, ,故π2π,Z k k αβ=++∈, 此时()cos(π2π)cos()cos()cos()0f x m x k m x m x m x ββββ=++++=-++=++ , 若0m n =-≠ ,则cos cos ,sin sin αβαβ== ,故2π,Z k k αβ=+∈ , 此时()cos(2π)cos()0f x m x k m x ββ=++-+= ,若0m n == 或0m n =-= ,则()0f x = ,故对任意实数x ,()0f x =, 则A 正确,B,C,D 错误, 故选:A【点睛】关键点点睛:解答本题的关键在于根据已知等式化简得到m 和n 之间的关系,然后分类讨论,化简即可解决问题.二、多选题9.下列三角函数值为负数..的是( ) A .3tan 4π⎛⎫-⎪⎝⎭B .tan505︒C .sin7.6πD .sin186︒【答案】BCD【分析】根据诱导公式,逐个选项进行计算,即可判断答案. 【详解】对于A ,33tan tan (1)144ππ⎛⎫-=-=--= ⎪⎝⎭,故A 为正数; 对于B ,tan505tan(360)tan145tan350145+︒︒=︒=︒=-︒<,故B 为负数; 对于C ,sin7.6π2sin(80.4)sin05πππ=-=-<,故C 为负数;对于D ,sin186sin(1806)sin 60︒=︒+︒=-︒<,故D 为负数; 故选:BCD10.下列计算或化简结果正确的是( ) A .若1sin cos 2θθ⋅=,cos tan 2sin θθθ+= B .若1tan 2x =,则2sin 2cos sin x x x =- C .若25sin 5α=,则tan 2α= D .若α为第二象限角,则22cos sin 21sin 1cos αααα+=-- 【答案】AB【分析】利用22sin sin cos 1,tan cos ααααα+==,结合三角函数在各个象限的符号,逐项进行化简、求值即得.【详解】对于A 选项:1sin cos 2θθ=,cos sin cos 1tan 2sin cos sin sin cos θθθθθθθθθ∴+=+==,故A 正确; 对于B 选项:1tan 2x =,则122sin 2tan 221cos sin 1tan 12x x x x x ⨯===---,故B 正确; 对于C 选项:∵α范围不确定,∴tan α的符号不确定,故C 错误; 对于D 选项:α为第二象限角, sin 0,cos 0αα∴><,22cos sin cos sin cos sin =0cos sin cos sin 1sin 1cos αααααααααααα∴++=-+=--,故D 错误. 故选:AB.11.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确的有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD【解析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论.【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解; 当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD.【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.12.已知函数()()211x x f x x x =->-,()()2log 11xg x x x x =->-的零点分别为α,β,给出以下结论正确的是( ) A .1αβ+= B .αββα=+C .32αβ-<-D .2αβ->-【答案】BD【分析】先说明,11xy x x =≠-的图象关于直线y x =对称,由题意可得2log ,2ααββ==,且21ααβα=-=,化简可得αββα=+,判断B;写出αβ+的表达式,利用基本不等式可判断4αβ+>,判断A;利用零点存在定理判断出322α<<,写出αβ-的表达式,由此设函数13,(2)1()12x h x x x <<-=--,根据其单调性可判断C,D . 【详解】对于函数,11xy x x =≠- ,有,11y x y y =≠-, 即函数,11xy x x =≠-的图象关于直线y x =对称, 由题意函数()()211x x f x x x =->-,()()2log 11x g x x x x =->-的零点分别为α,β, 可知α为(),21,1x xy y x x ==>-的图象的交点的横坐标, β为()2,log ,11xy y x x x ==>-的图象的交点的横坐标, 如图示,可得2(,2),(,log )A B ααββ,且,A B 关于直线y x =对称,则2log ,2ααββ==,且21ααβα=-=, 故1)(0ααβ--=,即αββα=+,故B 正确; 由题意可知1,10αα>∴-> , 所以11(111122241)11ααααβαααα+=-+=-+-++≥-⋅≥--, 由于()22221220,2f α=-≠-∴-≠=,即4αβ+>,A 错误; 因为32332232123220f ⎛⎫=- ⎪⎝=-->⎭,()22202221f =-=-<-, 且()()21111x f x x x =-+>-为单调减函数, 故()()211x x f x x x =->-在3(,2)2上存在唯一的零点 ,即322α<< ,故13,(2)1112αβαααααα-=-=--<<--, 设13,(2)1()12x h x x x <<-=--,则该函数为单调递增函数, 故3311()122322212()h h x >=--=->--,且1(2)211()02h h x =--=-<,故3202αβ-<-<-<, 故C 错误,D 正确, 故选:BD【点睛】关键点点睛:解答本题要注意到函数图象的特点,即对称性的应用,解答的关键在于根据题意推得2(,2),(,log )A B ααββ,且,A B 关于直线y x =对称,从而可得2log ,2ααββ==,且21ααβα=-=,然后写出αβ+以及αβ-的表达式,问题可解.三、填空题13.已知()()()()π3πsin cos tan π22tan πsin πf θθθθθθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---.若π163f θ⎛⎫-= ⎪⎝⎭,则5π6f θ⎛⎫+ ⎪⎝⎭的值为_________. 【答案】13-【分析】利用三角函数的诱导公式化简()f θ,结果为cos θ,结合π163f θ⎛⎫-= ⎪⎝⎭可得π1cos()63θ-=,再利用诱导公式化简5π6f θ⎛⎫+ ⎪⎝⎭为πcos()6θ--,即得答案.【详解】由题意()()()()π3πsin cos tan π(cos )sin (tan )22cos tan πsin π(tan )(sin )f θθθθθθθθθθθθ⎛⎫⎛⎫-+- ⎪ ⎪--⎝⎭⎝⎭===-----, 由π163f θ⎛⎫-= ⎪⎝⎭可得π1cos()63θ-=,故5π5πππ1cos cos[π()]cos()66663f θθθθ⎛⎫⎛⎫+=+=--=--=- ⎪ ⎪⎝⎭⎝⎭,故答案为:13-14.若正数a ,b 满足24log log 8a b +=,48log log 2a b +=,则82log log a b +的值为__________. 【答案】523-【分析】根据对数的运算性质列出方程组求出22log 20log 24a b =⎧⎨=-⎩即可求解.【详解】因为24log log 8a b +=,所以221log log 82a b +=,又因为48log log 2a b +=,所以2211log log 223a b +=,联立22221log log 8211log log 223a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得22log 20log 24a b =⎧⎨=-⎩,所以8222152log log log log 33a b a b +=+=-,故答案为:523-. 15.已知实数,[0,2]a b ∈,且844a b +=,则22b a -的最大值是_______________. 【答案】2【分析】由已知可得22b a-=,令2a x =,构造函数()[1,4]f x x =∈,根据函数的单调性,即可求出最大值. 【详解】解:由844a b +=,可知()()()()22844222222b a b a b a b a =-=-=+-, 则82222b a b a -=+,且有2b =22b a ∴-=,令2a x =,[0,2]a ∈()[1,4]f x x =∈,可知()f x 在[1,4]上单调递减,max 8()(1)24f x f ∴====,即22b a -的最大值是2, 故答案为:2.16.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系为0ektP P -=,其中0P ,k 是正的常数.如果在前5h 消除了10%的污染物,那么经过_______h 污染物减少50%(精确到1h )?取lg 0.50.3=-,lg 0.90.045=- 【答案】33【分析】代入给定的公式即可求解. 【详解】由题知, 当0=t 时,解得0P P =,当5t =时,()500110%ekP P P -=-=,解得:1ln 0.95k =-, 所以500.9t P P =, 当050%P P =时,则有:50000.950%0.5tP P P ==, 即50.90.5t=,解得:0.9lg 0.50.35log 0.55533lg 0.90.45t -==⨯=⨯≈-. 故答案为:33.四、解答题17.若α,π0,2β⎛⎫∈ ⎪⎝⎭,且()21sin sin sin cos cos αβααβ+=.(1)解关于x 的不等式2tan cos tan 0x x βαβ-+<的解集(解集用α的三角值表示); (2)求tan β的最大值.【答案】(1)1|sin sin x x αα⎧⎫<<⎨⎬⎩⎭【分析】(1)根据题意2sin cos tan 1sin ααβα=+,用α的三角函数值替换β的三角函数值,从而解一元二次不等式即可; (2)利用基本不等式求解. 【详解】(1)2sin cos tan 1sin ααβα=+,∴()22sin 1sin sin 0x x ααα-++<, ()()sin 1sin 0x x αα⋅--<,因为1sin sin αα<所以1sin sin x αα<<, ∴原不等式解集1|sin sin x x αα⎧⎫<<⎨⎬⎩⎭;(2)222sin cos tan tan 2sin cos 2tan 1αααβααα===++当且仅当22tan 1α=即tan α=时取得等号.18.中国最早用土和石片刻制成“土主”与“日暑”两种计时工具,成为世界上最早发明计时工具的国家之一.铜器时代,使用青铜制的“漏壶”,东汉元初四年张衡发明了世界第一架“水运浑象”,元初郭守敬、明初詹希元创制“大明灯漏”与“五轮沙漏”,一直到现代的钟表、手表等.现在有人研究钟的时针和分针一天内重合的次数,从午夜零时算起,假设分针走了min t 会与时针重合,一天内分针和时针重合n 次.(1)建立t 关于n 的函数关系;(2)求一天内分针和时针重合的次数n .【答案】(1)72011t n =. (2)22次. 【分析】(1)计算出分针以及时针的旋转的角速度,由题意列出等式,求得答案;(2)根据时针旋转一天所需的时间,结合(1)的结果,列出不等式,求得答案. 【详解】(1)设经过min t 分针就与时针重合,n 为两针一天内重合的次数.因为分针旋转的角速度为()2ππrad/min 6030=, 时针旋转的角速度为()2ππrad/min 1260360=⨯,所以ππ2π30360t n ⎛⎫-= ⎪⎝⎭, 即72011t n =. (2)因为时针旋转一天所需的时间为24601440⨯=(min ),所以720144011n ≤,于是22≤n , 故时针与分针一天内只重合22次.19.在平面直角坐标系xOy 中,O 是坐标原点,角α的终边OA 与单位圆的交点坐标为()1,02A m m ⎛⎫-< ⎪⎝⎭,射线OA 绕点O 按逆时针方向旋转θ弧度..后交单位圆于点B ,点B 的纵坐标y 关于θ的函数为()y f θ=.(1)求函数()y f θ=的解析式,并求π3f ⎛⎫- ⎪⎝⎭的值;(2)若()f θ=()0,πθ∈,求4πtan 3θ⎛⎫- ⎪⎝⎭的值. 【答案】(1)()7πsin 6f θθ⎛⎫=+ ⎪⎝⎭,12(2) 【分析】(1)根据特殊值对应的特殊角及三角函数的定义,结合函数值的定义即可求解;(1)根据(1)的结论及诱导公式,利用同角三角函数的平方关系及商数关系即可求解.【详解】(1)因为1sin 2α=-,且0m <,所以7π6α=,由此得()7πsin 6f θθ⎛⎫=+ ⎪⎝⎭ ππ7π5π1sin sin 33662f ⎛⎫⎛⎫⎛⎫-=-+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)由()f θ=知7ππsin sin 664θθ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,即πsin 6θ⎛⎫+= ⎪⎝⎭ 由于()0,πθ∈,得ππ7π,666θ⎛⎫+∈ ⎪⎝⎭,与此同时πsin 06θ⎛⎫+< ⎪⎝⎭,所以πcos 06θ⎛⎫+< ⎪⎝⎭由平方关系解得:πcos 6θ⎛⎫+= ⎪⎝⎭ππsin cos 4π36tan tan ππ33cos sin 36θθπθθθθ⎛⎫⎛⎫---+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭-=-=== ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭-+ ⎪ ⎪⎝⎭⎝⎭20.已知函数()lg 52lg 52x x x x f x a --=-++(a 为常数).(1)当1a =,求12f ⎛⎫- ⎪⎝⎭的值;(参考数据:lg30.5=,lg50.7=) (2)若函数()f x 为偶函数,求()f x 在区间[]2,1--上的值域.【答案】(1)0.3 (2)999lg ,lg 11101⎡⎤⎢⎥⎣⎦【分析】(1)结合指数和对数运算公式计算;(2)根据偶函数的性质列方程求a ,判断函数的单调性,利用单调性求值域.【详解】(1)当1a =时,()lg 254x x f x -=-,此时1122119lg 254lg 2lg 2lg3lg510.70.3255f -⎛⎫-=-=-==-=-= ⎪⎝⎭(2)函数()lg 52lg 52x x x x f x a --=-++的定义域为()(),00,∞-+∞,()110110lg 52lg 52lg lg 55x xx x x x x x f x a a ---+-=-++=+()lg 110lg5lg 110lg5x x x x a =--++- ()101101lg 52lg 52lg lg 22x x x x x x x xf x a a ---+=-++=+ ()lg 101lg2lg 110lg2x x x x a =--++-由偶函数的定义得恒有()()=f x f x -即:lg5lg5lg 2lg 2x x x x a a --=--也就是恒有()lg2lg5lg5lg2x x x xa -=-,所以1a =-当[]2,1x ∈--时,()()()1102lg 25lg 52lg lg 1101101x x x x x x x f x ---⎛⎫=--+==-+ ⎪++⎝⎭, 因为函数101x y =+为[]2,1--上的增函数,所以()f x 在[]2,1--单调递减,∴[]2,1x ∈--,()999lg ,lg 11101f x ⎡⎤∈⎢⎥⎣⎦故()f x 在[]2,1--上值域999lg ,lg 11101⎡⎤⎢⎥⎣⎦. 21.武汉城市圈城际铁路,实现了武汉城市圈内半小时经济圈体系.据悉一辆城际列车满载时约为550人,人均票价为4元,十分适合城市间的运营.城际铁路运营公司通过一段时间的营业发现,每辆列车的单程营业额Y (元)与发车时间间隔t (分钟)相关;当间隔时间到达或超过12分钟后,列车均为满载状态;当812t ≤≤时,单程营业额Y 与60412t t-+成正比;当58t ≤≤时,单程营业额会在8t =时的基础上减少,减少的数量为()2408t -.(1)求当512t ≤≤时,单程营业额Y 关于发车间隔时间t 的函数表达式;(2)由于工作日和节假日的日运营时长不同,据统计每辆车日均120t 次单程运营.为体现节能减排,发车间隔时间[]8,12t ∈,则当发车时间间隔为多少分钟时,每辆列车的日均营业总额R 最大?求出该最大值.【答案】(1)2151603,812406401100,58t t Y t t t t ⎧⎛⎫-+≤≤⎪ ⎪=⎝⎭⎨⎪-+-≤≤⎩. (2)10t =时,max 22080R =,【分析】(1)由题意设当812t ≤≤时的函数表达式,由12t =时满载求得比例系数,进而求得当58t ≤≤时表达式,写为分段函数形式,即得答案;(2)由题意可得6012040412R t t t ⎛⎫=-+⋅ ⎪⎝⎭,[]8,12t ∈,采用换元并结合二次函数性质,求得答案. 【详解】(1)当812t ≤≤时,设60412Y a t t ⎛⎫=-+ ⎪⎝⎭,a 为比例系数, 由12t =时满载可知55042200Y =⨯=, 即6041212220012a ⎛⎫⨯-+= ⎪⎝⎭,则40a =, 当8a =时,6040481214608Y ⎛⎫=⨯-+= ⎪⎝⎭, 故当58t ≤≤时,()221460408406401100Y t t t -+=--=-, 故2151603,812406401100,58t t Y t t t t ⎧⎛⎫-+≤≤⎪ ⎪=⎝⎭⎨⎪-+-≤≤⎩. (2)由题意可得6012040412R t t t⎛⎫=-+⋅ ⎪⎝⎭,[]8,12t ∈, 化简得211192001531R t t ⎛⎫=-⋅+⋅+ ⎪⎝⎭,[]8,12t ∈, 令111,,812u u t ⎡⎤=∈⎢⎥⎣⎦,则()2192001531R u u =-++, 当312(15)10u =-=-,即10t =时,[]108,12∈符合题意,此时max 22080R =. 22.已知函数()32x a f x x =+,1,22x ⎡⎤∈⎢⎥⎣⎦,a 是常数. (1)若()0f x ≥恒成立,求a 的取值范围;(2)设函数()()2log g x f x a x =-,试问,函数()g x 是否有零点,若有,求a 的取值范围;若没有,说明理由.【答案】(1)⎡⎫+∞⎪⎢⎪⎣⎭(2)答案见解析【分析】(1)利用分离参数法解决函数恒成立问题,结合定义法证明函数的单调性及单调性与最值的关系即可求解;(2)根据已知条件及函数零点的定义,结合函数最值即可求解.【详解】(1)若()0f x ≥恒成立,即恒有32x a x ≥-⋅设()2x h x x =-⋅,任取121,,22x x ⎡⎤∈⎢⎥⎣⎦,且满足12x x <,由于1222x x <,由不等式性质可得121222x x x x -⋅>-⋅,即()()12h x h x >, 所以函数()g x 在1,22x ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()max 12h x h ⎛⎫== ⎪⎝⎭,所以3a ≥a ≥;所以a 的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭. (2)由题意可知232log 0x a a x x +-=,即232log 0x a x x ⎛⎫+-= ⎪⎝⎭, 当1,22x ⎡⎤∈⎢⎥⎣⎦时,函数2x y =单调递增,23log y x x =-单调递减, 所以231log ,72x x ⎡⎤-∈⎢⎥⎣⎦,当0a ≥时,232log 0x a x x ⎛⎫+-> ⎪⎝⎭; 当a<0时,2312log ,,22x y a x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦单调递增,2312log 7,42x y a x a a x ⎛⎫⎤=+-∈+ ⎪⎥⎝⎭⎦,70a >或1402a +<即07a <<或8a <-时,()g x 没有零点;当8a -≤≤()g x 有一个零点.综上,a >8a <-时,()g x 没有零点;当8a -≤≤()g x 有一个零点.。
2022-2023学年天津市第一中学高一上学期期末数学试题一、单选题1.若{}24xA x =<,{}12B x x =∈-<N ,则A B =( )A .{}12x x -<<B .{}0,1C .{}1D .{}13x x -<<【答案】B【分析】分别解指数不等式与绝对值不等式,列举法写出集合B ,再求交集可得结果. 【详解】∵242x x <⇒<,|1|213x x -<⇒-<< ∴{|2}A x x =<,{0,1,2}B = ∴{0,1}A B =. 故选:B.2.命题“x ∃∈R ,210x x ++<”的否定为( ) A .x ∃∈R ,210x x ++≥ B .x R ∃∉,210x x ++≥ C .x ∀∈R ,210x x ++≥ D .x R ∀∉,210x x ++≥【答案】C【分析】将存在量词改为全程量词,结论中范围改为补集即可得解. 【详解】“x ∃∈R ,210x x ++<”的否定为“x ∀∈R ,210x x ++≥”, 故选:C.3.已知3cos 65πα⎛⎫-= ⎪⎝⎭,则2sin 3πα⎛⎫-= ⎪⎝⎭( )A .35B .45C .35 D .45-【答案】C【分析】利用诱导公式化简所求表达式,结合已知条件得出正确选项. 【详解】因为23sin sin cos cos 362665πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=--=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 故选:C.【点睛】本小题主要考查利用诱导公式进行化简求值,考查化归与转化的数学思想方法,属于基础题4.已知在三角形ABC 中,1sin 3A =,则()cosBC +的值等于( )A B .C .D .89【答案】C【分析】利用三角形内角和定理、诱导公式和同角三角函数的基本关系即可求解. 【详解】因为在三角形ABC 中,πA B C ++=,则πC B A +=-, 所以()cos =cos(π)cos B C A A +-=-,又1sin 3A =,所以cos A ==所以()cos =B C +± 故选:C .5.若0.62a =,πlog 3b =,22πlog sin 3c =,则a 、b 、c 的大小关系为( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >>【答案】A【分析】利用指数、对数的单调性,以及三角函数特殊值,即可得出结果. 【详解】解:0.60221a =>=, πππ0log 1log 3log π1=<<=,01b <<,2222log sin πlog log 103c ==<=,∴a b c >>, 故选:A.6.要得到函数()sin(2)4f x x π=+的图象,可将函数()cos2g x x =的图象( )A .向左平移4π个单位 B .向左平移8π个单位 C .向右平移4π个单位D .向右平移8π个单位【答案】D【分析】先将cos2x 转化为sin[2()]4x π+,由此根据三角函数图像变换的知识判断出正确选项.【详解】()cos2sin(2)sin[2()]24g x x x x ππ==+=+,()sin[2()]8f x x π=+,因为()()848x x πππ+=+-,所以需要将()g x 的图象向右平移8π个单位. 故选:D【点睛】本小题主要考查三角函数诱导公式,考查三角函数图像变换,属于基础题.7.已知函数()()sin 2f x x ϕ=+,0πϕ≤<2,若对x ∀∈R ,()π3f x f ⎛⎫≤ ⎪⎝⎭恒成立,则ϕ=( )A .π6B .5π6C .7π6D .11π6【答案】D【分析】根据题意可知,函数()()sin 2f x x ϕ=+在π3x =时取最大值,所以2ππ22π,Z 3k k ϕ⨯+=+∈,根据0πϕ≤<2即可求得ϕ的值.【详解】由函数()()sin 2f x x ϕ=+对x ∀∈R ,()π3f x f ⎛⎫≤ ⎪⎝⎭恒成立可知函数()()sin 2f x x ϕ=+在π3x =时取最大值,即ππsin 2133f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭所以,2ππ22π,Z 3k k ϕ⨯+=+∈,即π2ππ2π2π,Z 236k k k ϕ=-+=-+∈ 又因为0πϕ≤<2, 所以1k =时,π611ϕ= 故选:D 8.函数()sin 2cos x xf x x=-的图象可能为( )A .B .C .D .【答案】A【分析】分析函数()f x 的奇偶性及其在0,2π⎛⎫⎪⎝⎭上的函数值符号,结合排除法可得出合适的选项.【详解】对任意的x ∈R ,2cos 0x ->,则函数()f x 的定义域为R ,()()()()sin sin 2cos 2cos x x x xf x f x x x---===---,则函数()f x 为偶函数,排除BC 选项,当02x π<<时,sin 0x >,则()sin 02cos x xf x x=>-,排除D 选项.故选:A.9.已知函数()()πsin 2cos 206f x x x ωωω⎛⎫=++> ⎪⎝⎭在[]0,π内有且仅有3个零点,则ω的取值范围是( ) A .411,36⎡⎫⎪⎢⎣⎭B .411,36⎛⎫ ⎪⎝⎭C .513,36⎛⎫ ⎪⎝⎭D .513,36⎫⎡⎪⎢⎣⎭【答案】A【分析】先化简函数式,然后根据x 的范围求出π23x ω+的范围,()f x 在[]0,π有且仅有3个零点,再利用正弦函数相关知识求ω的范围.【详解】πππ3π()sin(2)cos2sin 2cos cos2sin cos 2cos2)66623f x x x x x x x x ωωωωωωωω=++=++++,因为当[]0,πx ∈时,πππ2,2π333x ωω⎡⎤+∈+⎢⎥⎣⎦,又因为()f x 在[]0,π上有且仅有3个零点,所以π3π2π4π3ω+<,综上:43611ω<, 故选:A10.已知函数()11,02lg ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在不相等的实数a ,b ,c ,d 满足()()()()f a f b f c f d ===,则+++a b c d 的取值范围为( ) A .()0,+∞B .812,10⎛⎤- ⎥⎝⎦C .612,10⎛⎤- ⎥⎝⎦D .810,10⎛⎤ ⎥⎝⎦【答案】C【分析】将问题转化为y m =与|()|f x 图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为y m =与|()|f x 的图象有四个交点,1,221,20|()|2lg ,01lg ,1xx xx f x x x x x ⎧--≤-⎪⎪⎪+-<≤=⎨⎪-<≤⎪⎪>⎩,则在(,2]-∞-上递减且值域为[0,)+∞;在(2,0]-上递增且值域为(0,1];在(0,1]上递减且值域为[0,)+∞,在(1,)+∞上递增且值域为(0,)+∞;|()|f x 的图象如下:所以01m <≤时,y m =与|()|f x 的图象有四个交点,不妨假设a b c d <<<, 由图及函数性质知:142011010a b c d -≤<-<≤<≤<<≤,易知:4a b +=-,101(2,]10c d +∈, 所以61(2,]10a b c d +++∈-. 故选:C二、填空题11.120318(π1)lg2lg52-⎛⎫+--++= ⎪⎝⎭___________.【答案】4【分析】根据指数对数运算性质化简计算即可【详解】120318(π1)lg2lg52-⎛⎫+--++ ⎪⎝⎭()()()21313212lg 25--=+-+⨯4121=+-+ 4=故答案为:4.12.古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的部分多为扇环.已知某扇形的扇环如图所示,其中外弧线的长为60cm ,内弧线的长为20cm ,连接外弧与内弧的两端的线段均为18cm ,则该扇形的中心角的弧度数为____________.【答案】209【分析】根据扇形弧长与扇形的中心角的弧度数为α的关系,可求得9cm OC =,进而可得该扇形的中心角的弧度数. 【详解】解:如图,依题意可得弧AB 的长为60cm ,弧CD 的长为20cm ,设扇形的中心角的弧度数为α 则,AB OA CD OC αα=⋅=⋅,则60320OA OC ==,即3OA OC =. 因为18cm AC =,所以9cm OC =,所以该扇形的中心角的弧度数209CD OC α==. 故答案为:209. 13.已知tan 2θ=,则2sin cos sin sin θθθθ++的值为______.【答案】2310【分析】进行切弦互化即可求值【详解】22222sin sin tan 4cos 1sin θθθθθ===-,∴24sin 5θ=,∴22sin cos 11423sin 1sin 1sin tan 2510θθθθθθ++=++=++=.故答案为:231014.函数()2sin cos f x x x =+在区间2,43ππ⎡⎤⎢⎥⎣⎦上的最小值是______.【答案】14##0.25【分析】由题得()2cos cos 1f x x x =-++,转化为求函数()21g t t t =-++,12[]2t ∈-的最小值得解.【详解】解:()221cos cos cos cos 1f x x x x x =-+=-++,设π212cos ,[,π],[432t x x t =∈∴∈-,所以()21g t t t =-++,12[2t ∈-.二次函数抛物线的对称轴为112(1)2t =-=⨯-, 由于111112424g ⎛⎫-=--+= ⎪⎝⎭,212211124g +=-=>⎝⎭.所以函数的最小值是14.故答案为:1415.已知函数()()21ln 11f x x x=+-+,若实数a 满足()()313log log 21f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是______. 【答案】1,33⎡⎤⎢⎥⎣⎦【分析】根据奇偶性定义可判断出()f x 为定义在R 上的偶函数,从而将所求不等式化为()()32log 21f a f ≤;根据复合函数单调性的判断以及单调性的性质可确定()f x 在[)0,∞+上单调递增,由偶函数性质可知()f x 在(],0-∞上单调递减,由此可得3log 1a ≤,解不等式即可求得结果. 【详解】()f x 的定义域为R ,()()()21ln 11f x x f x x-=+-=+, f x 为定义在R 上的偶函数,()()()()313333log log log log 2log f a f a f a f a f a ⎛⎫∴+=+-= ⎪⎝⎭;当0x ≥时,21y x =+单调递增,()2ln 1y x ∴=+在[)0,∞+上单调递增;又11y x=+在[)0,∞+上单调递减,f x 在[)0,∞+上单调递增,()f x 图象关于y 轴对称,f x 在(],0-∞上单调递减;则由()()32log 21f a f ≤得:3log 1a ≤,即31log 1a -≤≤,解得:133a ≤≤,即实数a 的取值范围为1,33⎡⎤⎢⎥⎣⎦.故答案为:1,33⎡⎤⎢⎥⎣⎦.16.已知关于x 函数()322253sin x tx x x tf x x t++++=+在[]2022,2022-上的最大值为M ,最小值N ,且2022+=M N ,则实数t 的值是______.【答案】1011【分析】先利用常数分离法化得函数3253sin ()x x x f x t x t ++=++,再构造函数()3253sin x x xg x x t++=+,判断得()g x 为奇函数,从而利用奇函数的性质求解即可.【详解】因为()()233222253sin 53sin t x t x x x x tx x x t f x x t x t++++++++==++3253sin x x x t x t ++=++,[]2022,2022x -∈,令()3253sin x x xg x x t++=+,[]2022,2022x -∈,则()()f x g x t =+,因为()g x 定义域关于原点对称,()33225()3()sin()53sin ()()x x x x x xg x g x x t x t-+-+-----===--++, 所以()g x 是在[]2022,2022-上的奇函数, 故由奇函数的性质得()()max min 0g x g x +=,所以()()max min max min ()()2022M N f x f x g x t g x t +=+=+++=, 所以22022t =,则1011t =. 故答案为:1011.【点睛】关键点睛:由于奇函数的图像关于原点对称,所以其最大值与最小值也关于原点对称,这一性质是解决本题的关键所在.三、解答题17.已知0,022ππαβ<<<<,且3cos ,cos()510ααβ=+=. (1)求sin 24πα⎛⎫+ ⎪⎝⎭的值;(2)求β的值.【答案】 (2)4πβ=.【分析】(1)由同角平方关系可得4sin 5α,再由二倍角正余弦公式有7cos 225α=-、24sin 225α=,最后利用和角正弦公式求值.(2)由题设可得sin()αβ+=,根据()βαβα=+-,结合差角余弦公式求出β对应三角函数值,由角的范围确定角的大小. 【详解】(1)由02πα<<,3cos 5α=,则4sin 5α, 所以27cos 22cos 125αα=-=-,24sin 22sin cos 25ααα==,而17sin 22cos 2)425αααπ⎛⎫+=+= ⎪⎝⎭(2)由题设0αβ<+<π,而cos()αβ+=sin()10αβ+=,而cos cos[()]cos()cos 3sin (45)si 5n βαβααβααβα=+-=+++==又02βπ<<,则4πβ=.18.已知函数ππ())cos()sin(2π)(0)44f x x x x ωωωω=+⋅+-+>,且函数()f x 的最小正周期为π.(1)求函数()f x 的解析式; (2)若将函数()f x 的图象向右平移π3个单位长度,得到函数()g x 的图象,求函数()g x 在区间π[0,]2上的最大值和最小值,并指出此时x 的值.【答案】(1)()2sin(2)3f x x π=+(2)0x =时,最小值为 512x π=时,最大值为 2.【分析】(1)利用三角恒等变换可得π()2sin(2)3f x x ω=+,再由最小正周期可得解;(2)利用三角函数的图象变换可得π()2sin(2)3g x x =-,再利用整体法可得解.【详解】(1)∵函数ππ())cos()sin(2π)44f x x x x ωωω=+⋅+-+ππ)sin 22sin 22sin(2)23x x x x x ωωωωω=++=+=+的最小正周期为π,∴2ππ2ω=,解得1ω=,π()2sin(2)3f x x ∴=+. (2)将函数()f x 的图象向右平移π3个单位长度, 得到函数πππ()2sin 2()2sin(2)333g x x x ⎡⎤=-+=-⎢⎥⎣⎦的图象,由π0,2x ⎡⎤∈⎢⎥⎣⎦,可得ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,故当233x ππ-=-,即当0x =时,函数()g x 取得最小值为当ππ232x -=,即当5π12x =时,函数()g x 取得最大值为 2.19.已知函数()2cos 2cos f x x x x =+. (1)求函数()f x 的周期和单调递减区间;(2)将()f x 的图象向右平移6π个单位,得到()g x 的图象,已知()02313g x =,0,32x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 值.【答案】(1)π,()2,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z(2)【分析】(1)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得; (2)首先根据三角函数的平移变换规则求出()g x 的解析式,根据()02313g x =,得到05sin 2613x π⎛⎫-= ⎪⎝⎭,再根据同角三角函数的基本关系求出0cos 26x π⎛⎫- ⎪⎝⎭,最后根据两角和的余弦公式计算可得;【详解】(1)解:∵()2cos 2cos f x x x x =+2cos 21x x =++122cos 212x x ⎫=++⎪⎪⎝⎭2sin 216x π⎛⎫=++ ⎪⎝⎭,即()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,所以函数的最小正周期22T ππ==, 令()3222262k x k k πππππ+≤+≤+∈Z ,解得()263k x k k ππππ+≤≤+∈Z . 故函数()y f x =的单调递减区间为()2,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)解:由题意可得()2sin 212sin 216666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=-++=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∵()002sin 2163231g x x π⎛⎫=-+= ⎪⎝⎭,∴05sin 2613x π⎛⎫-= ⎪⎝⎭,∵0,32x ππ⎡⎤∈⎢⎥⎣⎦,所以052266x πππ≤-≤,则012cos 2613x π⎛⎫-==- ⎪⎝⎭,因此0000cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦125113132=-⨯=. 20.已知函数2()1mx nf x x +=+是定义在[]1,1-上的奇函数,且()11f =.(1)求()f x 的解析式;(2)已知0a >,0b >,且128a b+=,若存在a ,b 使()2b f t a >+成立,求实数t 的取值范围.【答案】(Ⅰ)22()1x f x x =+;(Ⅱ)(2⎤⎦. 【解析】(1)根据题意分析可得()()0011f f ⎧=⎪⎨=⎪⎩,解可得m 、n 的值,则可得出函数()f x 的解析式; (2)因为128a b +=,所以112282b b a a a b ⎛⎫⎛⎫+=++ ⎪⎪⎝⎭⎝⎭,展开利用基本不等式可得122b a +≥, 则只需使1()2f t >,然后求解不等式即可解得实数t 的取值范围. 【详解】解:(1)根据题意,函数2()1mx n f x x +=+是定义在[]1,1-上的奇函数, 则(0)0f =,可得0n =,则2()1mx f x x =+, 又由()11f =得,则12m =,可得2m =, 则22()1x f x x =+. (2)因为0a >,0b >,且128a b+=,所以1121211222828282b b b a a a a b a b ⎛⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝,当且仅当22b a a b =,即14a =,12b =时,等号成立, 若存在a ,b 使()2b f t a >+成立,则1()2f t >,即22112t t >+,解得:22t <[]1,1t ∈-,所以实数t 的取值范围是(2⎤⎦.【点睛】本题主要考查根据函数奇偶性求解函数的解析式,考查基本不等式的运用,解答本题时注意以下几点:(1)当奇函数()f x 在0x =处有意义时,则有()00f =;(2)若存在a ,b 使()2b f t a >+成立,只需使min ()2b f t a ⎛⎫>+ ⎪⎝⎭,然后根据128a b +=,利用基本不等式求解2b a +的最小值.。
★启用前秘密★拉萨市第二高级中学2022-2023学年度第一学期期末测试高 一 年级 数学 试卷命题人: 时间: 120 分钟 满分: 150分 得分:一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合M ={-1,1},N ={-2,1,0},则M ∩N =()A. {0,-1}B. {1}C. {0}D. {-1,1}【答案】B 【解析】【分析】利用集合之间的交集运算即得结果.【详解】因为集合M ={-1,1},N ={-2,1,0},所以M ∩N ={1}.故选:B.【点睛】本题考查了集合之间的交集运算,属于简单题.2. 命题的否定为( )2“R,10”x x x ∀∈++>A.B.2R,10x x x ∀∈++≤2R,10x x ∀∉++≤C.D.2000R,10x x x ∃∈++≤2000R,10x x x ∃∉++≤【答案】C 【解析】【分析】利用特称量词对全称命题进行否定.【详解】因为利用特称量词对全称命题进行否定,所以命题的否定为“2“R,10”x x x ∀∈++>”.2000R,10x x x ∃∈++≤故选:C 3. 函数)()f x =A. B. C.D.3,2⎡⎫+∞⎪⎢⎣⎭3,4⎛⎤-∞ ⎥⎝⎦()(),33,-∞+∞ ()3,+∞【答案】A 【解析】【分析】由,即可求得函数的定义域.230x -≥()f x 【详解】由,即,230x -≥32x ≥所以函数的定义域为.()f x 3,2⎡⎫+∞⎪⎢⎣⎭故选:A.4. 若,则下列不等式中不正确的是( )110a b <<A. B. C. D. a b ab +<2b aa b+>2ab b>22a b<【答案】C 【解析】【分析】,可得,则根据不等式的性质逐一分析选项,A :,,所以110a b <<0b a <<0a b +<0ab >成立;B :,则,根据基本不等式以及等号成立的条件则可判断;C :a b ab +<0b a <<0,0b aa b >>且,根据可乘性可知结果;D :,根据乘方性可判断结果.b a <0b <0b a <<【详解】A:由题意,不等式,可得,11a b <<0b a <<则,,所以成立,所以A 是正确的;0a b +<0ab >a b ab +<B :由,则,所以,因为,所以等号不成立,所以0b a <<0,0b aa b >>2b a a b +≥=a b ¹成立,所以B 是正确的;2b aa b +>C :由且,根据不等式的性质,可得,所以C 不正确;b a <0b <2ab b <D :由,可得,所以D 是正确的,0b a <<22a b <故选C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.5. 不等式的解集是( )2320x x --≥A.B.213x x ⎧⎫-≤≤⎨⎬⎩⎭213x x ⎧⎫-≤≤⎨⎬⎩⎭C. D. 213x x x ⎧⎫≤-≥⎨⎬⎩⎭或213x x x ⎧⎫≤-≥⎨⎬⎩⎭或【答案】C 【解析】【分析】利用一元二次不等式的解法求解即可.【详解】解:232(32)(1)0x x x x --=+-≥解得:.213x x ≤-≥或故选:C.6. 已知幂函数的图象经过点,则( )()(R,R)f x k x k αα=⋅∈∈(14,2k α+=A. B. C. D. 121322【答案】A 【解析】【分析】根据幂函数的概念求出,再代入点的坐标可求出,即可得解.1k =α【详解】因为函数为幂函数,所以,则,()f x 1k =()f x x α=又因为的图象经过点,所以,得,()f x (14,2142α=12α=-所以.11122k α+=-=故选:A 7. 函数的图象如图所示,则( )()f xA. 函数在上单调递增()f x []1,2-B. 函数在上单调递减()f x []1,2-C. 函数在上单调递减()f x []1,4-D. 函数在上单调递增()f x []2,4【答案】A 【解析】【分析】根据函数图像分析直接得解.【详解】由图像可知,图像在上从左到右是“上升”的,则函数在上是单调递增的;图像[]1,2-()f x []1,2-在上从左到右是“下降”的,则函数在上是单调递减的.[]2,4()f x []2,4故选:A.8. 函数的值域是( )2222x y x -=+A. , B. C. , D. (1-1](1,1)-[1-1](2,2)-【答案】A 【解析】【分析】把已知函数解析式变形,由 可得的范围,进一步求得函数值域.222x ≥+212x +【详解】因为,2222222422412x x y x x x --+==-=-++++,,222x +≥ 210221x +∴<≤则,24220x +<≤24121x -++∴-<≤1所以函数的值域是2222x y x -=+(]1,1-故选:A.9. 下列函数是奇函数且在上是减函数的是()[0,)+∞A.B. C. D.1()f x x=()||f x x =-3()f x x =-2()f x x =-【答案】C 【解析】【分析】根据基本初等函数的单调性与奇偶性判断即可;【详解】解:对于A :定义域为,故A 错误;1()f x x ={}|0x x ≠对于B :,所以,故为偶函数,故B 错误;()||f x x =-()||||()f x x x f x -=--=-=()||f x x =-对于C :为奇函数,且在上单调递减,故C 正确;3()f x x =-R 对于D :为偶函数,故D 错误;2()f x x =-故选:C10. 下列转化结果错误的是()A. 化成弧度是B. 化成弧度是60 π3150-76-C. 化成度是D. 化成度是10π3-600- π1215【答案】B 【解析】【分析】利用角度与弧度的互化逐项判断可得出合适的选项.【详解】,,,ππ60601803=⨯= π5π1501501806-=-⨯=- 10π1018060033-=-⨯=-.π1180151212=⨯= 故选:B.11. 化简的结果是( )()()sin 2cos 633sin cos 22παπααπαπ---⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭A. B. 1C. D. 21-2-【答案】B 【解析】【分析】利用三角函数的诱导公式化简求解即可.【详解】原式()()sin cos sin 2cos 222ααπππαπα-⋅-=⎡⎤⎡⎤⎛⎫⎛⎫--⋅-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin cos sin cos 22ααππαα-⋅=⎡⎤⎡⎤⎛⎫⎛⎫--⋅-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.sin cos sin cos 1cos sin sin cos 22ααααππαααα-⋅-⋅===-⋅⎛⎫⎛⎫--⋅- ⎪ ⎪⎝⎭⎝⎭故选:B12. 若,,,则、、的大小关系为( )2log 3a =33b -=31log 2c =a b c A. B. C. D. b a c >>b c a>>a c b>>a b c>>【答案】D 【解析】【分析】利用对数函数的单调性结合中间值法判断可得出结论.【详解】因为,,,故.22log 3log 21a =>=31327b -==331log log 102c =<=a b c >>故选:D.二、填空题(本题共4小题,每小题5分,共20分.直接写出最简结果.)13. 设函数,则_____()34,00,0x x f x x ⎧+≥=⎨<⎩()()3f f -=【答案】5【解析】【分析】由函数的解析式由内到外可计算出的值.()f x ()()3ff -【详解】由题意可得.()()()030345f f f -==+=故答案为:.514. 化简________43251log 5log 88-⎛⎫-⋅=⎪⎝⎭【答案】13【解析】【分析】利用指数的运算性质以及换底公式化简可得结果.【详解】原式.()433ln 53ln 2216313ln 2ln 5--=-⋅=-=故答案为:.1315. 若一个扇形的圆心角是,面积为,则这个扇形的半径为________452π【答案】4【解析】【分析】将扇形的圆心角化为弧度,利用扇形的面积公式可求得该扇形的半径长.【详解】设该扇形的半径为,,该扇形的面积为,解得.r π454=21π2π24S r =⨯⨯=4r =故答案为:.416. 已知,都是正实数,且,则的最小值为___________.x y 2x y xy +=xy 【答案】8【解析】【分析】由,即可求解.2xy x y =+≥0≥【详解】由,都是正实数,且,x y 2x y xy +=可得,2xy x y =+≥0≥≥8xy ≥当且仅当时,即时,等号成立,2x y =4,2x y ==所以的最小值为.xy 8故答案为:.8三、解答题(本题共6小题,17题10分,其余每题12分,共70分.要求写出必要的计算或证明过程,按主要考查步骤给分.)17. 计算下列各式的值:(1);2013112726-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭(2).7log 2325log lg 25lg 47log 5log 4++-+⋅【答案】(1) 112(2)114【解析】【分析】(1)利用指数的运算性质计算可得所求代数式的值;(2)利用对数的运算性质以及换底公式计算可得出所求代数式的值.【小问1详解】解:原式.11134122=-+-=【小问2详解】解:原式.()343ln 52ln 2311log 3lg 2542222ln 2ln 544=+⨯-+⋅=+-+=18. 已知集合.{}1|4,|32212A x x B x a x a ⎧⎫=-<<=-<<+⎨⎬⎩⎭(1)当时,求;0a =A B ⋂(2)若,求的取值范围.A B ⋂=∅a 【答案】(1) 1|12x x ⎧⎫-<<⎨⎬⎩⎭(2)[)3,2,4⎛⎤-∞-+∞ ⎥⎝⎦ 【解析】【分析】(1)当时,,即可解决;(2)分,两种情况解决即可.0a ={}|21B x x =-<<B =∅B ≠∅【小问1详解】由题知,,{}1|4,|32212A x x B x a x a ⎧⎫=-<<=-<<+⎨⎬⎩⎭当时,,0a ={}|21B x x =-<<所以.1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭【小问2详解】由题知,{}1|4,|32212A x x B x a x a ⎧⎫=-<<=-<<+⎨⎬⎩⎭因为,A B ⋂=∅所以当时,解得,满足题意;B =∅3221,a a -≥+3a ≥当时,或,B ≠∅32211212a a a -<+⎧⎪⎨+≤-⎪⎩3221324a a a -<+⎧⎨-≥⎩解得,或,34a ≤-23a ≤<综上所述,的取值范围为,a [)3,2,4⎛⎤-∞-+∞ ⎥⎝⎦ 19. (1)已知,为第三象限角,求的值;3cos 5α=-αsin α(2)已知,计算的值.tan 3α=4sin 2cos 5cos 3sin αααα-+【答案】(1);(2).4sin 5α=-57【解析】【分析】(1)利用同角三角函数的平方关系可求得的值;sin α(2)利用弦化切可求得所求代数式的值.【详解】解:(1)因为为第三象限角,则;α4sin 5α==-(2).4sin 2cos 4tan 243255cos 3sin 53tan 5337αααααα--⨯-===+++⨯20. 已知为二次函数,且满足:对称轴为,.()y f x =1x =(2)3,(3)0f f =-=(1)求函数的解析式,并求图象的顶点坐标;()f x ()y f x =(2)在给出的平面直角坐标系中画出的图象,并写出函数的单调区间.|()|y f x =|()|yf x =【答案】(1),顶点坐标为. 2()23f x x x =--()1,4-(2)图象见解析,函数的增区间为:,函数的减区间为:.[][)1,1,3,-+∞(][],1,1,3-∞-【解析】【分析】(1)根据已知条件列出方程组即可求解;(2)作出函数图象可求解.【小问1详解】设函数为,2()f x ax bx c =++所以解得,所以,12423930b x a a b c a b c ⎧=-=⎪⎪++=-⎨⎪++=⎪⎩123a b c =⎧⎪=-⎨⎪=-⎩2()23f x x x =--所以,所以顶点坐标为.(1)4f =-()1,4-【小问2详解】图象如图所示,函数的增区间为:,函数的减区间为:.[][)1,1,3,-+∞(][],1,1,3-∞-21. 已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.【答案】(1)()3,1-(2【解析】【分析】(1)根据对数函数真数大于0求解定义域;(2)根据函数单调性求最小值,列出方程,求出a 的值.【小问1详解】要使函数有意义,则有,解得:,所以函数的定义域为.1030x x ->⎧⎨+>⎩31x -<<()3,1-【小问2详解】函数可化为,因为,所()()()()()22log 13log 23log 14a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦()3,1x ∈-以.()20144x <-++≤因为,所以,01a <<()2log 14log 4a a x ⎡⎤-++≥⎣⎦即,由,得,所以.()min log 4a f x =log 44a =-44a -=144a -==22. 已知函数,其中为非零实数, ,.()bf x ax x =-,a b 1122f ⎛⎫=- ⎪⎝⎭()724f =(1)判断函数的奇偶性,并求的值;,a b (2)用定义证明在上是增函数.()f x ()0,∞+【答案】(1);(2)证明见解析.11,2a b ==【解析】【分析】(1)由奇函数的定义可得函数为奇函数,由已知条件列方程组可解得答案;(2)利用取值,作差,变形,判号,下结论五个步骤可证在上是增函数.()f x ()0,∞+【详解】(1)函数定义域为,关于原点对称, ()(),00,-∞⋃+∞由,()()()b b f x a x ax f x x x ⎛⎫-=--=--=- ⎪-⎝⎭ 得函数为奇函数,由,()117,2224f f ⎛⎫=-= ⎪⎝⎭得,11172,22224a b a b -=--=解得;11,2a b ==(2).由(1)得,任取,且,则()12f x x x =-()12,0,x x ∈+∞12x x <()()()()1212121212122112111122222x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫--=---=-+-=-+ ⎪ ⎪⎝⎭⎝⎭,12121()12x x x x ⎛⎫=-+ ⎪⎝⎭因为,且,()12,0,x x ∈+∞12x x <所以,所以,即,121102x x ⎛⎫+> ⎪⎝⎭()()120f x f x -<()()12f x f x <所以在上是增函数.()f x ()0,∞+【点睛】本题考查了函数的奇偶性,考查了用定义证明函数的单调性,掌握函数奇偶性和单调性的定义是解题关键.属于基础题.。
襄州第一高级中学2022-2023学年高一上学期期末考试数学解析版一,单选题1.如图所示的时钟显示的时刻为,此时时针与分针的夹角为则4:30()0ααπ<≤( )α=A.B. C. D. 2π4π8π16π答案B 解:由图可知,. 故选B .1284παπ=⨯=2.已知,若,则的化简结果是( )()f x =,2παπ⎛⎫∈ ⎪⎝⎭()()sin sin f f x α--A. B. C. D.2tan α-2tan α2cos α-2cos α答案A .解:,若,()f x =,2παπ⎛⎫∈ ⎪⎝⎭则.()()cos cos sin sin 2tan 1sin 1sin f f x αααααα---==+=--+3.已知函数,在上恰有3条对称轴,3个对称中心,()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭(),0π-则的取值范围是( )A. B. C. D. 1710,63⎛⎤ ⎥⎝⎦1710,63⎡⎫⎪⎢⎣⎭71,36⎡⎫⎪⎢⎣⎭71,36⎛⎤ ⎥⎝⎦答案A 解:函数,当时,所以()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭(),0x π∈- ,因为在上恰有3条对称轴,3个对称中心,333x πππωπω-+<+<()f x (),0π-所以. 故选A.5171033263πππωπω-≤-+<-⇒<≤4.若函数的定义域为( )()f x =+()21f x -A.B. C. D. ()0,2[)(]2,00,2-⋃[]2,2-[]0,2答案C 解:由,解得,则()f x =+3010x x -≥⎧⎨+≥⎩13x -≤≤中,令 , 解得 , 则函数的定义域为()21f x -2113x -≤-≤22x -≤≤()21f x -,故选C.[]2,2-5.若函数在上有最小值(为常数)()(32log 1f x ax b x =++(),0-∞5-,a b 则函数在上( )()f x ()0,+∞A.有最大值4 B.有最大值7 C.有最大值5 D.有最小值5答案B 解:考虑函数,定义域为R,()(32log gx ax b x =++()(32log g x ax bx -=-+-,(()3322log log ax b ax b x g x =-+=--+=-所以是奇函数,()(32log g x ax b x=++函数在上有最小值-5,()(32log 1f x ax b x =+++(),0-∞则在上有最小值,()(32log g x ax b x =++(),0-∞根据奇函数的性质得:在上有最大值6,()(32log g x ax b x =++()0,+∞所以在上有最大值7.故选:B.()(32log 1f x ax b x =+++()0,+∞6.定义:正割,余割.已知为正实数,且1sec cos αα=1csc sin αα=m 对任意的实数均成立,则的最小值为22csc tan 15m x x ⋅+≥,2x x k k Z ππ⎛⎫≠+∈ ⎪⎝⎭m A.1 B.4C.8D.9答案D 解:由已知得,即.因为222sin 15sin cos m x x x +≥422sin 15sin cos x m x x ≥-,所以,则,2x k k Zππ≠+∈(]2cos 0,1x ∈()()224242222221cos sin 12cos cos 15sin 151cos 1515cos cos cos cos x x x x x x x x x x--+-=--=--422221cos 11515cos 21716cos 179cos cos x x x x x +⎛⎫=-+-=-+≤-= ⎪⎝⎭,当且仅当时等号成立,故m≥9.故选:D .21cos 4x =7.1626年,阿贝尔特格洛德最早推出简写的三角符号:、、(正割),1675年,sin tan sec 英国人奥屈特最早推出余下的简写三角符号:、、(余割),但直到1748年,cos cot csc 经过数学家欧拉的引用后,才逐渐通用起来,其中,若1sec cos αα=1csc sin αα=,且,则( )()0,απ∈111sec csc 5αα+=tan α=A.B.A.B. C.或 D.不存在34-43-34-43-答案B 解:由,得,又,111sec csc 5αα+=1sin cos 5αα+=22sin cos 1αα+=,()0,απ∈联立解得(舍)或,∴.故选B .3sin 54cos 5αα⎧=-⎪⎪⎨⎪=⎪⎩4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩sin 4tan cos 3ααα==-8.已知关于的方程在区间内有实根,则实数的取值范围是x 20x x m ++=()1,2m A.B. C. D. []6,2--()6,2--(][),62,-∞-⋃-+∞()(),62,-∞-⋃-+∞答案B 解:因为在上单调递增,且的图象是连续不断的, 要使关于()f x ()1,2()f x 的方程在区间内有实根必有f (1)=1+1+m <0且f (2)x 20x x m ++=()1,2=4+2+m >0,解得-6<m <-2.故选:B .9.已知函数的定义域为,若为奇函数,为偶函数.设()f x R ()1f x -()1f x -,则()()21f -=()2f =A.-D.-B.1C.2D.-2答案A 解:因为为奇函数,所以=,所以的图象关于点(1,0)对()1f x -()1f x -()1f x --()f x 称. 因为为偶函数,所以f(-x-1)=f(x-1),即f(-1-x)=f(-1+x), 所以f(x)的图象()1f x -关于直线x=-1对称. 则有f(-2)=f(0)=-f(2)=1,即f(2)=-1. 故选A. 10.定义在上的函数满足,,且当R ()f x ()()4f x f x =-()()0f x f x +-=时,,则方程所有的根之和为( )[]0,2x ∈()3538f x x x =+()240f x x -+=A.44 B.40C.36D.32 答案A 解:因为,①所以的对称轴为x=2,因为()()4f x f x =-()f x ,②所以为奇函数,由②可得f (x )=-f (-x ),由①可得-f (-()()0f x f x +-=()f x x )=f (4-x ),令t=-x, 所以-f (t )=f (4+t ),所以f (8+t )=-f (4+t )=-[-f (t )]=f (t ),所以函数的周期为T=8,又当x∈[0,2]时,,作出()f x ()3538f x x x =+的函数图象如下:()f x方程所有的根为方的根,函数与函数()240f x x -+=()()142f x x =-()f x 都过点(4,0),且关于(4,0)对称,所以方程所有的()122y x =-()240f x x -+=根的和为5×8+4=44,故选:A .根据题意可得f (x )的对称轴为x=2,为奇函数,()f x 进而可得的周期,作出函数的图像,方程所有的根为方程()f x ()f x ()240f x x -+=的根,函数与函数都过点(4,0),且关于(4,0)()()142f x x =-()f x ()122y x =-对称,由对称性,即可得出答案.11.已知函数,则实数根的个数为( )ln ,0()1,0xx x f x e x -⎧>⎪=⎨+≤⎪⎩()()22f x f x += A. B. C. D.答案A 解:作出f(x)的图象:若,则f(x)=-2或f(x)=1,由图象可知y=f(x)与y=-2没有交点,()()22f x f x +=y=f(x)与y=1有2个交点,故实数根的个数为2,故选A.()()22f x f x +=二,多选题12(多选).已知正实数,满足,则( ),x y 450x y xy ++-=A. 的最大值为1 B. 的最小值为4xy 4x y +C. 的最小值为1 D.的最x y +()()2241x y +++小值为18答案AB 解:因为,,可得450x y xy ++-=4x y xy xy ++≥+,所以,解得,当且仅当250+-≤)510+≤01xy <≤时取等号,即的最大值为1,故A 正确;4x y =xy 因为,所以()211445444442x y x y xy x y x y x y +⎛⎫++==++⋅≤++ ⎪⎝⎭,解得, 当且仅当x=4y 时,取等号,即x+4y()()24164800x y x y +++-≥44x y +≥的最小值为4,故B 正确;由可解得,所以450x y xy ++-=941x y =-+,当且仅当取等号,即915511x y y y +=++-≥-=+911y y =++,故C 错误;,2,1y x ==-()()()()222299411211811x y y y y y ⎛⎫+++=++≥⋅+= ⎪++⎝⎭当且仅当,取等号,即故D 错误;故选:AB .911y y =++2,1y x ==-13(多选).下列命题正确的是( )A.第一象限的角都是锐角B.小于的角是锐角2πC. 是第三象限的角D.钝角是第二象限角2019o答案CD 解:A .当α=390°时,位于第一象限,但α=390°不是锐角,故A 错误,B .,但不是锐角,故B 错误, C.2019°=5×360°+219°,∵219°是第62ππα=-<α三象限角,∴2019°是第三象限的角,故C 正确, D .因为钝角大于90°小于180°,即钝角是第二象限角,故D 正确.14(多选).以下式子符号为正号的有()A.B.()tan 485sin 447oo-5411sincos tan 456πππC.D.()tan188cos 55oo -2913costan 662sin3πππ⎛⎫- ⎪⎝⎭答案ACD 解:A.因为是第二象限角,故tan485°<0,485360125o o o=+A,因为是第四象限角,故sin (-447°) <0,所以tan485°447720273o-=-+ sin (-447°)>0,故A 正确;B,因为是第三象限角,所以,因为是第二象限角,所以;因54π5sin 04π<45π4cos 05π<为是第四象限角所以,所以,故B 错误;116π11tan 06π<5sin 4π4cos 5π11tan 06π<C.因为是第三象限角,故,因为是第四象限角,故,188otan1880o>55o-()cos 550o ->故,故C 正确; D.因为是第二象限角,所以()tan1880cos 55oo>-295466πππ=+,因为是第四象限角,所以,因为是第29cos 06π<13266πππ-=--13tan 06π-<23π二象限角,所以,所以,故正确. 故选ACD.2sin03π>2913costan 6602sin3πππ⎛⎫- ⎪⎝⎭>15.(多选)已知,,则( )()0,θπ∈1sin cos 5θθ+=A.B.C.D. ,2πθπ⎛⎫∈ ⎪⎝⎭3cos 5θ=-3tan 4θ=-7sin cos 5θθ-=答案:ABD解:∵,∴两边平方得:,,1sin cos 5θθ+=112sin cos 25θθ+⋅=12sin cos 25θθ∴=-与异号,又∵,∴θ∈,∴,∴sin θ∴cos θ()0,θπ∈,2ππ⎛⎫⎪⎝⎭sin cos θθ>,∴,又∵,∴()249sin cos 12sin cos 25θθθθ-=-=7sin cos 5θθ-=1sin cos 5θθ+=,,故选ABD.4sin 5θ=3cos 5θ=-4tan 3θ=-16.在平面直角坐标系中,点,,xoy ()1cos ,sin P αα2cos ,sin 33P ππαα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则下列说法正确的是( )3cos ,sin 66P ππαα⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A.线段与的长均为1 B.线段的长为11OP 3OP 23P PC.当时,点关于轴对称 D.当时,点关于轴对称3πα=12,PP y 1312πα=13,PP x 答案ACD解:由题意可得,同理可得,21OP ==31OP =故A 正确;由题意得,由勾股定理得,故B 错误;当23362P OP πππ∠=+=23P P =时,即,即,点3πα=1cos ,sin 33P ππ⎛⎫⎪⎝⎭112P ⎛ ⎝222cos ,sin 33P ππ⎛⎫⎪⎝⎭112P ⎛- ⎝关于轴对称,故C 正确;当时,,12,P P y 1312πα=31313cos ,sin 126126P ππππ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即,即3cos ,sin 1212P ππ⎛⎫- ⎪⎝⎭11313cos ,sin 1212P ππ⎛⎫ ⎪⎝⎭1cos ,sin 1212P ππ⎛⎫-- ⎪⎝⎭,故点关于轴对称,故D 正确. 故选:ACD.13,P P x 17.函数的图象可能是( )()()af x x a R x =-∈A. B. C. D.答案ACD 解:①当a=0时,,选项A 符合;()f x x=当时0a ≠(),0,0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩②当a>0时,当x>0时,为对勾函数的一部分,()af x x x =+当x<0时,单调递减,选项B 不符合,选项D 符合,故D 有可能;()af x x x =-+③当a<0时,当x>0时单调递增, 当x<0时,()a f x x x =+()a a f x x x x x -⎛⎫=-+=-+ ⎪⎝⎭其中(x <0)为对勾函数第三象限的一部分,()af x x x -=+则x <0时的图象位于第二象限, 选项C 符合;可知选项B 中图象不是()a f x x x -⎛⎫=-+ ⎪⎝⎭函数f(x)的图象.18(多选).给出下列四个命题,其中正确的命题有()A.函数的图象关于点对称tan y x =(),02k k Z π⎛⎫∈ ⎪⎝⎭B.函数是最小正周期为的周期函数sin y x=πC. 为第二象限的角,且,则.θcos tan θθ>sin cos θθ>D.函数的最小值为2cos sin y x x =+1-答案AD 解:对于A :函数的图象关于点对称,故A 正确;tan y x =(),02k k Z π⎛⎫∈⎪⎝⎭对于B :函数=,图象关于y 轴对称,不是周期函数,故B 错误;sin y x =sin ,0sin ,0x x x x ≥⎧⎨-<⎩对于C :由为第二象限的角,得,由,得,故tan sin θθ>cos tan θθ>sin cos θθ<C 错误;对于D :函数当时,22215cos sin sin sin 1sin ,24y x x x x x ⎛⎫=+=-++=--+ ⎪⎝⎭sin 1x =-函数的最小值为-1,故D 正确.故选:AD .19(多选).一般地,若函数的定义域为,值域为,则称为的“倍()f x [],a b [],ka kb k 跟随区间”;若函数的定义域为,值域也为,则称为的“跟随区间”[],a b [],a b [],a b ()f x 下列结论正确的是( )A.若为的“跟随区间”,则[]1,b ()222f x x x =-+2b =B.函数存在“跟随区间”()11f x x =+C.若函数“跟随区间”,则()f x m =1,04m ⎡⎤∈-⎢⎥⎣⎦D.二次函数存在“3倍跟随区间”()212f x x x=-+答案AD 解:对于A ,若为的跟随区间,[]1,b ()222f x x x =-+因为在区间上单调递增, 故函数在区间的值域为()222f x x x =-+[]1,b ()f x []1,b .根据题意有,解得,因为,故21,22b b ⎡⎤-+⎣⎦222b b b -+=12b b ==或12b b >=或A 正确;对于B ,由题意,因为函数在区间上均单调递减,()11f x x =+()(),0,0,-∞+∞故若存在跟随区间,则或,()11f x x =+[],a b 0a b <<0a b <<则有,即,得,与或矛盾,1111a b b a ⎧=+⎪⎪⎨⎪=+⎪⎩11ab b ab a =+⎧⎨=+⎩a b =0a b <<0a b <<故函数不存在跟随区间,B 不正确;()11f x x =+对于C ,若函数存在跟随区间,因为为减函数,()f x m =-[],a b()f x m =故由跟随区间的定义可知 ,,b m a b a m ⎧=-⎪⇒-=⎨=-⎪⎩a b <即,()()()11a b a b a b-=+-+=-因为,易得,ab <1=01≤<≤所以,(1a m m =-=-即,同理可得,10am +-=10b m +-=转化为方程在区间上有两个不相等的实数根,20t t m --=[]0,1故,解得,故C 不正确;1400m m +>⎧⎨-≥⎩1,04m ⎛⎤∈- ⎥⎝⎦对于D ,若存在“3倍跟随区间”, 则可设定义域为,值域为()212f x x x =-+[],a b, 当时,易得在区间上单调递增,[]3,3a b 1a b <≤()212f x x x =-+[],a b 此时易得a,b 为方程的两根,解得x=0或x=-4,2132x x x-+=故存在定义域[-4,0],使得的值域为[-12,0],故D 正确. 故选AD.()212f x x x=-+三,填空题20.已知,且,则____.答案:()1sin 533o α-=27090o o α-<<-()sin 37oα+=解:,又,所以()()()sin 37sin 9053cos 53o oo ααα⎡⎤+=--=-⎣⎦27090α-<<-,又,所以,所以14353323o α<-< ()1sin 5303o α-=>14353180o α<-< 为负值,所以。
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
2022-2023学年安徽省阜阳市高一上学期期末数学试题一、单选题1.已知集合,,则1}{0|A x x -≥={0,1,2}B =A B = A .B .C .D .{0}{1}{1,2}{0,1,2}【答案】C【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得,x 1≥所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.2.已知存在量词命题,,则命题的否定是( ):p x ∃∈R 210x +≤p A .,B .,x ∃∈R 210x +>x ∀∈R 210x +>C .,D .,x ∃∈R 210x +≤x ∀∈R 210x +≥【答案】B【分析】根据特称命题的否定形式书写即可.【详解】因为命题,,:p x ∃∈R 210x +≤则命题的否定为:,p R,210x x ∀∈+>故选:.B 3.下列函数中,周期为的是( )2πA .y =sinB .y =sin2x 2xC .y =cosD .y =cos(-4x )4x【答案】D【解析】根据周期公式求解即可.【详解】根据公式2T ωπ=的周期为,故A 错误;sin2xy =4T π=的周期为,故B 错误;sin 2y x =T π=的周期为,故C 错误;cos4xy =8T π=的周期为,故D 正确;cos(4)y x =-2T π=故选:D【点睛】本题主要考查了求正弦型函数和余弦型函数的周期,属于基础题.4.已知,则a 、b 、c 的大小关系为( )1.42.25log 0.6,3,0.9a b c ===A .B .C .D .a b c <<a c b<<c<a<b b<c<a【答案】B【分析】根据指数函数、对数函数的性质判断即可;【详解】解:因为,即,,即,,即55log 0.6log 10<=a<0 1.41333>=3b >202.100.90.9<<=,所以01c <<b c a>>故选:B 5.函数的零点所在的一个区间是( )()()3log 21+f x x x =+-A .B .C .D .()0,1()1,2()2,3()3,4【答案】A【解析】将选项中区间的端点代入运算,然后利用零点存在性定理判断零点所在区间.【详解】解:因为函数,所以,()()3log 21f x x =+-3(0)log 210f =-<,3(1)log (12)+111>0f =+-=所以,(0)(1)0f f <根据零点存在性定理,函数的零点所在的一个区间是,3()log (2)1f x x x =++-(0,1)故选:A.6.函数的部分图像大致为( )()2sin 1xf x x =+A .B .C.D .【答案】D【分析】利用函数的奇偶性和特殊区间的函数值确定正确选项.【详解】的定义域为,,所以为奇函数,排除AB 选项.()f x R ()()2sin 1xf x f x x --==-+()f x 当时,,,由此排除C 选项.()0,x π∈sin 0x >()0f x >故选:D7.医学家们为了揭示药物在人体内吸收、排出的规律,常借助恒速静脉滴注一室模型来进行描述.在该模型中,人体内药物含量x (单位:)与给药时间t (单位:)近似满足函数关系式mg h ,其中,k 分别称为给药速率和药物消除速率(单位:).经测试发现,当()01kt k x e k -=-0k mg /h 时,,则该药物的消除速率k 的值约为()( )23t =02k x k =ln 20.69≈A .B .C .D .31003101031003【答案】A【解析】将,代入,得到,再解方程即可.23t =02k x k =()01kt kx e k -=-2312ke -=【详解】由题知:将,代入,23t =02k x k =()01kt k x e k -=-得:,化简得.()230012k k k e k k -=-2312ke -=即,解得.1ln232k=-ln 20.6932323100k =≈=故选:A8.已知且,若函数的值域为[1,+∞),则的取值范围是( )0a >1a ≠3,2()log ,2a x x f x x x -≤⎧=⎨>⎩a A .B .C .D .1,12⎡⎫⎪⎢⎣⎭()1,+∞()1,2(]1,2【答案】D【分析】首先求出当时,的取值范围,再根据对数函数的单调性求出的值域,结合2x ≤()f x 2x >分段函数的值域即可求解.【详解】由函数,3,2()log ,2a x x f x x x -≤⎧=⎨>⎩当时,,2x ≤()3321f x x =-≥-=当时,,若时,2x >()log a f x x=01a <<函数单调递减,所以,()log log 20a a f x x =<<若时,函数单调递增,所以,1a >()log log 2a a f x x =>又因为分段函数的值域为[1,+∞),所以,,1a >log 21log a a a ≥=所以.12a <≤所以的取值范围是.a (]1,2故选:D二、多选题9.下列关系式正确的是( )A .B .{0}∅∈{2}{1,2}⊆CD .⊆Q 0∈Z【答案】BD【分析】由元素和集合之间的关系以及集合和集合之间的关系判断可得答案.【详解】对于A 选项,由于符号用于元素与集合间,是任何集合的子集,所以应为,∈∅{0}∅⊆A 错误;对于B 选项,根据子集的定义可知,B 正确;{2}{1,2}⊆对于C 选项,由于符号用于集合与集合间,C 错误; ⊆对于D 选项,是整数集,所以正确.Z 0∈Z 故选:BD.10.已知,则下列不等式成立的是( )01a b <<<A .B .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ln ln a b>C .D .11a b >11ln ln a b>【答案】ACD【解析】根据指数函数、对数函数的单调性进行判断.【详解】解:因为,为减函数,01a b <<<1()2xy =所以,1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭因为,为增函数,01a b <<<ln y x =所以,ln ln 0a b <<又因为在区间上为减函数,在区间上也为减函数,1y x =(),0∞-()0,∞+所以,同理可得,,11ln ln a b >11a b >故选:ACD【点睛】本题考查了比较大小的问题,主要考查运用初等函数的单调性判断大小的问题,熟记初等函数的单调性是关键.11.已知,且,则下列结果正确的是( )1sin cos 8αα=ππ42α<<A .B .sin cos αα+=cos sin αα-=C .D .cos sin αα-=tan 4α=【答案】ACD【分析】利用同角三角函数的基本关系求解即可.【详解】因为,()2225sin cos sin cos 2sin cos 4αααααα+=++=且,所以所以ππ42α<<sin cos 0,αα+>sin cos αα+=故A 正确;,()2223cos sin cos sin 2sin cos 4αααααα-=+-=且,所以所以,ππ42α<<sin cos αα>cos sin αα-=B 错误,C 正确;联立sin cos cos sin αααα⎧+=⎪⎪⎨⎪-=⎪⎩sin cos αα⎧=⎪⎪⎨⎪=⎪⎩所以D正确;sin tan 4cos ααα==+故选:ACD.12.函数(其中,,)的部分图象如图所示,则下列说法正()()sin f x A x =+ωϕ0A >0ω>ϕπ<确的是( )A .23πϕ=-B .函数图象的对称轴为直线()f x ()7212k x k ππ=+∈Z C .将函数的图象向左平移个单位长度,得到函数的图象()fx 3π()2sin 23g x x π⎛⎫=- ⎪⎝⎭D .若在区间上的值域为,则实数的取值范围为()f x 2,3a π⎡⎤⎢⎥⎣⎦A ⎡-⎣a 133,122ππ⎡⎤⎢⎥⎣⎦【答案】ABD【解析】利用函数图象求出函数的解析式,可判断A 选项的正误;解方程()f x 可判断B 选项的正误;利用三角函数图象的平移规律可判断C 选项的正误;()2232x k k πππ-=+∈Z 由求出的取值范围,结合题意求出的取值范围,可判断D 选项的正误.2,3x a π⎡⎤∈⎢⎥⎣⎦223x π-a 【详解】对于A 选项,由图可知,2A =设函数的最小正周期为,则,,,则()f x T 73312644T πππ⎛⎫--== ⎪⎝⎭T π∴=22T πω∴==,()()2sin 2f x x ϕ=+由得,解得,772sin 2126f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()7262k k ππϕπ+=+∈Z ()223k k πϕπ=-+∈Z 又,,,A 正确;ϕπ<23πϕ∴=-()22sin 23f x x π⎛⎫∴=- ⎪⎝⎭对于B 选项,由,得,B 正确;()2232x k k πππ-=+∈Z ()7212k x k ππ=+∈Z 对于C 选项,将函数的图象向左平移个单位长度,()f x 3π得的图象,C 错误;()22sin 22sin 2333g x f x x x πππ⎡⎤⎛⎫⎛⎫=+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于D 选项,由得,2,3x a π⎡⎤∈⎢⎥⎣⎦2222,2333x a πππ⎡⎤-∈-⎢⎣⎦由的图象可知,要使函数在区间上的值域为,2sin y t =()f x 2,3a π⎡⎤⎢⎥⎣⎦⎡-⎣则,解得,D 正确.3272233a πππ≤-≤133122a ππ≤≤故选:ABD.【点睛】思路点睛:根据三角函数的部分图象求函数解析式的步骤如下:()()sin f x A x bωϕ=++(1)求、,;A ()()max min:2f x f x b A -=()()max min2f x f x b +=(2)求出函数的最小正周期,进而得出;T 2T πω=(3)取特殊点代入函数可求得的值.ϕ三、填空题13.已知一个扇形的面积为,圆心角为,则其半径为___________.π3π6【答案】2【分析】利用扇形面积公式即可求得该扇形的半径【详解】扇形的面积为,圆心角,设其半径为r,π3S =π6α=则由,可得21122S lr r α==2r ====故答案为:214.已知或,,若是的充分不必要条件,则的取值范围是_______.:1p x >3x <-:q x a >qp a 【答案】[)1,+∞【分析】依题意可得推得出,推不出,即可求出参数的取值范围;qp p q【详解】解:因为是的充分不必要条件,所以推得出,推不出,qp qp p q又或,,:1p x >3x <-:q x a >所以,即;1a ≥[)1,a ∈+∞故答案为:[)1,+∞15.已知函数(且)恒过定点,且满足,其中()log 11a y x =-+0a >1a ≠()00,A x y 001mx ny +=m ,n 是正实数,则的最小值__________.21m n +【答案】9【分析】根据对数函数的性质确定定点坐标,结合基本不等式“1”的妙用求最值即可.【详解】解:函数,当时,,所以函数恒过定点,()log 11a y x =-+2x =1y =()2,1A 所以,其中m ,n 是正实数,21m n +=所以,当且仅当时,即()21212224159n m m n m n m n m n ⎛⎫+=++=+++≥+= ⎪⎝⎭22n m m n =时等号成立,13m n ==则的最小值为.21m n +9故答案为:.916.已知函数,若函数有三个零点,则实数的取值范围是3(2)1()21(2)x x x f x x ⎧≥⎪-=⎨⎪-<⎩()()=-g x f x k k _______【答案】()0,1【分析】画出函数图象,将问题转化为函数与有个交点,数形结合即可得解.()y f x =y k =3【详解】解:由函数,可得函数图象如下所示:3(2)1()21(2)x x x f x x ⎧≥⎪-=⎨⎪-<⎩令,则,即与有个交点,()()0g x f x k =-=()f x k =()y f x =y k =3由图可知,实数的取值范围是.k ()0,1故答案为:()0,1四、解答题17.(1)计算;25π10π13πsincos tan 634⎛⎫-+- ⎪⎝⎭(2)求值:.()23227lg4lg250.528-⎛⎫+--⨯ ⎪⎝⎭【答案】(1);(2).052-【分析】(1)根据诱导公式及特殊角的三角函数值即得;(2)根据对数及指数的运算法则运算即得.【详解】(1)原式;π4π3π1π11sincos tan cos 106342322=-+=+-=-=(2)原式.()()2332395lg 4252222242⎡⎤⎛⎫=⨯--⨯=-⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦18.已知角满足αsin cos αα-=(1)若角是第一象限角,求的值;αtan α(2)若角是第三象限角,,求的值.α()()()()()sin πtan 5πcos π3πtan 2πcos 2f αααααα-++=⎛⎫--- ⎪⎝⎭()f α【答案】(1)12(2)()f α=【分析】(1)利用同角三角函数基本关系先求得的值,进而求得的值;cos ,sin ααtan α(2)先利用三角函数诱导公式化简,进而求得的值.()f α()f α【详解】(1)由题意和同角三角函数基本关系式,有,22sin cos sin cos 1αααα⎧-=⎪⎨⎪+=⎩消去得,sinα25cos 20αα-=解得cos α=cosα=又角是第一象限角,则.α1cos tan 2ααα==(2)因为角是第三象限角,所以αcos α=,()()()()()sin πtan 5πcos π3πtan 2πcos 2f αααααα-++=⎛⎫--- ⎪⎝⎭()sin tan cos cos tan sin αααααα--==--所以()f α=19.若定义在上的函数为奇函数.[]1,1-()141x f x a =++(1)求的值;a (2)判断的单调性(无需证明),并求的解集.()f x ()()1f m f m -<【答案】(1);(2)12a =-10,2⎡⎫⎪⎢⎣⎭【分析】(1)利用奇函数的性质,求后,再验证;()00f =a (2)利用函数的定义域和单调性,解抽象不等式.【详解】(1)因为函数是定义在的奇函数,所以,[]1,1-()1002f a =+=得,12a =-此时,,()11241xf x =-++()1114241214x x x f x --=-+=-+++,满足函数是奇函数,所以成立;()()0f x f x -+=12a =-(2)是减函数,()11241xf x =-++所以,解得:,111111m m m m -≤-≤⎧⎪-≤≤⎨⎪->⎩102m ≤<所以不等式的解集是()()1f m f m -<10,2⎡⎫⎪⎢⎣⎭20.已知函数的最小正周期为.()π2sin 1(0)3f x x ωω⎛⎫=++> ⎪⎝⎭π(1)求的值;π6f ⎛⎫⎪⎝⎭(2)求函数的单调递减区间:()f x (3)若,求的最值.π0,2x ⎡⎤∈⎢⎥⎣⎦()f x 【答案】(1)π16f ⎛⎫=+ ⎪⎝⎭(2)π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦(3)最大值为3,最小值为1+【分析】(1)由最小正周期,求得,得到,再求;ω()f x 6f π⎛⎫⎪⎝⎭(2)整体代入法求函数的单调递减区间;(3)由的取值范围,得到的取值范围,可确定最值点,算出最值.x π23x +【详解】(1)由最小正周期公式得:,故,2ππω=2ω=所以,所以.()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭πππ2sin 211663f ⎛⎫⎛⎫=⨯++= ⎪ ⎪⎝⎭⎝⎭(2)令,解得,ππ3π2π22π,Z 232k x k k +≤+≤+∈π7πππ,Z 1212k x k k +≤≤+∈故函数的单调递减区间是.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦(3)因为,所以,π0,2x ⎡⎤∈⎢⎣⎦ππ4π2,333x ⎡⎤+∈⎢⎥⎣⎦当,即时,的最大值为3,ππ232x +=π12x =()f x 当,即时,的最小值为.π4π233x+=π2x =()f x 121.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本为万元,且.()P x 322128,1100100()()175,100300x x x x P x x x x x ⎧-+≤≤⎪⎪=∈⎨⎪++>⎪⎩N (1)若使每台机器人的平均成本最低,问应买多少台机器人?(2)现按(1)中的数量购买机器人,需要安排人将邮件放在机器人上,机器人将邮件送达指定落n 袋格口完成分拣,经实验知,每台机器人的日平均分拣量为(单位:()8(50),12551000,25n n n q n n ⎧-≤≤⎪=⎨⎪>⎩件),已知传统人工分拣每人每日的平均分拣量为1000件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?【答案】(1)使每台机器人的平均成本最低,问应买150台机器人(2)引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少155人【分析】(1)由题意,整理每台机器人的平均成本的函数解析式,利用二次函数的性质以及基本不等式,比较大小,可得答案;(2)根据每台机器人的日平均分拣量的函数,根据二次函数的性质,求得最值,进而求得引进机器人直线,所需人数,可得答案.【详解】(1)由题意,每台机器人的平均成本,()()2128,1100100,N 1751,100300x x x P x y x x x x x ⎧-+≤≤⎪⎪==∈⎨⎪++>⎪⎩当时,,易知该开口向上的二次函数的对称轴为直线,则此时,1100≤≤x 2128100y x x =-+50x =当时,;50x =2min 15050283100y =⨯-+=当时,,当且仅当,即时,等号成立;100x >175112300y x x =++≥+=175300x x =150x =由,则使每台机器人的平均成本最低,问应买150台机器人.32>(2)当时,,;令 易知该开口向下的二次125n ≤≤()()288508055q n n n n n =-=-+28805y x x=-+函数的对称轴为直线,则此时,当时,8025825x =-=⎛⎫⨯- ⎪⎝⎭25n =,()()max 825502512005q n =⨯⨯-=由,则在上的最大值为,此时,即引进机器人后,日平均分拣12001000>()q n *N n ∈120025n =量的最大值为(件).1501200180000⨯=(人),(人).1800001000180÷=18025155-=故引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少155人.22.已知函数.()2442f x x mx m =-++(1)若的图象与x 轴的两个不同交点的横坐标分别为,,求的取值范围;()f x 1x 2x 2212x x +(2)若在上是减函数,且对任意的,,总有()2442f x x mx m =-++(],1-∞1x []22,1x m ∈-+成立,求实数m 的取值范围.()()1264f x f x -≤【答案】(1)1,2⎛⎫+∞ ⎪⎝⎭(2)‒12≤m ≤4【分析】(1)求得的范围,利用韦达定理代入,然后配方求得答0∆>m ()2221212122x x x x x x +=+-案;(2)在上是减函数求得的范围,转化为,求出、()f x (],1-∞m ()()max min 64f x f x -≤()max f x ,然后解不等式可得答案.()minf x 【详解】(1)由题意可知方程有两个不相等的实数根,,24420x mx m -++=1x 2x 由韦达定理得,,12x x m +=1224m x x +=所以,解得或,()()244420m m ∆=--⨯+>m>21m <-,()22222121212211722416m x x x x x x m m +⎛⎫+=+-=-=--⎪⎝⎭令,()2117416m g m ⎛⎫--⎪⎝⎭=则当时,,当时,,m>2()211722416g m ⎛⎫--= ⎪⎝⎭>1m <-()2117114162g m ⎛⎫---= ⎪⎝⎭>所以,所以,即的取值范围为.()12g m >221212x x +>2212x x +1,2⎛⎫+∞⎪⎝⎭(2)函数图象的对称轴为直线,在上是减函数,()2442f x x mx m =-++2mx =()f x (],1-∞所以有,即,12m ≥2m ≥又因为对任意的,,总有,1x []22,1x m ∈-+()()()()12max min f x f x f x f x -≤-要使成立,则必有,()()1264f x f x -≤()()max min 64f x f x -≤在区间上,在上单调递减,在上单调递增,[]2,1m -+()f x 2,2m ⎡⎤-⎢⎥⎣⎦,12m m ⎡⎤+⎢⎥⎣⎦又,所以,,()1222m m m +-<--()()max 2918f x f m =-=+()2min 22m f x f m m ⎛⎫==-++ ⎪⎝⎭所以有,即,解得,()2918264m m m +--++≤28480m m +-≤124m -≤≤综上,实数m 的取值范围是.‒12≤m ≤4。
2022-2023学年山东省青岛市青岛高一上学期期末数学试题一、单选题1.下列能正确表示集合和关系的是( ){}1,0,1M =-{}220N x x x =+=A .B .C .D .【答案】A【分析】求出集合N ,再求出即可得答案.M N ⋂【详解】解:,{}{}2202,0N x x x =+==-故,{}0M N = 故选:A 2.若,是第二象限的角,则的值等于( )4sin 5α=αtan αA .B .C .D .433443-34-【答案】C【分析】先求得,然后求得.cos αtan α【详解】由于,是第二象限的角,4sin 5α=α所以,3cos 5α==-所以.sin tan s 43co ααα==-故选:C3.半径为1,圆心角为2弧度的扇形的面积是( )A .1B .2C .3D .4【答案】A【解析】根据题中条件,由扇形的面积公式,可直接得出结果【详解】半径为1,圆心角为2弧度的扇形的面积是(其中为扇形所22111121222S lr r α===⨯⨯=l 对应的弧长,为半径,为扇形所对应的圆心角).r α故选:A.4.已知,,,则,,的大小关系是( )21log 2a =212b -⎛⎫= ⎪⎝⎭122c =a b c A .B .b c a <<<<b a c C .D . a c b << a b c<<【答案】C【解析】根据对数函数与指数函数的性质,分别判断,,的范围,即可得出结果.a b c 【详解】因为,,,221log log 102a=<=221242b -⎛⎫=== ⎪⎝⎭12124c <==<所以. a c b <<故选:C.5.已知函数,满足对任意的实数都有成立,则实数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩12x x ≠1212()()0f x f x x x -<-的取值范围为( )a A .B .C .D .(),2∞-13,8⎛⎤-∞ ⎥⎝⎦(],2∞-13,28⎡⎫⎪⎢⎣⎭【答案】B【解析】本题先判断函数是定义在上的减函数,再运用分段函数的单调性求参数范围即可.R 【详解】因为函数满足对任意的,都有成立,()f x 12x x ≠()()12120f x f x x x -<-所以函数是定义在上的减函数,()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩R所以,解得,所以220112(2)2a a -<⎧⎪⎨⎛⎫-≥- ⎪⎪⎝⎭⎩2138a a <⎧⎪⎨≥⎪⎩13,8a ⎛⎤-∞ ⎥⎝⎦∈故选:B【点睛】本题考查利用分段函数的单调性求参数范围,关键点是数形结合.6.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:,其中K 为最大确诊0.23(53)()=1e t I Kt --+病例数.当I ()=0.95K 时,标志着已初步遏制疫情,则约为( )(ln19≈3)*t *t A .60B .63C .66D .69【答案】C【分析】将代入函数结合求得即可得解.t t *=()()0.23531t K I t e--=+()0.95I t K*=t *【详解】,所以,则,()()0.23531t KI t e --=+ ()()0.23530.951t K I t Ke**--==+()0.235319t e*-=所以,,解得.()0.2353ln193t *-=≈353660.23t *≈+≈故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.7.在同一直角坐标系中,二次函数与幂函数图像的关系可能为( )2y ax bx =+(0)bay x x =>A .B .C .D .【答案】A【分析】根据题意,结合二次函数和幂函数的性质依次分析选项,即可得到答案.【详解】对于A ,二次函数开口向上,则,其对称轴,则,即2y ax bx =+0a >bx 02a =->0b a <幂函数为减函数,符合题意;(0)b ay x x =>对于B , 二次函数开口向下,则,其对称轴,则,即幂函数2y ax bx =+a<0bx 02a =->0b a <为减函数,不符合题意;(0)b ay x x =>对于C ,二次函数开口向上,则,其对称轴,则,即幂函数2y ax bx =+0a >12b x a =-=-2b a =为增函数,且其增加的越来越快,不符合题意;(0)bay x x =>对于D , 二次函数开口向下,则,其对称轴,则,即幂函2y ax bx =+a<0122b x a =->-01b a <<数为增函数,且其增加的越来越慢快,不符合题意;(0)bay x x =>故选:A【点睛】关键点点睛:本题考查函数图像的分析,在同一个坐标系中同时考查二次函数和幂函数性质即可得解,考查学生的分析试题能力,数形结合思想,属于基础题.8.已知函数只有一个零点,不等式的解集为,则的2y x bx c =-++20x bx c m -++->()00,2x x +m 值为( )A .B .C .D .14-2-1-【答案】C【分析】根据函数只有一个零点可得,又不等式的2y x bx c =-++240b c ∆=+=20x bx c m -++->解集为,转化为一元二次方程的根问题,结合一元二次方程方程的根与系数的关系最终()00,2x x +可得,联合即可得的值.2444b c m +-=m 【详解】解:函数只有一个零点,则,2y x bx c =-++240b c ∆=+=不等式的解集为,即的解集为.20x bx c m -++->()00,2x x +20x bx c m --+<()00,2x x +设方程的两根为,则,且,20x bx c m --+=12,x x 1212,x x b x x c m +=⋅=-+212x x -=∴,则,整理得,.22212112()()44x x x x x x -=+-=24()4b c m --+=2444b c m +-=1m ∴=-故选:C.二、多选题9.已知幂函数的图象过点,则( )()2()22mf x m m x =--1(2,2A .()3f x x =B .()1f x x -=C .函数在上为减函数()f x (,0)-∞D .函数在上为增函数()f x (0,)+∞【答案】BC【分析】根据幂函数的定义以及图象过点可得,故选项A 错误、故选项B 正确.根1(2,2()1f x x -=据幂函数的单调性可判断C 正确、D 错误.()1f x x -=【详解】∵为幂函数,∴,即,()2()22mf x m m x =--2221m m --=2230m m --=∴或,3m =1m =-当时,,此时,函数图象不过点,故,故选项A 错误:3m =()3f x x =(2)8f =1(2,2()3f x x ≠当时,,此时,函数图象过点,故,故选项B 正确;1m =-()1f x x -=1(2)2f =1(2,2()1f x x -=因为幂函数在上为减函数,故选项C 正确;()1f x x -=(,0)-∞因为幂函数在上为减函数,故选项D 错误.()1f x x -=(0,)+∞故选:BC10.下列各式的值等于1的有( )A .B .()22sin cos x x-+5πsin 2⎛⎫- ⎪⎝⎭C .D .()cos 5π-()πcos 2sin 3παα⎛⎫+ ⎪⎝⎭-+【答案】AD【分析】根据同角平方关系可判断A ,根据诱导公式可判断BCD.【详解】,选项A 正确;()2222sin cos sin cos 1x x x x -+=+=,选项B 错误;5π3π3πsin sin 4π+sin 1222⎛⎫⎛⎫-=-==- ⎪ ⎪⎝⎭⎝⎭,选项C 错误:()()cos 5πcos 6π+πcos π1-=-==-,选项D 正确,()πcos sin 21sin 3πsin αααα⎛⎫+ ⎪-⎝⎭==-+-故选:AD11.定义在R 上的函数满足:对任意的,有,集合A()f x 12x x ≠()()()1212012f x f x f x x -<=-,},若“”是“”的充分不必要条件,则集合B 可以是( )(){20x x f x =-x A ∈x B ∈A .B .{}|0x x <{}|1x x <C .D .{}|2x x <{}|3x x <【答案】CD【分析】可先判断出函数在R 上单调递减,结合图象即可得,再由“”是()f x {}|1A x x =<x A ∈“x ∈B ”的充分不必要条件,对应集合是集合的真子集即可求解.A B 【详解】依题意得,函数在R 上单调递减,且图象过点()f x ()1,2()()202x xf x f x ->⇔>在同一坐标系下画出函数与的图象,()y f x =2xy =由图易知不等式的解集为,即,()20x f x ->{}|1x x <{}|1A x x =<因为“”是“x ∈B ”的充分不必要条件,则集合是集合的真子集.x A ∈A B 可以取满足集合是集合的真子集.{}{}|2,|3B x x B x x =<=<A B 故选:CD.12.若函数对,,不等式成立,则称在()f x ()12,1,x x ∀∈+∞()12x x ≠()()1222121f x f x x x -<-()f x 上为“平方差减函数”,则下列函数中是“平方差减函数”的有( )()1,+∞A .B .()21f x x =-+()221f x x x =++C .D .()22log f x x x =-()22f x x x x=-+【答案】ACD【解析】令,题中条件转化为判断在上是减函数,再逐项构造函数,进2()()g x f x x =-()g x (1,)+∞行判断即可.【详解】若函数满足对,,当时,不等式恒成立,()f x 1x ∀2(1,)x ∈+∞12x x ≠122212()()1f x f x x x -<-则,2211221222121212()()()()10()()f x x f x x f x f x x x x x x x ⎡⎤⎣⎡⎤----⎣⎦⎦-=<--+令,因为,则,,且恒成立,2()()g x f x x =-122x x +>1212()()0g x g x x x -<-1x ∀2(1,)x ∈+∞12x x ≠在上是减函数,2()()g x f x x ∴=-(1,)+∞对于A 选项,,则,对称轴是,开口向下,所以()21f x x =-+22()()12g x f x x x x =--=-+=1x -在递减,故A 正确;()g x (1,)+∞对于B 选项,,则在上单调递增,故B 错;()221f x x x =++2()()21g x f x x x =-=+(1,)+∞对于C 选项,,则在上显然单调递减,故C 正确;()22log f x x x=-22()()log g x f x x x =--=(1,)+∞对于D 选项,,则,因为与在都是减函()22f x x x x =-+22()()g x f x x x x =-=-+y x =-2y x =(1,)+∞数,所以在递减,故D 正确;()g x (1,)+∞故选:ACD【点睛】关键点点睛:求解本题的关键在于将恒成立转化为新函数满足122212()()1f x f x x x -<-2()()g x f x x =-上恒成立,根据单调性的定义,判断新函数的单调性,即可求解.()()1212g x g x x x -<-三、填空题13.若sinα<0 且tanα>0,则α是第___________象限角.【答案】第三象限角【详解】试题分析:当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0 且tanα>0,则α是第三象限角.【解析】三角函数值的象限符号.14.已知幂函数的图象经过点,则___________.()y f x =(2,4)(2)f -=【答案】4【分析】由幂函数图象所过点求出幂函数解析式,然后计算函数值.【详解】设,则,,即,()af x x =24a=2a =2()f x x =所以.(2)4f -=故答案为:415.十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,数学家约翰·纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来数学家欧拉发现了对数与指数的关系,即,现已知,则log ba a Nb N =⇔=3log 6a =236b =______________.123ab a b ⎛⎫+⨯= ⎪⎝⎭【答案】【解析】由题,分别化简的值代入即可.22log 362log 6b ==12,3ab a b +【详解】因为,所以,236b=22log 362log 6b ==所以,66321212log 3log 21log 62log 6a b +=+=+=3332ln 6ln3log 6ln 22ln 611log 2log 22log 62ln3ln 22233333332a b=====⨯==所以.1231aba b ⎛⎫+⨯=⨯= ⎪⎝⎭故答案为:【点睛】本题考查对数的运算,熟练掌握换底公式、对数运算公式是解决问题的关键.16.设函数是定义在上的偶函数,且在上单调递减,若,则()y f x =[]1,1-()f x []0,1(1)()f a f a -<实数的取值范围是_______.a 【答案】1[0,)2【详解】∵函数是定义在上的偶函数,且在上单调递减,若()y f x =[]1,1-()f x []0,1,()()1f a f a -<∴,解得:,111111a a a a ⎧-≤-≤⎪-≤≤⎨⎪->⎩021112a a a ⎧⎪≤≤⎪-≤≤⎨⎪⎪<⎩10a 2≤<故答案为10,2⎡⎫⎪⎢⎣⎭四、解答题17.求值:(1)22log 33582lg 2lg 22+--(2)25π10π13πsincos tan 634⎛⎫-+- ⎪⎝⎭【答案】(1)6(2)0【分析】(1)根据指数运算公式和对数运算公式求解即可;(2)根据诱导公式化简求值即可.【详解】(1)22log 33582lg 2lg 22+--()()2lo 23g 3322lg 5lg 22lg 2=+---223lg 5lg 22lg 2=+-+-7(lg 5lg 2)=-+71=-;6=(2)25π10π13πsincos tan 634⎛⎫-+- ⎪⎝⎭πππsin 4πcos 3πtan 3π634⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππsin cos tan634=+-11122=+-.0=18.已知全集,集合,集合.U =R {}2120A x x x =--≤{}11B x m x m =-≤≤+(1)当时,求;4m =()U A B ⋃ (2)若,求实数的取值范围.()U B A ⊆ m 【答案】(1)或;{4x x ≤5}x >(2)或.4m <-5m >【分析】(1)确定集合A ,B ,求出集合B 的补集,根据集合的并集运算,即可求得答案.(2)求出集合A 的补集,根据,列出相应不等式,求得答案.()U B A ⊆ 【详解】(1)集合,{}{}212034A x x x x x =--≤=-≤≤当时,,则或,4m ={}35B x x =≤≤{3U B x x =< 5}x >故或;()U A B = {4x x ≤5}x >(2)由题意可知或 ,,{3U A x x =<- 4}x >{}11B x m x m =-≤≤+≠∅由,则或,U B A ⊆ 13m +<-14m ->解得或.4m <-5m >19.已知函数,()2f x x x =-(1)判断的奇偶性;()f x (2)用定义证明在上为减函数.()f x ()0,∞+【答案】(1)奇函数;(2)证明见解析.【详解】试题分析:(1)首先确定函数的定义域关于坐标原点对称,然后利用可说明是奇()()f x f x -=-()f x函数.(2)利用函数单调性的定义设设是上的任意两数,且,讨论12,x x ()0,+∞12x x <的符号即可证明函数在上为减函数.()()12f x f x -()f x()0,+∞试题解析:(1)函数的定义域为,()2f x x x =-{|0}x x ≠又()()22f x x x f x x x ⎛⎫-=+=--=- ⎪-⎝⎭∴是奇函数.()f x (2)证明:设是上的任意两数,且,12,x x ()0,+∞12x x <则 ()()12f x f x -=121222x x x x --+()()2121122x x x x x x -=+-()211221x x x x ⎛⎫=-+ ⎪⎝⎭∵且,120,0x x >>12x x <∴()2112210x x x x ⎛⎫-+> ⎪⎝⎭即.()()12f x f x >∴在上为减函数.()f x ()0,+∞点睛:判断函数的奇偶性之前务必先考查函数的定义域是否关于原点对称,若不对称,则该函数一定是非奇非偶函数,对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:①可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;②可导函数则可以利用导数解之.20.如图,在平面直角坐标系中,以轴为始边作两个锐角,,它们的终边分别与单位xOy Ox αβ圆相交于P ,Q 两点,P ,Q 的纵坐标分别为,.3545(1)求的值;sin α(2)求.αβ+【答案】(1);(2).352π【解析】(1)由三角函数的定义即可求解;(2)由三角函数的定义分别求出、、的值,再计算的值即可出cos αsin βcos β()cos αβ+的值.αβ+【详解】(1)因为点的为角终边与单位圆的交点,且纵坐标为,P α35将代入,因为是锐角, ,所以, 35y =221x y +=α0x >45x =43,55P ⎛⎫ ⎪⎝⎭由三角函数的定义可得:,3sin 5α=(2)由,是锐角,可得,3sin 5α=α4cos 5α=因为锐角的终边与单位圆相交于Q 点,且纵坐标为,β45将代入,因为是锐角, ,可得, 45y =221x y +=β0x >35x =34,55Q ⎛⎫ ⎪⎝⎭所以,,4sin 5β=3cos 5β=所以,()4334cos cos cos sin sin 05555αβαβαβ+=-=⨯-⨯=因为,,所以,02πα<<02βπ<<0αβ<+<π所以.2παβ+=21.设函数,若实数使得对任意恒成立,求()sin 1f x x x =+,,a b c ()()1af x bf x c +-=x ∈R 的值.cos b ca 【答案】1-【分析】整理得,,()1sin 12sin 12sin 123f x x x x x x π⎛⎫⎛⎫=+=+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭则可整理得,()()1af x bf x c +-=,据此,列出方程组,()22cos sin 2sin cos 133a b c x b c x a b ππ⎛⎫⎛⎫++-+=-- ⎪ ⎪⎝⎭⎝⎭,解方程组,可得答案.22cos 02sinc 010a b c b a b +=⎧⎪=⎨⎪--=⎩【详解】解:,()1sin 12sin 12sin 123f x x x x x x π⎛⎫⎛⎫=+=+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,()()2sin 12sin 1133af x bf x c a x b x c ππ⎡⎤⎡⎤⎛⎫⎛⎫∴+-=++++-+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦即,2sin 2sin 133a x b x c a bππ⎛⎫⎛⎫+++-=-- ⎪ ⎪⎝⎭⎝⎭即,2sin 2sin cos 2cos sin 1333a x b x c b x c a bπππ⎛⎫⎛⎫⎛⎫+++-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为:,()22cos sin 2sin cos 133a b c x b c x a b ππ⎛⎫⎛⎫++-+=-- ⎪ ⎪⎝⎭⎝⎭依题意,对任意恒成立,()22cos sin 2sin cos 133a b c x b c x a b ππ⎛⎫⎛⎫++-+=-- ⎪ ⎪⎝⎭⎝⎭x ∈R ,22cos 02sinc 010a b c b a b +=⎧⎪∴=⎨⎪--=⎩由得:,22cos 0a b c +=cos 1b ca =-故答案为:1-22.若函数对定义域内的每一个值,在其定义域内都存在唯一的,使()y f x =1x 2x成立,则称该函数为“依赖函数”.()()121f x f x =(1)判断函数是否为“依赖函数”,并说明理由;()sin g x x=(2)若函数在定义域上为“依赖函数”,求的取值范围;()12x f x -=[](),0m n m >mn (3)已知函数在定义域上为“依赖函数”,若存在实数:,()()243h x x a a ⎛⎫=-≥ ⎪⎝⎭4,43⎡⎤⎢⎥⎣⎦4,43x ⎡⎤∈⎢⎥⎣⎦使得对任意的,不等式都成立,求实数的最大值.t R ∈()()24h x t s t x ≥-+-+s 【答案】(1)不是“依赖函数”,理由见解析;(2);(3)最大值为.()0,14112【解析】(1)由“依赖函数”的定义进行判断即可;(2)先根据题意得到,解得:,再由,解出,根据的范()()1f m f n =2m n +=0n m >>01m <<m 围即可求出的取值范围;mn (3)根据题意分,,考虑在上单调性,再根据“依赖函数”的定义即可求443a ≤≤4a >()f x 4,43⎡⎤⎢⎥⎣⎦得的值,代入得恒成立,由判别式,即可得到a 2226133039t xt x s x ⎛⎫++-++≥ ⎪⎝⎭0∆≤,再令函数在的单调性,求得其最值,可求得实数的265324339s x x ⎛⎫+≤+ ⎪⎝⎭53239y x x =+4,43x ⎡⎤∈⎢⎥⎣⎦s 最大值.【详解】(1)对于函数的定义域内存在,则无解,()sin g x x=R 16x π=()22g x =故不是“依赖函数”.()sin g x x=(2)因为在上递增,故,即,,()12x f x -=[],m n ()() 1f m f n =11221m n --=2m n +=由,故,得,0n m >>20n m m =->>01m <<从而在上单调递增,故.()2mn m m =-()0,1m ∈()0,1mn ∈(3)①若,故在上最小值为0,此时不存在,舍去;443a ≤≤()()2h x x a =-4,43⎡⎤⎢⎥⎣⎦2x ②若,故在上单调递减,4a >()()2h x x a =-4,43⎡⎤⎢⎥⎣⎦从而,解得(舍)或,()4413h h ⎛⎫⋅= ⎪⎝⎭1a =133a =从而存在.使得对任意的,有不等式都成立,4,43x ⎡⎤∈⎢⎥⎣⎦t R ∈()221343x t s t x ⎛⎫-≥-+-+ ⎪⎝⎭即恒成立,2226133039t xt x s x ⎛⎫++-++≥ ⎪⎝⎭由,得.22261334039x x s x ⎡⎤⎛⎫∆=--++≤ ⎪⎢⎥⎝⎭⎣⎦2532926433s x x ⎛⎫+≤ ⎪+⎝⎭由,可得,4,43x ⎡⎤∈⎢⎥⎣⎦265324339s x x ⎛⎫+≤+⎪⎝⎭又在单调递减,故当时,,53239y x x =+4,43x ⎡⎤∈⎢⎥⎣⎦43x =max 532145393x x ⎛⎫+= ⎪⎝⎭从而,解得,26145433s ⎛⎫+≤ ⎪⎝⎭4112s ≤综上,故实数的最大值为.s 4112【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);()a f x ≥()maxa f x ≥()a f x ≤()mina f x ≤② 数形结合( 图象在 上方即可);()y f x =()y g x =③ 讨论最值或恒成立.()min 0f x ≥()max 0f x ≤。
期末测试一、选择题(共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的)1.下列函数中与函数2y x =相同的函数是()A .22x y x=B.y =C.2y =D .2log 4xy =2.已知集合{}2,1,0,1,2A =--,{}240|5B x x x -=-<,则A B =∩( )A .{}2,1,0--B .{}1,0,1,2-C .{}1,0,1-D .{}0,1,23.()f x x x =,若()()2110f m f m ++->,则m 的取值范围( )A .(),1-¥-B .(),2-¥-C .()1,-+¥D .()2,-+¥4.已知1x >,则函数11y x x =+-的最小值是( )A .1B .2C .3D .45.不等式102x x +-≥的解集( )A .{}1|2x x x -≤或≥B .{}1|2x x x ≤-或>C .{}1|2x x -≤≤D .{}1|2x x -≤<6.已知函数()f x 为偶函数,且对于任意的1x ,()20,x Î+¥,都有()()12120f x f x x x --()12x x ¹,设()2a f =,()3log 7b f =,()0.12c f -=-则( )A .b a c<<B .c a b<<C .c b a<<D .a c b <<7.已知集合{}260A x x x =--<,集合{}10B x x =->,则()R A B =I ð( )A .()1,3B .(]1,3C .[)3,+¥D .()3,+¥8.已知函数321,3,()21,3,3x x f x x x x -ì+ï=í+ï-î≤>满足()3f a =,则a 的值是( )A .4B .8C .10D .4或10二、填空题(本大题共6小题,每小题5分,共30分)9.已知函数()y f x =是R 上的奇函数,且当0x <时,()1f x =,则当0x >时,()f x =______.10.已知()f x 是R 上的奇函数,当0x ≥时,()25f x x x =-,则()()1f x f x ->的解集为______.11.若函数()()log 12a f x x =++(0a >且1a ¹),图象恒过定点()P m n ,,则m n +=______;函数()2xnxg x e +=的单调递增区间为______.12.若2312a b ==,则21a b+=______.13.已知函数()2-4xf x a =(0a >,1a ¹)的图象恒过定点A ,则A 的坐标为______.14.1tan 3a =-,则22sin 2sin cos 3cos a a a a +-=______.三、解答题(本大题共5个小题,共50分)15.计算下列各式的值:(1)(11153524243--æöæö´-+-ç÷ç÷èøèø-;(2)57log 422log log 205log 5+--.16.已知602x A x x ìü-=íý-îþ,()(){}110B x x a x a =---+≤.(Ⅰ)当2a =时,求A B I ;(Ⅱ)当0a >时,若A B B =U ,求实数a 的取值范围.17.(1)求关于x 的不等式()210x a x a -++>的解集;(2)已知二次不等式20ax bx c ++<的解集为11|32x x x ìüíýîþ<或>,求关于x 的不等式20cx bx a -+>的解集.18.已知函数()121xa f x =++为奇函数.(1)求a 的值,并证明()f x 是R 上的增函数;(2)若关于t 的不等式()()22220f t t f t k --+<的解集非空,求实数k 的取值范围.19.已知函数()222cos 1f x x x =+-.(1)求512f p æöç÷èø的值;(2)求()f x 的最小正周期及单调增区间.期末测试答案解析一、1.【答案】D【解析】A 项定义域0x ¹,定义域不同,A 错;B项2y x ==,对应关系不同,B 错;C项2y =定义域[)0,x Î+¥,定义域不同,C 错;D 项222log 4log 22x xy x ===,定义域和对应关系都相同,D 对故选D【考点】相等函数的判断方法2.【答案】D【解析】因为集合{}2,1,0,1,2A =--,()(){}{}|510|15B x x x x x =-+=-<<<∴{}{}{}2,1,0,1,2|150,1,2A B x x =---<=I I <,故选:D【考点】集合的交集运算3.【答案】D【解析】当0x ≥时,()2f x x =,当0x <时,()2f x x =-,则()22x x f x xx ì=í-î≥<,画出函数图像,如图:函数为增函数,()f x x x =,()f x x x x x -=--=-,()()0f x f x +-=,故函数为奇函数,()()()()()21102111f m f m f m f m f m ++-=-Û+-->>,即()()211f m f m +->,因为函数在R 上单调递增,所以2112m m m +-Þ->>故选D【考点】根据函数的增减性和奇偶性解不等式4.【答案】C【解析】由题可知:110,1111311x x y x x x x Þ-=+=-++-->>≥当2x =时,取得最小值,故最小值为3故选C【考点】基本不等式求最值的简单应用5.【答案】B 【解析】不等式102x x +-等价于()()012x x +-≥且2x ¹,解得1x -≤或2x >,故选:B【考点】分式不等式的解法6.【答案】C 【解析】若()()()1212120f x f x x x x x -¹-,则函数在()0,+¥是单调递增函数,并且函数是偶函数满足()()f x f x -=,即()()0.10.122f f ---=,0.1021-<<,31log 72<<∵()f x 在()0,+¥单调递增,∴()()()0.132log 72f f f -<<,即c b a <<故选C【考点】利用函数的奇偶性和函数的单调性比较函数值的大小7.【答案】C【解析】因为260x x --<,所以()2,3x Î-,即()2,3A =-,所以(][),23,R A =-¥-È+¥ð,又因为()1,B =+¥,所以()[)3,R A B =+¥I ð故选C【考点】集合的补集与交集混合运算8.【答案】C【解析】当3a ≤时,令32134a a -+=Þ=,不满足3a ≤;当3a >时,令2132139103a a a a a +=Þ+=-Þ=-,满足3a >,所以10a =故选C 二、9.1+【解析】∵()y f x =是R 上的奇函数,且0x <时,()1f x =-,∴设0x >,0x -<,则:()()1f x f x -=-=-,∴()1f x =+.1+.【考点】奇函数的定义10.【答案】{}23x x -<<【解析】当0x <时,0x ->,所以()()22()55f x x x x x -=--´-=+,又()f x 是R 上的奇函数,所以()()25f x f x x x =--=--,所以()225,05,0x x x f x x x x ì-=í--î≥<,所以()()()()()22151,11151,1x x x f x x x x ì---ï-=í----ïî≥<,即()2276,1134,1x x x f x x x x ì-+-=í--+î≥<,做出()f x 和()1f x -的图像如下图所示,不等式()()1f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由22576x x x x -=-+,得3x =,所以()3,6A -,由22534x x x x --=--+得2x =-,所以()2,6B -,所以不等式()()1f x f x ->的解集为{}23x x -<<故答案为:{}23x x -<<【考点】根据函数的奇偶性求得对称区间上的解析式11.【答案】2()1,-+¥【解析】由函数()()log 12a f x x =++(0a >且1a ¹)的解析式可知:当0x =时,2y =,因此有0m =,22n m n =Þ+=;因此()22222(1)1x xxxx g x e e e +++-===,由复合函数的单调性的性质可知:函数()2xnxg x e +=的单调递增区间为:()1,-+¥故答案为2;()1,-+¥【考点】对数型函数过定点问题12.【答案】1【解析】由题意得2log 12a =,3log 12b =,则121log 2a =,121log 3b=,所以()2121212212log 2log 3log 231a b+=+=´=【考点】指数与对数互化,以及对数运算性质13.【答案】()2,3-【解析】∵函数()24x f x a -=-,其中0a >,1a ¹,令20x -=可得2x =,21x a -=,∴()143f x =-=-,∴点A 的坐标为()2,3-,故答案为:()2,3-.【考点】指数函数的图像性质14.【答案】165-【解析】因为sin 1tan cos 3a a a ==-,所以cos 3sin a a =-,代入22sin cos 1a a +=,则21sin 10a =,29cos 10a =,()23sin cos sin 3sin 3sin 10a a a a a =-=-=-,所以原式22sin 2sin cos 3cos a a a a+-1627161010105=--=-,故答案为:165-【考点】同角三角函数的关系三、15.【答案】(1)(2)0【解析】(1)原式11215533442255æöæö=+´-ç÷ç÷èøèø(21332222+=-+=--=(2)原式3322217log 27log 32log 2log 5log 544=-++--3712044=-+-=【考点】分数指数幂和对数的运算法则16.【答案】(Ⅰ){}23A B x x =I <≤(Ⅱ)5a ≥【解析】(Ⅰ)由602xx -->,得到26x <<,则{}26A x x =<<;当2a =时,由()()110x a x a ---+≤得()()310x x -+≤,则{}13B x x =-≤≤;则{}23A B x x =I <≤;(Ⅱ)若A B B È=,则A B Í,而()(){}110B x x a x a =---+≤当0a >时,{}11B x a x a =-+≤≤ ,则1216a a -ìí+î≤≥,得到5a ≥,所以5a ≥.【考点】集合的交集运算17.【答案】(1)详见解析(2)()3,2--【解析】(1)不等式()210x a x a -++>可化为()()10x x a -->,①当1a =时,不等式的解集为()(),11,-¥+¥U ;②当1a >时,不等式的解集为()(),1,a -¥+¥U ; ③当1a <时,不等式的解集为()(),1,a -¥+¥U ;(2)由不等式20ax bx c ++<的解集为11|32x x x ìüíýîþ<或>可知0a <,且12和13是方程2=0ax bx c ++的两根,由韦达定理得5616b ac a ì-=ïïíï=ïî,解得56b a =-,16c a =,∴不等式20cx bx a -+>可化为215066ax ax a ++>,得2560x x ++<,所以,所求不等式的解集为()3,2--18.【答案】(1)2a =-,证明见解析(2)13k ->【解析】(1)因为()f x 定义在R 上的奇函数,所以()00f =,得2a =-此时,()22112121x x x f x -=-=++,()()21122112x xxxf x f x -----===-++,所以()f x 是奇函数,所以2a =-.任取1x ,2x ÎR ,且12x x <,则1222x x <,因为()()1221122112221121212221212(22)0,(21)(21)x xx x x x x x f x f x æöæö-=---ç÷ç÷++èøèø=-++-=<++所以()()12f x f x <,所以()f x 是R 上的增函数.(2)因为()f x 为奇函数,()()222+20f t t f t k --<的解集非空,所以()()2222f t t f k t --<的解集非空,又()f x 在R 上单调递增,所以2222t t k t --<的解集非空,即2320t t k --<在R 上有解,所以D 0>得13k ->19.【答案】(1)0(2)最小正周期π,()f x 的单调增区间为()πππ,π+36k k k Z éù-Îêúëû【解析】(1)()222cos 1f x x x =+-255522cos 1121212f p p p æöæöæö=´+-ç÷ç÷ç÷èøèøèø552cos 21212p p æöæö=´+´ç÷ç÷èøèø55cos =066pp æöæö=+ç÷ç÷èøèø(2)()222cos 12c 2sin 2os 26f x x x x x x p æö=+ç÷è=+-=ø+所以()f x 的最小正周期2ππ2T ==令ππ2π22π+262k x k p-+≤,解得()ππππ+36k x k k Z -Î≤所以()f x 的单调增区间为()πππ,π+36k k k Z éù-Îêúëû。
高中一年级数学试卷
时量:120分钟 满分:150分
一、选择题:本大题共10个小题,每小题5分,满分50分。
在每小题给出的四
个选择项中,只有一个是符合题目要求的选项。
01、已知全集}7,6,5,4,3,2,1{=U ,}5,4,3{=A ,}6,3,1{=B ,那么集合{2,7}【 】
A 、A
B B 、B A
C 、()U C A B
D 、()U C A B 02、已知定义在R 上的函数f (x)的图象是连续不断的,且有如下对应值表: 那么函数f (x)一定存在零点的区间是 【 】
A 、(-∞,1)
B 、 (1,2)
C 、 (2,3)
D 、 (3,+∞)
03、函数x x y +=3的图象关于
【 】
A 、原点对称
B 、x 轴对称
C 、y 轴对称
D 、直线
x y =对称
04、如果直线210x y +-=和y kx =互相平行,则实数k 的值为【 】
A 、2
B 、
12 C 、2- D 、12
- 05、若直线l 经过原点和点(–3, –3),则直线l 的倾斜角为【 】 A 、
4π B 、54π C 、4π或54
π D 、–4π
06、已知两条相交直线a ,b ,//a 平面α,则b 与平面α的位置关系是【 】
A 、b ⊂平面α
B 、b ⊥平面α
C 、//b 平面α
D 、b 与平面α相交,或//b 平面α 07、将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为【 】
A 、2π
B 、4π
C 、8π
D 、16π
08、如图是一个空间几何体的主视图(正视图)、侧视图、俯视图,如果直角三角
x 1 2 3 f (x) 6.1
2.9
-3.5
形的直角边长均为1,那么这个几何体的体积为【 】
A 、1
B 、
2
1
、6
1
09、如图P 是长方体'AC 上底面''''A B C D 的一点,设AP 与
三个面''C A 、面B A '、面D A '所成的角为γβα,,, 则=++γβα222
cos cos cos
【 】
A 、1
B 、2
C 、2
3
D 、随着P 点的位置而定 10
、定义域为R 的函数()f x 满足
条件:①
12121212[()()]()0,(,,)f x f x x x x x R x x +-->∈≠;
②()()0f x f x +-= ()x R ∈; ③(3)0f -=.则不等式()0x f x •<的解集是【 】
A 、{}|303x x x -<<>或
B 、{}|303x x x <-≤<或
C 、{}|33x x x <->或
D 、{}|3003x x x -<<<<或 二、填空题:本大题共5个小题,每小题5分,满分25分。
11、坐标原点到直线43120x y +-=的距离为_____ ______;
12、以点(2, 0)A 为圆心,且经过点(1, 1)B -的圆的方程是___ ___; 13、如图,在长方体1111ABCD A B C D -中,棱锥1A ABCD -
的体积与长方体1AC 的体积之比为___________; 14、直线L 1: ax+(1-a)y=3, L 2: (a-1) x+(2a+3)y=2互相垂
直, 则a 的值是____ ___;
15、已知函数f (x )=1+x x , 则:(1)1(2)()2
f f += ;
(
2
)
B
C'
A
A B
C D
D 1
C 1
B 1
A 1
1111
2(1)(2)(3)(4)(2009)()()()()2342009
f f f f f f f f f ++++++++++= ;
安博教育同升湖实验学校
09--10学年度上学期期末考试高中一年级数学试卷
一、选择题:每小题5分,满分50分。
二、填空题:每小题5分,满分25分。
其中第15小题第一空2分,第二空3分。
11、 ; 12、 ; 13、 ;
14、 ; 15、 ; 。
三、解答题:本大题共六小题,满分75分。
16、(本小题满分12分)已知ΔABC 的顶点是A(0,5)、B(1,-2)、C(-5,4),
(1)求BC 的中点D 的坐标;
(2)求BC 边上的中线AD 所在的直线方程;
17、(本小题满分12分)如图,在三棱锥P ABC -中,PC ⊥底面ABC ,AB BC ⊥,
D 、
E 分别是AB 、PB 的中点. (1)求证:DE ∥平面PAC ; (2)求证:AB ⊥PB ;
(3)若PC BC =,求二面角P AB C --的大小.
18、(本小题满分12分)已知直线l 经过点(0, 2)-,其倾斜角的大小是60.
(1)求直线l 的方程;
(2)求直线l 与两坐标轴围成三角形的面积.
19、(本小题满分12分)如图,在正四棱柱1111ABCD A B C D -中,E 是1DD 的中点. (1)求证:1//BD 平面ACE ;
(2)求证:平面ACE ⊥平面11B BDD ;
(3)若AA 1=2AB ,求二面角A —EC —D 的余弦值的大小。
20、(本小题满分13分)已知:以点C (t , 2
t
)(,0t R t ∈≠且)为圆心的圆与x 轴
交于点O , A ,与y 轴交于点O , B ,其中O 为原点.
(1)求圆的半径r (用t 的代数式表示即可)并写出圆的标准方程; (2)求证:△OAB 的面积为定值;
(3)设直线y = –2x +4与圆C 交于点M , N ,若OM = ON ,求圆C 的方
程。
21、(本小题满分14分)已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整
数,且与直线43290x y +-=相切. (1)求圆的方程;
(2)设直线50
ax y
-+=与圆相交于,A B两点,求实数a的取值围;
(3)在(2)的条件下,是否存在实数a,使得过点(2, 4)
P-的直线l垂直平分弦AB?
若存在,求出实数a的值;若不存在,请说明理由.
A
C
P
B
D
E
17、(本小题满分12分)(1)证明:因为D 、E 分别是AB 、PB 的中点,
所以DE ∥PA . 因为PA ⊂平面PAC ,且DE ⊄平面PAC , 所以DE ∥平面PAC . …………………4分
(2)因为PC ⊥平面ABC ,且AB ⊂平面ABC ,所以AB PC ⊥.
又因为AB ⊥BC ,且PC ∩BC C =.
所以AB ⊥平面PBC . 又因为PB ⊂平面PBC , 所以AB ⊥PB . …………………8分
(3)由(2)知,PB ⊥AB ,BC ⊥AB , 所以,PBC ∠为二面角P AB C --的平面角,
因为PC BC =,90PCB ∠=,所以45PBC ∠=,
所以,二面角P AB C --的大小为45. …………………12分
所以二面角A —EC —D 的余弦值cos CDE
AEC
S S θ∆∆=
……………………10分 令AB=1,则11
1122
DCE S ∆=⨯⨯=,11111102522224ACE S AC BD ∆=⨯⨯==…11分 所以110
cos 210CDE AEC S S θ∆∆=
==
………………………………12分 20、(本小题满分13分)解:(1)O C 过原点圆 ,22
4
||r OC t t ∴==+2分
相切且半径为5,所以,429
55
m -=, 即42925m -=. 因为m 为整数,故1m =.…3分
故所求的圆的方程是22
(1)25x y -+=. (4)
分
(2)直线50ax y -+=即5y ax =+.代入圆的方程,消去y 整理,得:
22(1)2(51)10a x a x ++-+=. ……………………6分
由
于
直
线
50
ax y -+=交圆于
,A B
两点,故。