高一数学考试题及答案
- 格式:docx
- 大小:248.30 KB
- 文档页数:7
高一数学试题及答案免费一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. πB. -2C. √2D. i2. 函数f(x) = x^2 + 2x + 1的最小值出现在x等于:A. -1B. 0C. 1D. 23. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}4. 以下哪个不等式是正确的?A. |-3| > |3|B. |-3| < |3|C. |-3| = |3|D. |-3| ≠ |3|5. 若a > b > 0,c < d < 0,下列哪个选项是正确的?A. ac > bdB. ac < bdC. ad > bcD. ac = bd6. 已知等差数列的首项a1 = 3,公差d = 2,求第5项a5的值:A. 9B. 11C. 13D. 157. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系:A. 相离B. 相切C. 相交D. 直线过圆心8. 函数y = sin(x) + cos(x)的最大值出现在x等于:A. 0B. π/4C. π/2D. π9. 已知三角形ABC,若∠A = 60°,∠B = 45°,求∠C的度数:A. 75°B. 120°C. 45°D. 30°10. 下列哪个是二次方程的判别式?A. b^2 - 4acB. b^2 + 4acC. a^2 - b^2D. a^2 + b^2二、填空题(每题2分,共20分)11. 若a + b = 10,且a - b = 2,则a = ______,b = ______。
12. 一个正六边形的内角和为________。
13. 一个圆的周长为44cm,其半径为________。
高一数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|在x=0处的极限值?A. 1B. 0C. 2D. 不存在2. 已知函数f(x) = 3x^2 - 2x + 1,求f(2)的值。
A. 10B. 11C. 12D. 133. 若a、b为等差数列的连续项,且a+b=10,而a与b的倒数之和为\(\frac{2}{5}\),则a的值为:A. 1B. 2C. 3D. 44. 一个圆的半径为5cm,求该圆的面积(圆周率取3.14)。
A. 78.5平方厘米B. 85平方厘米C. 90平方厘米D. 95平方厘米5. 已知一个等比数列的前三项分别为2, 6, 18,求该数列的公比。
A. 2B. 3C. 4D. 66. 若x满足方程x^2 - 5x + 6 = 0,求x的值。
A. 2, 3B. 1, 4C. 1, 6D. 3, 47. 直线y = 2x + 3与x轴的交点坐标为:A. (-1.5, 0)B. (1.5, 0)C. (-3, 0)D. (3, 0)8. 已知一个三角形的三边长分别为3cm, 4cm, 5cm,该三角形的面积是多少?A. 6平方厘米B. 7.5平方厘米C. 9平方厘米D. 12平方厘米9. 函数y = |2x - 3|与x轴所围成的图形面积为:A. 2B. 3C. 4D. 610. 若a, b, c是等差数列,且a + c = 2b,若b = 5,则a + c的值为:A. 5B. 10C. 15D. 20二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2) = ______。
12. 一个圆的直径为10cm,求该圆的周长(圆周率取3.14)为______。
13. 已知等比数列的前两项为3和9,求该数列的第四项为______。
14. 若x和y满足方程组\(\begin{cases} 2x + y = 8 \\ x - y = 2 \end{cases}\),求x的值为______。
高一数学试题答案及解析1.若△ABC中,∠C=90°,A(1,2,﹣3k),B(﹣2,1,0),C(4,0,﹣2k),则k的值为()A.B.﹣C.2D.±【答案】D【解析】先根据向量的运算性质求出与,然后根据∠C=90°得•=0建立等式关系,解之即可.解:∵A(1,2,﹣3k),B(﹣2,1,0),C(4,0,﹣2k),∴=(3,﹣2,k),=(6,﹣1,﹣2k)∵△ABC中,∠C=90°∴•=(3,﹣2,k)•(6,﹣1,﹣2k)=18+2﹣2k2=0解得k=故选D.点评:本题主要考查了向量语言表述线线的垂直,解题的关键是空间向量的数量积,属于基础题.2.(2013•山东)已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A.B.C.D.【答案】B【解析】利用三棱柱ABC﹣A1B1C1的侧棱与底面垂直和线面角的定义可知,∠APA1为PA与平面A1B1C1所成角,即为∠APA1为PA与平面ABC所成角.利用三棱锥的体积计算公式可得AA1,再利用正三角形的性质可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.解:如图所示,∵AA1⊥底面A1B1C1,∴∠APA1为PA与平面A1B1C1所成角,∵平面ABC∥平面A1B1C1,∴∠APA1为PA与平面ABC所成角.∵==.∴V三棱柱ABC﹣A1B1C1==,解得.又P为底面正三角形A1B1C1的中心,∴==1,在Rt△AA1P中,,∴.故选B.点评:熟练掌握三棱柱的性质、体积计算公式、正三角形的性质、线面角的定义是解题的关键.3.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()A.=B.与同向C.∥D.与有相同的位置向量【答案】C【解析】根据直线的方向向量的定义直接判断即可.解:根据直线的方向向量定义,把直线上的非零向量以及与之共线的非零向量叫做直线的方向向量.因此,线Ax+By+C=0(AB≠0)的方向向量都应该是共线的故选C.点评:本题考查了直线的方向向量的定义,是基础题.4.若A(﹣1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3)B.(1,3,2)C.(2,1,3)D.(3,2,1)【答案】A【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案.解:由题意可得:直线l的一个方向向量=(2,4,6),又∵(1,2,3)=(2,4,6),∴(1,2,3)是直线l的一个方向向量.故选A.点评:本题主要考查直线的方向向量,以及平面向量共线(平行)的坐标表示,是基础题.5.直线l与x轴、y轴、z轴的正方向所成的夹角分别为α、β、γ,则直线l的方向向量为.【答案】(cosα,cosβ,cosγ).【解析】设过原点与直线l平行的直线为直线l′,直线l′取OP=1,P(x,y,z),求出=(cosα,cosβ,cosγ),即可求出直线l的方向向量.解:设过原点与直线l平行的直线为直线l′,直线l′取OP=1,P(x,y,z),则x=cosα,y=cosβ.z=cosγ,∴=(cosα,cosβ,cosγ),∴直线l的方向向量为(cosα,cosβ,cosγ),故答案为:(cosα,cosβ,cosγ).点评:本题考查直线l的方向向量,考查学生的计算能力,比较基础.6.已知一个正四面体的棱长为2,则它的体积为.【答案】【解析】求出正四面体的底面面积以及高,即可求解正四面体的体积.解:一个正四面体的棱长为2,∴正四面体的底面面积为:=.正四面体的高:=.一个正四面体的棱长为2,则它的体积为:=.故答案为:.点评:本题考查几何体的体积的求法,求解正四面体的高是解题的关键.7. 已知等差数列{a n }的前n 次和为s n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n+2,a n+2)(n ∈﹣N *)的直线方向向量的坐标可以是 . 【答案】(1,4)【解析】根据等差数列{a n },可求数列的通项公式,根据斜率公式可知求出直线PQ 的斜率,从而求出一个直线方向向量的坐标.解:∵等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55, ∴a 1+a 2=10,a 3=11, ∴a 1=3,d=4, ∴a n =4n ﹣1 a n+2=4n+7,∴P (n ,4n ﹣1),Q (n+2,4n+7) ∴直线PQ 的斜率是=4,∴过点P (n ,a n )和Q (n+2,a n+2)(n ∈﹣N *)的直线方向向量的坐标可以是(1,4) 故答案为:(1,4)点评:本题主要考查了一条直线的方向向量,注意当方向向量横标是1时,纵标就是直线的斜率,属于基础题.8. 设异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1),则异面直线l 1,l 2所成角的大小为 . 【答案】【解析】根据已知中异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1),代入向量夹角公式,可得答案.解:设异面直线l 1,l 2所成角的大小为θ,∵异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1), ∴cosθ===,故θ=,故答案为:; 点评:本题考查的知识点是直线的方向向量,异面直线的夹角,其中将直线夹角问题转化为向量夹角是解答的关键.9. (2011•自贡三模)设x >y >0>z ,空间向量=(x ,,3z ),=(x ,+,3z ),且x 2+9z 2=4y (x ﹣y ),则•的最小值是( ) A .2 B .4C .2D .5【答案】B【解析】先利用空间向量的数量积运算出,的数量积,再将题中条件:“x 2+9z 2=4y (x ﹣y ),”代入运算,最后利用基本不等式即可求得最小值. 解:∵空间向量=(x ,,3z ),=(x ,+,3z ),∴•==4y (x ﹣y )+≥2=4. 则•的最小值是:4 故答案为:B .点评:本题主要考查了空间向量的数量积运算,以及基本不等式等知识,解答的关键是适当变形成可以利用基本不等式的形式.属于基础题.10.已知ABCD为矩形,P为平面ABCD外一点,且PA⊥平面ABCD,G为△PCD的重心,若=x+y+z,则()A.x=,y=,z=B.x=,y=,z=C.x=﹣,y=,z=D.x=,y=,z=【答案】B【解析】利用三角形的重心性质、向量的三角形法则、平行四边形法则即可得出.解:,,,,,,代入可得=++,∴,,.故选:B.点评:本题考查了三角形的重心性质、向量的三角形法则、平行四边形法则,属于基础题.11.(2004•广州一模)已知向量=(8,x,x),=(x,1,2),其中x>0.若∥,则x的值为()A.8B.4C.2D.0【答案】B【解析】根据两个向量平行,写出两个向量平行的充要条件,得到两个向量的坐标之间的关系,根据横标、纵标和竖标分别相等,得到λ和x的值.解:∵∥且x>0存在λ>0使=λ∴(8,,x)=(λx,λ,2λ)∴∴.故选B点评:本题考查共线向量的充要条件的应用,是一个基础题,这种题目可以作为选择和填空出现在高考题目中,是一个送分题目.12.已知=(2,﹣1,3),=(﹣4,2,x),=(1,﹣x,2),若(+)⊥,则x等于()A.4B.﹣4C.D.﹣6【答案】B【解析】利用已知条件求出+,然后(+)•=0,求出x即可.解:=(2,﹣1,3),=(﹣4,2,x),=(1,﹣x,2),+=(﹣2,1,x+3),∵(+)⊥,∴(+)•=0即﹣2﹣x+2(x+3)=0,解得x=﹣4.故选:B.点评:本题考查空间向量的数量积的应用,向量的坐标运算,考查计算能力.13.已知O是平面上一定点,A﹑B﹑C是平面上不共线的三个点,动点P满足=+λ(+)λ∈[0,+∞),则点P的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心【答案】C【解析】将=提取出来,转化成λt(+),而λt(+)表示与共线的向量,点D是BC的中点,故P的轨迹一定通过三角形的重心.解:∵=设它们等于∴=+λ(+)而+=2λ(+)表示与共线的向量而点D是BC的中点,所以即P的轨迹一定通过三角形的重心.故选C点评:本题主要考查了空间向量的加减法,以及三角形的三心等知识,属于基础题.14.设=(x,4,3),=(3,2,z),且∥,则xz的值为()A.9B.﹣9C.4D.【答案】A【解析】利用共线向量的条件,推出比例关系,求出x,z的值.解:∵=(x,4,3)与=(3,2,z),共线,故有.∴x=6,y=.则xz的值为:9故选A.点评:本题考查共线向量的知识,考查学生计算能力,是基础题.15.已知正方体ABCD﹣A′B′C′D′中,点F是侧面CDD′C′的中心,若=+x+y,则x﹣y 等于()A.0B.1C.D.﹣【答案】A【解析】由向量的运算法则可得=+,结合已知可得xy的值,进而可得答案.解:由向量的运算法则可得=+=+(+)=+(+)=+又=+x+y,故x=,y=,所以x﹣y=0故选A点评:本题考查空间向量基本定理即意义,属基础题.16.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.,+,﹣B.,+,﹣C.,+,﹣D.+,﹣,+2【答案】C【解析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A、B、D 三个选项中的向量均为共面向量,利用反证法可证明C中的向量不共面解:∵(+)+(﹣)=2,∴,+,﹣共面,不能构成基底,排除 A;∵(+)﹣(﹣)=2,∴,+,﹣共面,不能构成基底,排除 B;∵+2=(+)﹣(﹣),∴,+,﹣,+2共面,不能构成基底,排除 D;若、+、﹣共面,则=λ(+)+m(﹣)=(λ+m)+(λ﹣m),则、、为共面向量,此与{、、}为空间的一组基底矛盾,故,+,﹣可构成空间向量的一组基底.故选:C点评:本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属基础题17.(理)在长方体ABCD﹣A1B1C1D1中,以,,为基底表示,其结果是()A.=++B.=C.=﹣2+D.=【答案】C【解析】先可得=,然后逐步把其中的三个向量用所给的基底表示,化简可得结论.解:由向量的运算法则可得===﹣+()=﹣+()=故选C点评:本题考查空间向量基本定理和意义,属基础题.18.若向量是空间的一个基底,则一定可以与向量构成空间的另一个基底的向量是()A.B.C.D.【答案】C【解析】空间向量的一组基底,要满足不为零向量,且三个向量不共面,逐个判断即可.解:由已知及向量共面定理,结合=,可知向量,,共面,同理可得=2,故向量,,共面,故向量,都不可能与,构成基底,又可得==,故向量+也不可能与,构成基底,只有符合题意,故选C点评:本题考查空间向量的基底,涉及向量的共面的判定,属基础题.19.在正方形ABCD﹣A1B1C1D1A1C1中,点E为上底面A1C1的中点,若,则x,y,z的值分别是()A.B.C.D.【答案】B【解析】画出正方体,表示出向量,为的形式,可得x、y,z的值.解:如图,===.∴x=1,y=z=.故选B.点评:本题考查棱柱的结构特征,向量加减运算,是基础题.主要是用三角形法则把所求向量转化.20.(2014•南昌模拟)已知抛物线y2=2px(p>0)的焦点F与椭圆的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为()A.B.C.D.【答案】B【解析】由条件可得b2=2ac,再根据c2 +b2﹣a2=0,即c2+2ac﹣a2=0,两边同时除以a2,化为关于的一元二次方程,解方程求出椭圆的离心率的值.解:依题意抛物线y2=2px(p>0)的焦点F与椭圆的一个焦点重合,得:,由TF=及TF=p,得,∴b2=2ac,又c2 +b2﹣a2=0,∴c2+2ac﹣a2=0,∴e2+2e﹣1=0,解得.故选B.点评:本题考查了圆锥曲线的共同特征,主要考查了椭圆和抛物线的几何性质,属于基础题.。
高一数学试题答案及解析1.在△ABC中,若a =" 2" ,, , 则B等于()A.B.或C.D.或【答案】B【解析】由正弦定理得,由于是三角形的内角,或,符合大边对大角.【考点】正弦定理的应用.2.已知ABC的重心为G,内角A,B,C的对边分别为a,b,c,若,则角A为()A.B.C.D.【答案】A【解析】由于是的重心,,.代入得由于不共线,【考点】平面向量共线定理和余弦定理的应用.3.等差数列的通项公式,设数列,其前n项和为,则等于A.B.C.D.以上都不对【答案】A【解析】由题意得====【考点】裂项抵消法求数列的前项和4.等于()A.B.C.D.【解析】,故选A.【考点】诱导公式.5.在等差数列中,若,则等于A.45B.75C.180D.300【答案】C【解析】解:∵a3+a4+a5+a6+a7=450,∴5a5=450∴a5=90∴a1+a9=2a5=180,故选C..【考点】等差数列的性质.6.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】设,,,,即所以是单调递增函数,其最大值和最小值是,,令代入得:,得,所以,,故选C.【考点】抽象函数7.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是 ( )A.①和②B.②和③C.③和④D.①和④【答案】A【解析】因为平行于同一个平面的两条直线可能相交,也可能异面所以命题②不正确;垂直于同一个平面的两个平面有可能是相交的,所以命题③也不正确.故选A【考点】1、线面平行的性质与判定;2、线面垂直的判定与性质.8.设a,b,c,均为正数,且则( )A.B.C.D.【答案】C【解析】由考虑函数与图像,可知交点横坐标大于1,即c>1.由得,,即,所以0<<1,由得,,所以0<b<1.,.由,即(*).i)当时(*)式左边为负,右边为正,所以不成立;ii)时,(*)式左边为0,右边不为0,所以不成立;所以<1.综上.【考点】本题中通过函数的特殊性选出C最大.通过求差的方法结合对数函数和指数函数的范围比较可得.9. A为△ABC的内角,且A为锐角,则的取值范围是()A.B.C.D.【答案】C【解析】∵,又A为锐角,∴,∴,∴,即的取值范围是,故选C【考点】本题考查了三角函数的值域问题点评:求解三角函数的最值问题,一般都要经过三角恒等变换,转化为y=Asin(ωx+Φ)型等,然后根据基本函数y=sinx等相关的性质进行求解10.在△ABC中,如果,那么cos C等于()【答案】D【解析】∵,∴a:b:c=2:3:4,∴,故选D【考点】本题考查了正余弦定理的综合运用点评:熟练掌握正余弦定理及其变形是解决此类问题的关键,属基础题11.将的图象向左平移个单位,得到的图象,则等于 ( ) A.B.C.D.【答案】D【解析】将的图象向左平移个单位,得到函数的图象,即,所以等于,故选D。
高一数学考试题及答案一、选择题1. 设函数f(f)=2f^2−3f+1,求f(−2)的值。
A. 7B. 5C. 3D. 12. 给出一个等差数列:3, 7, 11, 15, ...。
若其第f项为22,求f的值。
A. 5B. 6C. 7D. 83. 若函数f(f)=3f−2,求f(4)和f(−2)的差的绝对值。
A. 2B. 4C. 6D. 84. 已知函数f=ff^2+ff+f经过点(−1,2),(2,1)和(3,4),求f、f和f的值。
A. f=−1, f=1, f=2B. f=1, f=−1, f=2C. f=−1, f=1, f=−2D. f=1, f=−1, f=−25. 设函数f(f)=3(f−1)−2,求f−1(1)的值。
A. 0B. 1C. 2D. 3二、填空题1. 已知等差数列的前四项和为18,公差为2,求该等差数列的前五项的和。
2. 若两个正整数f和f的最大公因数为6,最小公倍数为72,求f和f的值。
3. 解方程f(f+f)=18,若f、f均为正整数,且f>f,求满足条件的整数对(f,f)的个数。
4. 已知函数f(f)=2f+1,函数f(f)=f^2,求解方程f(f)=f(f)的根。
5. 若直线f=ff+f的斜率为3,且经过点(2,5),求f和f的值。
三、解答题1. 设等差数列的首项为f,公差为f。
已知该等差数列的前10项的和为90,前15项的和为180,求该等差数列的通项公式。
解:设前10项的和为f_10,前15项的和为f_15,则有:f_10 = 10/2(f + f + 9f) = 5(2f + 9f)f_15 = 15/2(f + f + 14f) = 7.5(2f + 14f)由题意可得以下两个等式:5(2f + 9f) = 90 (1)7.5(2f + 14f) = 180 (2)将(1)式乘以3,得:15(2f + 9f) = 270 (3)然后将(2)式减去(3)式,得:7.5(2f + 14f) - 15(2f + 9f) = 180 - 27015f + 105f - 30f - 135f = -90-15f - 30f = -90 + 135f - 105f-45f = 30f两边除以-15,得:f = -2f将f = -2f代入(1)式,得:5(2(-2f) + 9f) = 90-20f + 45f = 9025f = 90f = 3.6将f = 3.6代入f = -2f,得:f = -2(3.6) = -7.2所以该等差数列的通项公式为ff = -7.2 + 3.6f,其中f为正整数。
高一数学试题答案及解析1.下列说法中不正确的是()A.对于线性回归方程,直线必经过点B.茎叶图的优点在于它可以保存原始数据,并且可以随时记录C.将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变D.掷一枚均匀硬币出现正面向上的概率是,那么一枚硬币投掷2次一定出现正面【答案】D【解析】对于A由线性回归方程的推导可知直线必经过点,作为常规结论最好记住;对于B也正确;对于C可以对新的一组数据重新计算它的方差会发现方差与原来的方差一样,不会改变,也正确,作为常规结论最好记住;对于D,主要是对概率概念的理解不正确,概率说的是一种可能性,概率大的事件一次实验中也可能不发生,概率小的事件一次试验中也可能发生,所以一枚硬币投掷2次也可能不会出现正面,因此D不正确.【考点】统计与概率的基本概念.2.如图BC是单位圆A的一条直径, F是线段AB上的点,且,若DE是圆A中绕圆心A运动的一条直径,则的值是().A.B.C.D.【答案】C.【解析】根据题意有,则,又且圆的半径为1,所以则因此.【考点】向量的三角形法则,向量的数乘运算,数量积的定义,相反向量,.3.已知,则的值为()A.B.C.D.【答案】D【解析】根据诱导公式,故选D.【考点】诱导公式4.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到300度之间,频率分布直方图所示,则在这些用户中,用电量落在区间内的户数为()A.B.C.D.【答案】B【解析】所以用电户的频率之和等于,所以,所以,所以用电量落在区间内的频率等于,所以户数等于,故选B.【考点】频率分布直方图的应用5.数列满足,其中,设,则等于()A.B.C.D.【答案】C【解析】由题意可知该数列依次为1,1,3,1,5,3,7,1,9,5 ,可以计算出,, ,,推理可得.【考点】数列的表示法.6.下面四个判断中,正确的是()A.式子1+k+k2+…+k n(n∈N*)中,当n=1时式子值为1B.式子1+k+k2+…+k n-1(n∈N*)中,当n=1时式子值为1+kC.式子1++…+(n∈N*)中,当n=1时式子值为1+D.设f(x)=(n∈N*),则f(k+1)=f(k)+【答案】C【解析】对于A,f(1)恒为1,正确;对于B,f(1)恒为1,错误;对于C,f(1)恒为1,错误;对于D,f(k+1)=f(k)+++-,错误;故选A..【考点】数学归纳法.7.若直线的倾斜角为,则直线的斜率为()A.B.C.D.【答案】【解析】【考点】利用倾斜角求斜率.8.的值是A.B.C.D.【答案】C【解析】根据三角函数的诱导公式可知,故C为正确答案.【考点】三角函数的诱导公式、三角函数值的计算.9.在△ABC中,已知++ab=,则∠C=()A.30°B.60°C.120°D.150°【答案】C【解析】因为,△ABC中,已知++ab=,所以,,∠C=120°,选C。
高一数学考试试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 函数y=x^2-4x+3的顶点坐标为:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A4. 圆的方程为(x-2)^2+(y-3)^2=25,则圆心坐标为:A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)答案:A5. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, -3/2)D. (0, 3/2)答案:B6. 函数y=|x|的图像是:A. 一条直线B. 两条直线C. 一条曲线D. 两条曲线答案:B7. 已知等差数列{an}的前三项分别为2, 5, 8,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B8. 函数y=sin(x)的周期为:B. 2πC. π/2D. 4π答案:B9. 已知向量a=(3, -4),b=(2, 5),则a·b的值为:A. -1B. 11C. -11D. 1答案:C10. 圆的方程为x^2+y^2-6x+8y-24=0,则该圆的半径为:A. 2B. 4C. 6D. 8答案:C二、填空题(每题4分,共20分)11. 函数y=3x-2的反函数为______。
答案:y=(1/3)x+2/312. 已知等比数列{bn}的前三项分别为3, 6, 12,则该数列的公比为______。
13. 若a, b, c是三角形的三边长,且满足a^2+b^2=c^2,则该三角形为______三角形。
答案:直角14. 函数y=1/x的图像在第二象限内是______的。
答案:递减15. 已知向量a=(4, 1),b=(2, -3),则|a+b|的值为______。
数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。
A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。
答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。
答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。
证明:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或x = 2。
验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。
7. 解不等式:x^2 - 4x + 4 > 0。
解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。
因此,解集为{x|x ≠ 2}。
四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。
解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。
计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。
答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。
解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。
高一数学全册试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 若f(x) = 2x + 1,则f(-1)的值为:A. -1B. 1C. 3D. -33. 等差数列{an}的首项为2,公差为3,则a5的值为:A. 17B. 14C. 11D. 84. 以下哪个选项是不等式x^2 - 4x + 3 < 0的解集?A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∪ (3, +∞)D. (1, 3)二、填空题(每题5分,共20分)5. 若函数f(x) = x^2 - 2x + 1,求f(1)的值为______。
6. 等比数列{bn}的首项为1,公比为2,则b3的值为______。
7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B的值为______。
8. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标为______。
三、解答题(每题10分,共60分)9. 已知函数f(x) = x^2 - 4x + 3,求该函数的最小值。
10. 计算定积分∫(0到1) (2x + 3)dx。
11. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a5。
12. 求函数y = ln(x)在区间[1, e]上的值域。
13. 已知直线l:y = 3x + 2与圆C:(x - 2)^2 + (y - 3)^2 = 9相交,求交点坐标。
14. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
答案:一、选择题1. C2. D3. B4. A二、填空题5. 06. 87. {2, 3}8. (-1/2, 0)三、解答题9. 函数f(x) = x^2 - 4x + 3的最小值为f(2) = -1。
10. 定积分∫(0到1) (2x + 3)dx = (x^2 + 3x)|_0^1 = 4。
高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题,满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的答案填在指定位置上.)1.9090αβ<<<,则2β-A.第二象限角C.第三象限角2.α终边上的一点,且满足A.3.设()g x1 (30)2=,则A1sin2x.2sin4.α的一个取值区间为()A.5.A.6.设A.C.7.ABC∆中,若cot cot1A B>,则ABC∆一定是()A.钝角三角形B.直角三角形C.锐角三角形D.以上均有可能8.发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t的函数:2sin sin()sin()3A B C I I t I I t I I t πωωωϕ==+=+且0,02A B C I I I ϕπ++=≤<,则ϕ=() A .3πB .23πC .43πD .2π9.当(0,)x π∈时,函数21cos 23sin ()sin x x f x x++=的最小值为()A ..3C ..410.()f x =的A .1112131415的映射:(,)()cos3sin3f a b f x a x b x→=+.关于点(的象()f x 有下列命题:①3()2sin(3)4f x x π=-; ②其图象可由2sin3y x =向左平移4π个单位得到; ③点3(,0)4π是其图象的一个对称中心④其最小正周期是23π⑤在53[,124x ππ∈上为减函数 其中正确的有三.解答题(本大题共5个小题,共计75分,解答应写出文字说明,证明过程或演算步骤.)24)t ≤≤经长期观察,()y f t =的曲线可近似的看成函数cos (0)y A t b ωω=+>.(1)根据表中数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1m 时才对冲浪者开放,请根据(1)中的结论,判断一天中的上午8:00到晚上20:00之间,有多少时间可供冲浪者运动?20.(本题满分13分)关于函数()f x 的性质叙述如下:①(2)()f x f x π+=;②()f x 没有最大值;③()f x 在区间(0,2π上单调递增;④()f x 的图象关于原点对称.问:(1)函数()sin f x x x =⋅符合上述那几条性质?请对照以上四条性质逐一说明理由.(221.0)(0,)+∞上的奇函数)x 满足(1)f =cos 2m θ-(1(2的最大值和最小值;(3N . 的两个不等实根,函数22()1x tf x x -+的(1(2(3123。
高一数学考试试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线10mx ny +-=过第一、三、四象限,则( )A .0,0m n >>B .0,0m n <>C .0,0m n ><D .0,0m n <<2.函数()1x f x e x=-的零点所在的区间是( ) A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭ 3.设,,l m n 表示三条直线,,,αβγ表示三个平面,则下面命题中不成立的是( )A .若.l m αα⊥⊥,则l m ;B .若,,m m l n β⊂⊥是l 在β内的射影,则m n ⊥;C .若,,m n m n αα⊂⊄,则n α;D .若.αγβγ⊥⊥,则αβ.4.若直线()()1:3410l k x k y -+++=与()()2:12330l k x k y ++-+=垂直,则实数k 的值是( )A .3或-3B . 3或4 C. -3或-1 D .-1或45.一个几何体的三视图如下图所示,则该几何体的表面积为( )A .1023+B .103+ C. 123+ D .1123+6.直线102n mx y +-=在y 轴上的截距是-1,且它的倾斜角是直线3330x y --=的倾斜角的2倍,则( )A .3,2m n =-=-B . 3,2m n == C. 3,2m n ==- D .3,2m n =-=7.母线长为1的圆锥的侧面展开图的圆心角等于120︒,则该圆锥的体积为( )A .2281πB .4581π C. 881π D .1081π 8.在正方体1111ABCD A B C D -中,CD 的中点为1,M AA 的中点为N ,则异面直线1C M 与BN 所成角为( )A .30︒B .60︒ C. 90︒ D .120︒9.已知点(),M a b 在直线34200x y +-=上,则22a b +的最小值为( )A .3B . 4 C. 5 D .610.已知边长为a 的菱形ABCD 中,60ABC ∠=︒,将该菱形沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为( )A .36aB .312a C. 3312a D .3212a 11.已知三棱柱111ABC A B C -的所有棱长都相等,侧棱垂直于底面,且点D 是侧面11BB C C 的中心,则直线AD 与平面11BB C C 所成角的大小是( )A .30︒B .45︒ C. 60︒ D .90︒12.如图,在多面体ABCDEF 中,四边形ABCD 是边长为3的正方形,3,2EFAB EF =,且点E 到平面ABCD 的距离为2,则该多面体的体积为( )A .92B .5 C. 6 D .152第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线3450x y +-=与直线6140x my ++=平行,则它们之间的距离是 .14.设函数()2,1ln ,1x x f x x x -⎧<=⎨≥⎩,若函数()y f x k =-有且只有两个零点,则实数k 的取值范围是 .15.已知点()0,2关于直线l 的对称点为()4,0,点()6,3关于直线l 的对称点为,则m n += .16.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离为0022Ax By Cd A B ++=+.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若12d d =,则直线12P P 与直线l 平行;②若12d d =-,则直线12P P 与直线l 垂直;③若120d d ⋅>,则直线12P P 与直线l 平行或相交;④若120d d ⋅<,则直线12P P 与直线l 相交,其中所有正确命题的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,三棱柱111ABC A B C -的侧棱垂直于底面,其高为6cm ,底面三角形的边长分别为3,4,5cm cm cm ,以上、下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积V .18.过点()3.0P 有一条直线l ,它夹在两条直线1:220l x y --=与2:30l x y ++=之间的线段恰被点P 平分,求直线l 的方程.19.如图,四棱锥P ABCD -中,,1,2,BCAD BC AD AC CD ==⊥,且平面PCD ⊥平面ABCD .(1)求证:AC PD ⊥;(2)在线段PA 上是否存在点E ,使BE 平面PCD ?若存在,确定点E 的位置,若不存在,请说明理由.20.如图,在ABC ∆中,边BC 上的高所在的直线方程为320,x y BAC -+=∠的平分线所在的直线方程为0y =,若点B 的坐标为()1,3.(1)求点A 和点C 的坐标;(2)求ABC ∆的面积.21. 某化工厂每一天中污水污染指数()f x 与时刻x (时)的函数关系为()()[]25log 121,0,24f x x a a x =+-++∈,其中a 为污水治理调节参数,且()0,1a ∈.(1)若12a =,求一天中哪个时刻污水污染指数最低; (2)规定每天中()f x 的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a 应控制在什么范围内?22.已知在三棱锥P ABC -中,,E F 分别是,AC AB 的中点,,ABC PEF ∆∆都是正三角形,PF AB ⊥.(1)求证:PC ⊥平面PAB ;(2)求二面角P AB C --的平面角的余弦值;(3)若点,,,P A B C 在一个表面积为12π的球面上,求ABC ∆的边长.试卷答案一、选择题1-5: CBDAC 6-10: AACBD 11、12:CD二、填空题 13.125 14. 1+2∞(,) 15. 33516. ③④ 三、解答题17.解:111334636(cm )2ABC A B C V -⨯=⨯=三棱柱. …………………3分 设圆柱底面圆的半径为r ,则22341345ABC S r AB BC AC ∆⨯⨯===++++, ……………………6分 1236(cm )OO V r h ππ==圆柱. ………………………9分所以11113(366)cm ABC A B C OO V V V π-=-=-三棱柱圆柱. ……………………10分18.解:设直线l 夹在直线12,l l 之间的线段是AB (A 在1l 上,B 在2l 上), ,A B 的坐标分别是()()1122,,,x y x y .因为AB 被点P 平分,所以12126,0x x y y +=+=,于是21216,x x y y =-=-.……………………3分 由于A 在1l 上,B 在2l 上,所以1111220(6)()30x y x y --=⎧⎨-+-+=⎩, 解得111116,33x y ==,即A 的坐标是1116,33⎛⎫ ⎪⎝⎭. ……………………6分 直线PA 的方程是0316110333y x --=--, ……………………10分 即 8240x y --=.所以直线l 的方程是8240x y --=. …………………12分19.证明:D C B EF PA(1)连接AC ,∵平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =, AC CD ⊥,AC ⊂平面ABCD ,∴AC ⊥平面PCD , ……………………4分∵PD ⊂平面PCD ,所以AC PD ⊥. ……………………5分(2) 当点E 是线段PA 的中点时,//BE 平面PCD . ……………………6分证明如下:分别取,AP PD 的中点,E F ,连接,,.BE EF CF则EF 为PAD ∆的中位线,所以//EF AD ,且112EF AD ==, 又//BC AD ,所以//BC EF ,且BC EF =,所以四边形BCFE 是平行四边形,所以//BE CF , …………………10分 又因为BE ⊄平面PCD ,CF ⊂平面PCD所以//BE 平面PCD .…………………12分 20.解:(1)由3200x y y -+=⎧⎨=⎩,得顶点(2,0)A -. …………………2分 又直线ABx 轴是BAC ∠的平分线, 故直线AC 的斜率为1-,AC 所在直线的方程为2y x =-- ①直线BC 上的高所在直线的方程为320x y -+=,故直线BC 的斜率为3-, 直线BC 方程为33(1)y x -=--,即3 6.y x =-+ ② ……………4分 联立方程①②,得顶点C 的坐标为(4,6)-. ………………6分(2 ………………8分 又直线BC 的方程是360x y +-=,所以A 到直线BC 的距离 ………………10分所以ABC ∆ ……………12分21.解:(1) …………………2分当()2f x = 即4x =.所以一天中早上4点该厂的污水污染指数最低. …………………4分(2)设()25log 1t x =+,则当024x ≤≤时,01t ≤≤.则()31, 01, 1t a t a g t t a a t -++≤≤⎧=⎨++<≤⎩, …………………7分 显然()g t 在[]0,a 上是减函数,在[],1a 上是增函数,则()()(){}max max 0,1f x g g =, …………………9分因为()()031,12g a g a =+=+, 则有 ()()0313123g a g a =+≤⎧⎪⎨=+≤⎪⎩,解得23a ≤, ……………………11分又(0,1)a ∈,故调节参数a . ……………………12分22.(1)证明:连接FC ,因为在等边ABC ∆中, F 为AB 中点,所以AB CF ⊥.因为AB CF ⊥,AB PF ⊥,PF CF=F .所以AB ⊥平面PCF , 又PC ⊂平面PCF ,所以PC AB ⊥, ………………2分 在PAC ∆中,PE 为边AC 上的中线, 又1122PE EF BC AC ===, 所以PAC ∆为直角三角形,且AP PC ⊥. ………………4分 因为PC AB ⊥,PC AP ⊥,AP AB A =,所以PC ⊥平面PAB . ……………………5分 (2)解:由(1)可知, PFC ∠为所求二面角的平面角.设AB a =,则2a PF =,FC =,在直角三角形CFP 中,cos 3PF PFC FC ∠==. ……………………8分(3)解:设球半径为r ,则2412r ππ=,所以r = ………………9分 设ABC ∆的边长为a ,因为PC ⊥平面PAB ,,AP PB ⊂平面PAB所以PC AP ⊥,PC BP ⊥,且由(2)知,2PC a =. 因为PF AF FB ==,所以PAB ∆为直角三角形,且PA PB ⊥,2PA PB a ==,2a =,所以a = …………………12分。
高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。
A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。
A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。
A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。
A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。
A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。
A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。
A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。
A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。
A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。
A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。
高一数学考试题库及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集合的符号表示?A. ZB. NC. QD. R答案:D2. 函数f(x) = 2x + 3的值域是:A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 计算下列三角函数值:sin(π/6)的值是:A. 1/2B. √3/2C. 1/√2D. √2/2答案:A5. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值是:A. 14B. 17C. 20D. 23答案:A6. 函数y = x^2 - 6x + 5的顶点坐标是:A. (3, -4)B. (3, 4)C. (-3, 4)D. (-3, -4)答案:B7. 已知复数z = 2 + 3i,求z的共轭复数:A. 2 - 3iB. -2 + 3iC. -2 - 3iD. 2 + 3i答案:A8. 已知向量a = (3, 4),向量b = (-1, 2),则向量a与向量b的点积为:A. 10B. -2C. 2D. -10答案:B9. 计算下列极限:lim(x→0) [sin(x)/x]的值是:A. 1B. 0C. ∞D. -1答案:A10. 已知圆的方程为x^2 + y^2 = 9,圆心坐标为:A. (0, 0)B. (3, 0)C. (0, 3)D. (-3, 0)答案:A二、填空题(每题4分,共20分)11. 函数f(x) = x^3 - 3x在x=1处的导数是______。
答案:212. 集合{1, 2, 3}的补集在全集U={1, 2, 3, 4, 5}中是______。
答案:{4, 5}13. 已知等比数列{bn}的首项b1=4,公比q=2,则b3的值是______。
高一数学试题答案及解析1.若0<a,b,c<1满足条件ab+bc+ac=1,则的最小值是()A.B.C.D.3【答案】A【解析】利用基本不等式,先确定,再用柯西不等式求的最小值.解:∵0<a,b,c<1满足条件ab+bc+ac=1,∴(a+b+c)2≥3(ab+ac+bc)=3∴∵∴=当且仅当时,的最小值为故选A.点评:柯西不等式的特点:一边是平方和的积,而另一边为积的和的平方,因此,当欲证不等式的一边视为“积和结构”或“平方和结构”,再结合不等式另一边的结构特点去尝试构造.2.设n为自然数,a、b为正实数,且满足a+b=2,则的最小值为()A.B.C.1D.【答案】C【解析】将所求式变形,再利用基本不等式,即可求得最小值.解:==1﹣要使取得最小值,则取得最大值∵a、b为正实数,a+b=2,a+b≥2,∴0<ab≤1∵n为自然数,∴(ab)n﹣1≤1﹣1=0当且仅当(ab)n=1时,(ab)n﹣1取得最大值0∴a=b=1时,原式有最小值1.故选C.点评:本题考查基本不等式的运用,考查学生分析解决问题的能力,属于基础题.3.(2014•湖南二模)设x,y,z∈R,2x+2y+z+8=0,则(x﹣1)2+(y+2)2+(z﹣3)2之最小值为.【答案】8【解析】利用柯西不等式即可得出.解:由柯西不等式可得:[(x﹣1)2+(y+2)2+(z﹣3)2](22+22+12)≥[2(x﹣1)+2(y+2)+1•(z﹣3)]2=(2x+2y+z﹣1)2=(﹣8﹣1)2,化为(x﹣1)2+(y+2)2+(z﹣3)2≥9,当且仅当,且2x+2y+z+8=0,即x=﹣1,y=﹣2,z=2时取等号.故(x﹣1)2+(y+2)2+(z﹣3)2之最小值为8.故答案为8.点评:本题考查了柯西不等式的应用,属于基础题.4.若x,y∈R+,且x2+3y2=1,则x+3y的最大值为.【答案】2【解析】首先分析题目已知x,y∈R+,且x2+3y2=1,求x+3y的最大值,可以先构造等式,然后应用柯西不等式求解即可得到答案.解:由题目已知x2+3y2=1,和柯西不等式的二维形式,可得到:,当时取得最大值2.故答案为2.点评:此题主要考查柯西基本不等式的应用问题,构造出等式是题目的关键,有一定的技巧性,属于中档题目.5.若a,b∈R,且a2+b2=10,则a﹣b的取值范围是()A.[0,]B.[0,2]C.[﹣,]D.[﹣2,2]【答案】D【解析】由a,b∈R,且a2+b2=10和a﹣b,消除差异,对a﹣b进行平方,在利用平均值不等式可求得结果,再开方.解;(a﹣b)2=a2+b2﹣2ab=10﹣2ab∵a2+b2=10,a2+b2≥﹣2ab∴(a﹣b)2≤20﹣2≤a﹣b≤2故选D.点评:此题考查了创造条件使用平均值不等式求取值范围问题,如果已知条件和要求的结果一个是一次的,一个是二次,平方是消除它们之间的差异的有效方法,体现了转化的数学思想,是基础题.6.已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+4c2+4d2=5则a的最大值为()A.1B.2C.3D.4【答案】B【解析】根据柯西不等式当n=3时的不等式:(++)(++)≥(x1y1+x2y2+x3y3)2,得到(2b2+4c2+4d2)(++)≥(b+c+d)2.从而得到关于a不等式:5﹣a2≥(3﹣a)2,解之得1≤a≤2,最后根据柯西不等式取等号的条件,找到当b=,c=d=时,a 有最大值2.解:根据柯西不等式,得(2b2+4c2+4d2)(++)≥(b+c+d)2当且仅当2b=4c=4d时,等号成立∵a+b+c+d=3,a2+2b2+4c2+4d2=5∴5﹣a2≥(3﹣a)2,解之得1≤a≤2,当且仅当2b=4c=4d且b+c+d=1时,即当b=,c=d=时,a有最大值2.故选B点评:本题在a+b+c+d=3,a2+2b2+4c2+4d2=5的情况下,求实数a的最大值,着重考查了柯西不等式及其应用,属于中档题,解题时应该注意柯西不等式等号成立的条件.7.若a,b,c∈R+,且a+b+c=6,则lga+lgb+lgc的取值范围是()A.(﹣∞,lg6]B.(﹣∞,3lg2]C.[lg6,+∞)D.[3lg2,+∞)【解析】先根据对数的运算法则得lga+lgb+lgc=lg(abc),再由平均值不等式可求得取值范围.,解:∵a,b,c∈R+∴abc≤=8,当且仅当a=b=c时等号成立,∴lga+lgb+lgc=lg(abc)≤lg8=3lg2,则lga+lgb+lgc的取值范围是(﹣∞,3lg2].故选B.点评:本题主要考查平均值不等式在函数极值中的应用.在应用平均值不等式时一定要注意取等号的要求.8.设a,b,c都是正数,且a+2b+c=1,则的最小值为()A.9B.12C.D.【答案】D【解析】先利用a+2b+c=1与相乘,然后展开利用均值不等式求解即可,注意等号成立的条件.解:∵a,b,c都是正数,且a+2b+c=1,∴=(a+2b+c)()=4++++++≥4+2 +2+2=6+4,当且仅当a=c=b时等号成立.∴的最小值是.故选D.点评:本题主要考查了均值不等式,利用基本不等式求函数最值是高考考查的重点内容,本题解题的关键是灵活运用“1”的代换,属于中档题.9.若不等式x+|x﹣a|>1的解集为R,则实数a的取值范围是()A.(1,+∞)B.[1,+∞)C.(﹣∞,1)D.(﹣∞,1]【答案】A【解析】画出数轴,对a与1比较分类讨论,通过不等式x+|x﹣a|>1的解集为R,求出a的范围.解:画出数轴,当a<1时,不等式x+|x﹣a|>1的解集为R,不成立;当a=1时,0≤x≤1时,不等式不成立;当a>1时,不等式x+|x﹣a|>1的解集为R,恒成立;综上实数a的取值范围是:(1,+∞).故选A.点评:本题是中档题,考查绝对值不等式的求法,注意数轴的应用,考查计算能力,逻辑推理能力.10.函数y=|x﹣1|+|x﹣4|的最小值为()A.2B.3C.4D.5【解析】由条件直接利用绝对值三角不等式求得函数y的最小值.解:函数y=|x﹣1|+|x﹣4|≥|(x﹣1)﹣(x﹣4)|=3,故选:B.点评:本题主要考查绝对值三角不等式的应用,属于基础题.11.(2009•海珠区二模)如果关于x的不等式|x﹣2|+|x+3|≥a的解集为R,则a的取值范围是.【答案】(﹣∞,5].【解析】由绝对值的意义可知,|x﹣2|+|x+3|表示数轴上的x对应点到2和﹣3对应点的距离之和,其最小值等于5,从而得出结论.解:|x﹣2|+|x+3|表示数轴上的x对应点到2和﹣3对应点的距离之和,其最小值等于5,故当a≤5时,关于x的不等式|x﹣2|+|x+3|≥a的解集为R,故答案为:(﹣∞,5].点评:本题考查绝对值的意义,绝对值不等式的解法,求得:|x﹣2|+|x+3|的最小值等于5,是解题的关键.12.(2014•南昌模拟)对任意x∈R,且x≠0,不等式|x+|>|a﹣5|+1恒成立,则实数a的取值范围是()A.(﹣∞,4)∪(6,+∞)B.(2,8)C.(3,5)D.(4,6)【答案】D【解析】根据|x+|≥2结合题意可得2>|a﹣5|+1,去掉绝对值,求得不等式的解集.解:∵|x+|≥2,不等式|x+|>|a﹣5|+1恒成立,∴2>|a﹣5|+1,即|a﹣5|<1,﹣1<a﹣5<1,解得4<a<6,故选:D.点评:本题主要考查基本不等式、绝对值不等式的解法,体现了转化的数学思想,属于中档题.13.(2014•榆林模拟)已知各项均为正数的等比数列{an }满足a7=a6+2a5,若存在两项am,an使得的最小值为()A.B.C.D.【答案】A【解析】由a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.解:由各项均为正数的等比数列{an }满足a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A.点评:本题主要考查等比数列的通项公式,基本不等式的应用,属于基础题.14.(2014•兴安盟一模)x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为7,则的最小值为()A.14B.7C.18D.13【答案】B【解析】作出可行域,得到目标函数z=ax+by(a>0,b>0)的最优解,从而得到3a+4b=7,利用基本不等式即可.解:∵x、y满足约束条件,目标函数z=ax+by(a>0,b>0),作出可行域:由图可得,可行域为△ABC区域,目标函数z=ax+by(a>0,b>0)经过可行域内的点C时,取得最大值(最优解).由解得x=3,y=4,即C(3,4),∵目标函数z=ax+by(a>0,b>0)的最大值为7,∴3a+4b=7(a>0,b>0),∴=(3a+4b)•()=(9++16+)≥(25+2)=×49=7(当且仅当a=b=1时取“=”).故选B.点评:本题考查线性规划,作出线性约束条件下的可行域,求得其最优解是关键,也是难点,属于中档题.15.(2014•湖南模拟)设点G是△ABC的重心,若∠A=120°,,则的最小值是()A.B.C.D.【答案】B【解析】先利用数量积公式,求得,再利用G是△ABC的重心,可得,进而利用基本不等式,即可求得结论.解:∵∠A=120°,,∴∴∵G是△ABC的重心,∴∴=≥=故选B.点评:本题考查数量积公式,考查向量的运算,考查基本不等式的运用,属于中档题.16.(2014•大兴区一模)若x>0,则的最小值为()A.2B.3C.2D.4【答案】D【解析】由于x>0且x与的乘积是常数,故先利用基本不等式;再分析等号成立的条件,得到函数的最小值.解:∵x>0∴=4当且仅当即x=2时取等号所以的最小值为4故选D点评:本题考查利用基本不等式求函数的最值时需注意满足的条件:一正、二定、三相等.17.(2014•淮南一模)函数y=a x+3﹣2(a>0,且a≠1)的图象恒过定点A,且点A在直线mx+ny+1=0上(m>0,n>0),则的最小值为()A.12B.10C.8D.14【答案】A【解析】先求出定点A,将其代入直线方程即可得到n、m满足的关系式,再利用基本不等式的性质即可.解:当x=﹣3时,f(﹣3)=a0﹣2=1﹣2=﹣1,∴定点A(﹣3,﹣1).∵点A在直线mx+ny+1=0上,∴﹣3m﹣n+1=0,即3m+n=1.∵m>0,n>0,∴=(3m+n)=6+=12,当且仅当m>0,n>0,3m+n=1,,即n=,时取等号.因此的最小值为12.故选A.点评:熟练掌握基本不等式的性质是解题的关键.18.(2014•安徽模拟)若2m+4n<2,则点(m,n)必在()A.直线x+y=1的左下方B.直线x+y=1的右上方C.直线x+2y=1的左下方D.直线x+2y=1的右上方【答案】C【解析】利用基本不等式得2m+4n≥2,再结合题意并化简2m+2n<2,由指数函数的单调性求解此不等式,再解集转化为几何意义.解:由基本不等式得,2m+4n=2m+22n≥2=2∵2m+4n<2,∴2<2,∴<,则2m+2n<2,又因y=2x在定义域上递增,则m+2n<1,∴点(m,n)必在直线x+2y=1的左下方.故选C.点评:本题考查了基本不等式的应用,结合题意列出含有指数不等式,利用指数函数的单调性求解,还得判断出与选项中直线的位置关系.19.(2014•上饶一模)已知函数f(x)的定义域为(﹣∞,+∞),f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,且f(﹣2)=1,f(3)=1,则不等式f(x2﹣6)>1的解集为()A.(2,3)B.(﹣,)C.(2,3)∪(﹣3,﹣2)D.(﹣∞,﹣)∪(,+∞)【答案】C【解析】由函数y=f′(x)的图象,知x<0时,f(x)是增函数;x>0时,f(x)是减函数.由f (﹣2)=1,f(3)=1,不等式f(x2﹣6)>1的解集满足{x|﹣2<x2﹣6<3},由此能求出结果.解:∵函数y=f′(x)的图象如图所示,∴x<0时,f(x)是增函数;x>0时,f(x)是减函数.∵f(﹣2)=1,f(3)=1,∴由不等式f(x2﹣6)>1得﹣2<x2﹣6<3,解得﹣3<x<﹣2或2<x<3.故选C.点评:本题考查一元二次不等式的性质和应用,是基础题.解题时要认真审题,注意导数的性质和应用.20.(2014•武汉模拟)一元二次不等式2kx2+kx﹣<0对一切实数x都成立,则k的取值范围是()A.(﹣3,0)B.(﹣3,0]C.[﹣3,0]D.(﹣∞,﹣3)∪[0,+∞)【答案】A【解析】由二次项系数小于0,对应的判别式小于0联立求解.解:由一元二次不等式2kx2+kx﹣<0对一切实数x都成立,则,解得﹣3<k<0.综上,满足一元二次不等式2kx2+kx﹣<0对一切实数x都成立的k的取值范围是(﹣3,0).故选A.点评:本题考查了一元二次不等式的解法,考查了分类讨论的数学思想方法,训练了“三个二次”的结合解题,是基础题.。
高一数学试题精选及答案一、选择题(每题3分,共15分)1. 若函数f(x)=x^2-4x+m的图像与x轴有两个交点,则m的取值范围是()。
A. m > 4B. m < 4C. m ≥ 4D. m ≤ 42. 已知向量a=(3,-1),b=(2,2),则向量a+2b的坐标为()。
A. (7, 3)B. (7, 0)C. (1, 0)D. (1, 3)3. 函数y=x^3-3x^2+2在区间(0,1)上是()。
A. 增函数B. 减函数C. 先增后减D. 先减后增4. 已知等差数列{an}的前三项分别为1,2,3,则该数列的通项公式为()。
A. an = nB. an = n + 1C. an = n - 1D. an = 2n - 15. 已知圆C的方程为(x-1)^2+(y-2)^2=9,圆心C到直线3x+4y-5=0的距离为()。
A. 1B. 2C. 3D. 4二、填空题(每题3分,共15分)6. 若复数z满足|z|=2,则z的平方的模长为_________。
7. 函数y=cos(2x)的最小正周期为_________。
8. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为2,则a和b的关系为_________。
9. 已知三角形ABC的三边长分别为a,b,c,且满足a^2+b^2=c^2,三角形ABC的类型为_________。
10. 已知函数f(x)=x^3-3x+1,求导数f'(x)=_________。
三、解答题(每题10分,共20分)11. 解方程:x^2-5x+6=0。
12. 证明:对于任意实数x,不等式x^2+x+1≥3/4恒成立。
答案:一、选择题1. D2. A3. D4. A5. B二、填空题6. 47. π8. b^2=3a^29. 直角三角形10. 3x^2-3三、解答题11. 解:将方程x^2-5x+6=0进行因式分解,得到(x-2)(x-3)=0,所以解为x=2或x=3。
高一数学试题及答案一、选择题(本大题共12小题,每小题5分,共60分,每题有且只有一个选项是正确的,请把答案填在答题卡上)1.某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为( ) A .40 B .48 C .50 D .80 【答案】 C2.同时掷两枚骰子,所得点数之和为5的概率为( ).A .14 B . 19 C .16 D .112【答案】 B3.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥【答案】 B4.函数12sin[()]34y x π=+的周期、振幅、初相分别是()A .3π,2-,4πB .3π,2,12π C .6π,2,12π D .6π,2,4π 【答案】C5.下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630° 【答案】选B.6.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43【答案】 D【解析】 x <0,r =x 2+16,∴cos α=x x 2+16=15x ,∴x2=9,∴x =-3,∴tan α=-43.7.如果cos(π+A )=-12,那么sin(π2+A )=( )A .-12B.12 C .-32D.32【答案】 B解析:.cos(π+A )=-cos A =-12,则cos A =12,sin(π2+A )=cos A =12.8.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3【答案】 C解析:.由已知f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,即φ=3k π+3π2(k ∈Z ).又φ∈[0,2π],所以φ=3π2,故选C.9.已知函数sin()y A x B ωϕ=++的一部分图象 如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B【答案】 C.10.甲、乙、丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图,若s 甲,s 乙,s 丙分别表示他们测试成绩的标准差,则( ) A .s 甲<s 乙<s 丙 B .s 甲<s 丙<s 乙 C .s 乙<s 甲<s 丙 D .s 丙<s 甲<s 乙甲 乙 丙 【答案】 D11.已知1cos()63πα+=-,则sin()3πα-的值为( )A .13B .13-C .233D .233-【答案】 A12.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( )A.13 B .1 C.53D .2 【答案】 D解析:选D.将函数f (x )=sin ωx 的图象向右平移π4个单位长度得到函数y =sin[ω(x -π4)]的图象,因为所得图象经过点(34π,0),则sin ω2π=0,所以ω2π=k π(k ∈t ),即ω=2k (k ∈t ),又ω>0,所以ωmin =2,故选D.二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡上) 13. 已知样本9,10,11,,x y 的平均数是102,则xy =________________. 【答案】9614.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次, 则3个球颜色全不相同的概率为_______________. 【答案】2/915.如果sin α-2cos α3sin α+5cos α=-5,那么tan α的值为_______________.【答案】 -2316.16.函数f(x )=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,则k 的取值范围是_____________________.【答案】13k <<三、解答题(本大题共70分,解答应写出必要分文字说明、演算步骤或证明过程)17.(本小题满分10分) 已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1) 化简()f α; (2)若31sin()23πα-=-,求()f α的值. 【答案】17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。
高一数学考试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|的定义域?A. (-∞, 0)B. (-∞, 0) ∪ (0, +∞)C. (-1, 1)D. 全实数集2. 若a、b、c是等差数列,且a+b+c=6,b+c-a=2,则a的值为:A. 1B. 2C. 3D. 43. 已知一个等比数列的前三项分别为a, b, c,且abc=16,b-c=2,求a的值。
A. 1B. 2C. 4D. 84. 在直角坐标系中,点A(2,3)和点B(-2,-1)之间的距离是:A. 2√5B. √20C. 3√5D. 55. 若f(x) = 2x^2 + 3x - 4,求f(-2)的值。
A. -11B. -5C. 5D. 116. 已知一个圆的半径为5,圆心在坐标轴上,且圆上有一点P(3,4),则这个圆的方程是:A. (x-3)^2 + (y-4)^2 = 25B. (x-3)^2 + y^2 = 25C. (x-4)^2 + (y-3)^2 = 25D. x^2 + (y-4)^2 = 257. 函数y = 3^x的反函数是:A. y = log3xB. y = 3^(-x)C. y = -log3xD. y = logx/38. 已知一个等差数列的前n项和为Sn = n^2 + 2n,当n=5时,Sn的值是:A. 35B. 40C. 45D. 509. 在复数z1 = 3 + 4i 和 z2 = 2 - i中,|z1 - z2|的模长是:A. 2√2B. √10C. 5D. √2110. 若a:b = 3:4,b:c = 5:6,则a:b:c的比例是:A. 15:20:24B. 15:20:25C. 3:4:5D. 5:6:8二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2)的值。
12. 一个等比数列的前三项分别是2, 6, 18,该数列的公比是。
高一数学试题及解析答案一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点是:A. 1B. 2C. 3D. 4答案:B解析:将f(x)设为0,即x^2 - 4x + 3 = 0,解得x = 1 或 x = 3。
由于题目要求零点,所以正确选项是B。
2. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B解析:集合A与集合B的交集是它们共有的元素,即A∩B = {2, 3}。
3. 若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,则该三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A解析:根据勾股定理,若a^2 + b^2 = c^2,则三角形为直角三角形。
4. 函数y = 2x - 1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C解析:函数y = 2x - 1的斜率为正,截距为负,因此图象经过第一、三、四象限,不经过第二象限。
二、填空题(每题5分,共20分)1. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5 = _______。
答案:17解析:等差数列的通项公式为an = a1 + (n - 1)d,代入n = 5,a1= 2,d = 3,得a5 = 2 + (5 - 1) * 3 = 17。
2. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f'(x) = _______。
答案:3x^2 - 6x + 2解析:对f(x)求导得f'(x) = 3x^2 - 6x + 2。
3. 圆的方程为(x - 2)^2 + (y + 3)^2 = 25,圆心坐标为(2, -3),半径为_______。
答案:5解析:圆的半径为方程中的常数项的平方根,即r = √25 = 5。
高一数学大题试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是()A. \( y = x^2 \)B. \( y = |x| \)C. \( y = x^3 \)D. \( y = \frac{1}{x} \)答案:C2. 已知函数 \( f(x) = 2x + 3 \),那么 \( f(-1) \) 的值为()A. -1B. 1C. 5D. -5答案:A3. 若 \( a \) 和 \( b \) 是方程 \( x^2 - 5x + 6 = 0 \) 的两个根,则 \( a + b \) 的值为()A. 1B. 2C. 3D. 4答案:C4. 函数 \( y = \log_2 (x - 1) \) 的定义域是()A. \( x > 1 \)B. \( x < 1 \)C. \( x \geq 1 \)D. \( x \leq 1 \)答案:A二、填空题(每题5分,共20分)5. 已知 \( \sin \theta = \frac{3}{5} \),且 \( \theta \) 为锐角,则 \( \cos \theta \) 的值为 _______。
答案:\( \frac{4}{5} \)6. 计算 \( \int (3x^2 - 2x + 1) dx \) 的结果为 _______。
答案:\( x^3 - x^2 + x + C \)7. 若 \( \log_2 8 = 3 \),则 \( 2^3 \) 的值为 _______。
答案:88. 函数 \( y = \frac{1}{x} \) 在点 \( (1, 1) \) 处的切线斜率为 _______。
答案:-1三、解答题(每题10分,共60分)9. 已知 \( a \) 和 \( b \) 是方程 \( x^2 - 6x + 8 = 0 \) 的两个根,求 \( a^2 + b^2 \) 的值。
答案:首先,根据韦达定理,\( a + b = 6 \) 和 \( ab = 8 \)。
高一数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x + 1答案:B2. 计算下列极限:\[\lim_{x \to 0} \frac{1 - \cos x}{x^2}\]A. 0B. 1C. 2D. -1答案:C3. 已知向量\(\vec{a} = (3, -2)\)和\(\vec{b} = (1, 2)\),求这两个向量的点积。
A. 5B. -5C. 1D. -1答案:B4. 以下哪个不等式是正确的?A. \(\sqrt{2} < 1.5\)B. \(\sqrt{2} > 1.5\)C. \(\sqrt{2} = 1.5\)D. \(\sqrt{2} < 1\)答案:B5. 计算以下定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 1D. 2答案:A6. 以下哪个是复数的共轭?A. \(z = 3 + 4i\)的共轭是\(3 - 4i\)B. \(z = 3 - 4i\)的共轭是\(3 + 4i\)C. \(z = -3 + 4i\)的共轭是\(-3 - 4i\)D. \(z = -3 - 4i\)的共轭是\(-3 + 4i\) 答案:A7. 以下哪个是二项式定理的应用?A. \((a + b)^2 = a^2 + 2ab + b^2\)B. \((a - b)^2 = a^2 - 2ab + b^2\)C. \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)D. \((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\) 答案:C8. 以下哪个是等差数列的通项公式?A. \(a_n = a_1 + (n - 1)d\)B. \(a_n = a_1 - (n - 1)d\)C. \(a_n = a_1 + nd\)D. \(a_n = a_1 - nd\)答案:A9. 以下哪个是等比数列的通项公式?A. \(a_n = a_1 \cdot r^{n-1}\)B. \(a_n = a_1 \cdot r^n\)C. \(a_n = a_1 \cdot \frac{1}{r^{n-1}}\)D. \(a_n = a_1 \cdot \frac{1}{r^n}\)答案:A10. 以下哪个是三角恒等式?A. \(\sin^2 x + \cos^2 x = 1\)B. \(\sin^2 x + \cos^2 x = 0\)C. \(\sin^2 x + \cos^2 x = 2\)D. \(\sin^2 x + \cos^2 x = x\)答案:A二、填空题(每题4分,共20分)11. 已知\(\sin \theta = \frac{1}{2}\),求\(\cos \theta\)的值。
第一学期10月检测考试
高一年级数学试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.
第Ⅰ卷(选择题共60分)
注意事项:第一大题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用
橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上.
一.选择题(共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项)
1. 已知{}{}|24,|3A x x B x x =-<<=>,则A B =( )
A. {}|24x x -<<
B. {}|3x x >
C. {}|34x x <<
D. {}|23x x -<<
2.设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,B 中的元素20是A 中哪个元素对应过来的( )
.3 C
3.满足关系{}1{1,2,3,4}B ⊆⊆的集合B 的个数 ( )
个 个 个 个
4.方程260x px -+=的解集为M,方程260x x q +-=的解集为N,且M ∩N={2},那么p q +等于( )
B.8
5. 在下列四组函数中,()()f x g x 与表示同一函数的是 ( )A. ()()211,1x f x x g x x -=-=+ B. ()()()01,1f x g x x ==+ C. ()()2,f x x g x x == D. 4)(,22)(2-=-⋅+=x x g x x x f
6. 函数123
()f x x x =-+-的定义域是( ) A. [)23, B.()3,+∞ C.[)()233,,+∞ D.()()233,,+∞
7. 设0abc >,二次函数2()f x ax bx c =++的图象可能是
8.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{2}M N =,则a 值是( )
或-2 B. 0或1 C.0或-2 D. 0或1或-2
9. 设全集,,则下列结论正确的是 A. 已知函数y =x 2-2x +3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )
A .[1,+∞)
B .[0,2]
C .(-∞,2]
D .[1,2]
11. 若()f x 是偶函数,且对任意x 1,x 2∈),0(+∞ (x 1≠x 2),都有f ?x 2?-f ?x 1?x 2-x 1
<0,则下列关系式中成立的是( )
A .)43()32()21(f f f >->
B .)3
2()43()21(f f f >-> C .)32()21()43(f f f >-> D .)21()32()43(f f f >>-
12.已知函数,1()(32)2,1
a x f x x a x x ⎧-≤-⎪=⎨⎪-+>-⎩,在(—∞,+∞)上为增函数,则实数a 的取值范围是( ) A .30,2⎛⎤ ⎥⎝⎦ B .30,2⎛⎫ ⎪⎝⎭ C .31,2⎡⎫⎪⎢⎣⎭
D .31,2⎡⎤⎢⎥⎣⎦
第Ⅱ卷(共90分)
二.填空题(本题共4个小题,每小题5分,共20分)
13. 已知集合{(,)|2},{(,)|4},A x y x y N x y x y M N =+==-==则_____________.
14. 已知3()4f x ax bx =+-,其中b a ,为常数,若4)3(=-f ,则)3(f =___________.
15. 已知函数⎪⎩⎪⎨⎧≥<+=-323)2()(x x x f x f x ,则()=-2f .
16.设奇函数()f x 在(0,)+∞上为增函数,且(1)0f =,则不等式
()()0f x f x x --<的解集为___________.
三.解答题(本题共6个题,共70分.要求写出必要的文字说明和解题过程.)
17.(本题满分10分)
已知全集U R =,集合A=}023{2>+-x x x ,集合B=}13{≥-<x x x 或, 求A ∪B ,A C U ,()U C A B .
18.(本题满分12分) 设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B A =, 求实数a 的取值范围.
19.(本题满分12分)
若函数)(x f 是定义在[-1,1]上的减函数,且0)12()1(<---a f a f ,求实数a 的取值范围.
20. (本题满分12分) 已知函数2()(0)1
ax f x a a x =≠-为常数且, 定义域为(-1,1) 证明:(1)函数f (x)是奇函数;
(2)若1,a = 试判断并证明f (x)在(-1,1) 上的单调性.
21.(本题满分12分)
已知定义在R 上的奇函数()f x ,当0x <时2()21f x x x =++. (I )求函数()f x 的表达式; (II )请画出函数()f x 的图象;
(Ⅲ)写出函数()f x 的单调区间.
22.(本题满分12分)
若二次函数满足(1)()2(0)1f x f x x f +-==且.
(1) 求()f x 的解析式;
(2) 若在区间[-1,1]上不等式()2x m f x >+恒成立,求实数m 的取值范围.
高一年级数学参考答案
一、 CCDA CCDC BDAC
二.13. {}(3,1)- 15.
116 16.(1,0)(0,1)- 三.解答题
17.解:A={}21|}023{2><=>+-x x x x x x 或, 分2
∴A ∪B=R , 分4 A C U =}21{≤≤x x , 分6 B A ⋂={}23|>-<x x x 或 8分 )(B A C U ⋂={}23|≤≤-x x 10分
18.解:A={}4,0-,B B A =⋂ A B ⊆∴
1o
当B=ϕ时,0<∆ ∴[]0)1(4)1(222
<--+a a 1-<∴a ---------------------------------------3分 2o
当B={}0时,由韦达定理 22(1)0010
a a -+=+⎧⎨-=⎩ 得a= -----------------------------------6分 3o
当B={}4-时,由韦达定理 ⎩
⎨⎧=--=+-018)1(22a a 得到a 无解-------------------------------------------9分 4o
当B={}4,0-时,由韦达定理 ⎩⎨⎧=--=+-0
14)1(22a a 得到a=1 综上所述a 1-≤或者a=---------------------------------------------12分
19.解:因为0)12()1(<---a f a f
所以)12()1(-<-a f a f ………………………………1分
又因为)(x f 是定义在[-1,1]上的减函数………………………………2分
所以有⎪⎩
⎪⎨⎧≤-≤-≤-≤-->-11211111
21a a a a ……………………………………8分
解得⎪⎪⎩
⎪⎪⎨⎧<≤≤≤≤321
020a a a ……………………………………………………11分 所以3
20<≤a 即满足条件的a 的取值范围为20<
≤a ……………………………………12分 112211(1)((1)(x x x x -<<+∴-22()()()f x f x f x ∴-
∴<∴在(21.解:设2
0,0,()21x x f x x x >-<∴-=-+则
又()f x 是定义在R 上的奇函数,故()()f x f x ∴-=-
所以2()21,(0)f x x x x =-+->
当0x =时,(0)0f = 所以()f x =2221,00,021,0x x x x x x x ⎧++<⎪=⎨⎪-+->⎩
………………………………6分
图象………………………10分
递增区间是(1,0),(0,1)-
递减区间是(,1),(1,)-∞-+∞………………………………12分
22. 解:(1)设二次函数)0()(2≠++=a c bx ax x f ,则c x b x a x f ++++=+)1()1()1(2 11)0(=∴=c f ……………………………2分
又x x f x f 2)()1(=-+
∴-++++c x b x a )1()1(2x c bx ax 22=-- 即x b a ax 22=++
⎩⎨⎧=+=∴0
22b a a 解得1,1-==b a …………………………4分
1)(2+-=∴x x x f …………………………6分
(2)不等式()f x >2x+m 化为m x x >+-132
在区间[-1,1]上不等式()f x >2x+m 恒成立
∴在区间[-1,1]上不等式m x x >+-132恒成立………………………8分
只需min 2)13(+-<x x m
在区间[-1,1]上,函数4
5)23(1322--=+-=x x x y 是减函数 ∴ 1)13(min 2-=+-x x ………………………10分
所以,1-<m .………………………12分。