2012年全国各地中考数学试卷分类汇编:第21章 勾股定理
- 格式:doc
- 大小:688.50 KB
- 文档页数:7
备战2012中考:三角形的边与角精华试题汇编一、选择题1. (2011福建福州,10,4分)如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( )A .2B .3C .4D . 5【答案】C2. (2011山东滨州,5,3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9 【答案】B3. (2011山东菏泽,3,3分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于 A .30° B .45° C .60° D .75°【答案】D4. (2011山东济宁,3,3分)若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 【答案】B5. (2011浙江义乌,2,3分)如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是( )A .2cmB .1.5cmC .1.2cmD .1cm 【答案】B6. (2011台湾台北,23)如图(八),三边均不等长的ABC ∆,若在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA ∆的面积均相等。
判断下列作法何者正确?E A BCD 30°45° α图3A . 作中线AD ,再取AD 的中点OB . 分别作中线AD 、BE ,再取此两中线的交点OC . 分别作AB 、BC 的中垂线,再取此两中垂线的交点OD . 分别作A ∠、B ∠的角平分线,再取此两角平分线的交点O【答案】B7. (2011台湾全区,20)图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分?A . 11B . 12C . 13D . 14 【答案】B8. (2011江苏连云港,5,3分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )【答案】C9. (2011江苏苏州,2,3分)△ABC 的内角和为 A.180° B.360° C.540° D.720° 【答案】A 10.(2011四川内江,2,3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是A .32°B .58°C .68°D .60°12【答案】C11. (2011湖南怀化,2,3分)如图1所示,∠A、∠1、∠2的大小关系是A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠1【答案】B12. (2011江苏南通,4,3分)下列长度的三条线段,不能组成三角形的是3,8,4 B. 4,9,6 C. 15,20,8 D. 9,15,8【答案】A13. (2011四川绵阳5,3)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为BA.75° B.95° C.105° D.120°【答案】C14. (2011四川绵阳6,3)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少要再钉上几根木条?A.0根 B.1根 C.2根 D.3根【答案】B15. (2011广东茂名,2,3分)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC=A.6 B.8 C.10 D.12【答案】C16. (2011山东东营,5,3分)一副三角板,如图所示叠放在一起,则图中∠ 的度数是()A.75 B.60 C.65 D.55【答案】A17. (2011河北,10,3分)已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( )A .2B .3C .5D .13 【答案】B18. (2011湖北孝感,8,3分)如图,在△ABC 中,BD 、CE 是△ABC 的中线,BD 与CE 相交于点O,点F 、G 分别是BO 、CO 的中点,连结AO.若AO=6cm ,BC=8cm ,则四边形DEFG 的周长是( )A.14cmB.18cmC.24cmD.28cm 【答案】A 二、填空题1. (2011浙江金华,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).【答案】答案不唯一,如5、6等2. (2011浙江省舟山,14,4分)如图,在△ABC 中,AB=AC ,︒=∠40A ,则△ABC 的外角∠BCD= 度.【答案】1103. (2011湖北鄂州,8,3分)如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.【答案】50°4. (2011宁波市,17,3分)如图,在∆ABC 中,AB =AC ,D 、E 是∆ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC =cmAP第8题图(第14ABCD【答案】85. (2011浙江丽水,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).【答案】答案不惟一,在4<x<12之间的数都可6. (2011江西,13,3分)如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC+∠PCA+∠PAB = 度.第13题图 【答案】907. (2011福建泉州,15,4分)如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点18AD BC PEF =∠=,,则PFE ∠的度数是 .【答案】188. (2011四川成都,13,4分) 如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,若DE=4, 则AB= .【答案】8.9. (2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O 。
2012年全国中考数学试题分类解析汇编159套63专题专题43:平行四边形一、选择题1. 2012广东佛山3分依次连接任意四边形各边的中点,得到一个特殊图形可认为是一般四边形的性质,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形答案 A;考点三角形中位线定理,平行四边形的判定;分析根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC;∴EF=GH,EF∥GH;∴四边形EFGH是平行四边形;由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断;故选A;2. 2012浙江杭州3分已知平行四边形ABCD中,∠B=4∠A,则∠C=A.18°B.36°C.72°D.144°答案B;考点平行四边形的性质,平行线的性质;分析由平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD;∴∠A+∠B=180°;∵∠B=4∠A,∴∠A=36°;∴∠C=∠A=36°;故选B;3. 2012湖北武汉3分在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为A.11+1132B.11-1132C .11+1132或11-1132D .11-1132或1+32答案C; 考点平行四边形的性质和面积,勾股定理;分析依题意,有如图的两种情况;设BE=x,DF=y;如图1,由AB =5,BE=x,得222AE AB BE 25x =-=-;由平行四边形ABCD 的面积为15,BC =6,得2625x =15-,解得53x=2±负数舍去; 由BC =6,DF=y,得222AF AD DF 36y =-=-;由平行四边形ABCD 的面积为15,AB =5,得2536y =15-,解得y=33±负数舍去;∴CE+CF=6-532+5-33=11-1132; 如图2,同理可得BE= 532,DF=33; ∴CE+CF=6+532+5+33=11+1132; 故选C;4. 2012湖南益阳4分如图,点A 是直线l 外一点,在l 上取两点B 、C,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,分别连接AB 、AD 、CD,则四边形ABCD 一定是A .平行四边形B .矩形C .菱形D .梯形答案A;考点作图复杂作图,平行四边形的判定;分析∵别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,∴AD=BC,AB=CD;∴四边形ABCD 是平行四边形两组对边分别相等的四边形是平行四边形;故选A;5. 2012四川广元3分 若以A,0,B2,0,C0,1三点为顶点要画平行四边形,则第四个顶点不可能在A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案C;考点平行四边形的判定,坐标与图形性质;分析根据题意画出图形,如图所示:分三种情况考虑:①以CB 为对角线作平行四边形ABD 1C,此时第四个顶点D 1落在第一象限;②以AC 为对角线作平行四边形ABCD 2,此时第四个顶点D 2落在第二象限;③以AB 为对角线作平行四边形ACBD 3,此时第四个顶点D 3落在第四象限;则第四个顶点不可能落在第三象限;故选C;6. 2012四川德阳3分 如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点不与点B 重合.以BD 、BF 为邻边作平行四边形BDEF,又AP BE 点P 、E 在直线AB 的同侧,如果BD B 14A =,那么△PBC 的面积与△ABC 面积之比为A.41B.53C.51D.43 答案D;考点平行四边形的判定和性质;分析过点P 作PH∥BC 交AB 于H,连接CH,PF,PE;∵APBE,∴四边形APEB 是平行四边形;∴PE AB;, ∵四边形BDEF 是平行四边形,∴EFBD; ∴EF∥AB;∴P,E,F 共线;设BD=a,∵1BD AB 4=,∴PE=AB=4a;∴PF=PE﹣EF=3a; ∵PH∥BC,∴S △HBC =S △PBC ;∵PF∥AB,∴四边形BFPH 是平行四边形;∴BH=PF=3a;∵S △HBC :S △ABC =BH :AB=3a :4a=3:4,∴S △PBC :S △ABC =3:4;故选D;7. 2012四川巴中3分不能判定一个四边形是平行四边形的条件是A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等答案B;考点平行四边形的判定分析根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形; A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形;故选B;8. 2012四川自贡3分如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为A.2和3 B.3和2 C.4和1 D.1和4 答案B;考点平行四边形的性质,平行的性质,等腰三角形的判定和性质;分析∵AE平分∠BAD,∴∠BAE=∠DAE;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DAE=∠AEB;∴∠BAE=∠BEA;∴AB=BE=3;∴EC=AD﹣BE=2;故选B;答案D;考点平行四边形的性质,平行的性质,等腰三角形的判定;分析∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC;∴∠AEB=∠E BC;又BE平分∠ABC,∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AB=AE;同理可得:DC=DF;∴AE=DF;∴AE-EF=DE-EF,即AF=DE;当1EF AD4=时,设EF=x,则AD=BC=4x;∴AF=DE=14AD-EF=;∴AE=AB=AF+EF=;∴AB:BC=:4=5:8;∵以上各步可逆,∴当AB:BC=:4=5:8时,1EF AD4=;故选D;10. 2012山东聊城3分如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是A.DF=BE B.AF=CE C.CF=AE D.CF∥AE答案C;考点平行四边形的性质,全等三角形的判定;分析根据平行四边形的性质和全等三角形的判定方法逐项分析即可:A、当DF=BE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;B、当AF=CE时,由平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;C、当CF=AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能可判定△CDF≌△ABE;D、当CF∥AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE;故选C;11. 2012山东泰安3分如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为A.53°B.37°C.47°D.123°答案B;考点平行四边形的性质,对项角的性质,平行的性质;分析设CE与AD相交于点F;∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°;∴∠DFC=37∵四边形ABCD是平行四边形, ∴AD∥BC;∴∠BCE=∠DFC=37°;故选B;12. 2012广西南宁3分如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm答案C;考点平行四边形的性质,三角形三边关系;分析∵平行四边形ABCD 中,AB=3cm,BC=5cm, ∴OA=OC=12AC 平行四边形对角线互相平分, BC -AB <AC <BC +AB 三角形三边关系,即2cm <AC <8cm;∴1cm<OA <4cm;故选C;13. 2012内蒙古包头3分如图,过口ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的口AEMG 的面积S 1 与口HCFG 的面积S 2的大小关系是A .S 1 > S 2 < S 2 C .S 1 = S 2 = S 2答案C;考点平行四边形的判定和性质;分析易知,四边形BHME 和MFDG 都是平行四边形;∵平行四边形的对角线把平行四边形分成了两个面积相等的三角形,∴ABD BCD EBM BHM GMD DMF S S S S S S ∆∆∆∆∆∆===,,;∴ABD EBM GMD BCD BHM DMF S S S S S S ∆∆∆∆∆∆--=--,即S 1 = S 2;故选C;14. 2012黑龙江绥化3分如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD,且AE 、BD 交于点F,则S △DEF :S △EBF :S △ABF =A .2:5:25B .4:9:25C .2: 3:5D .4:10:25答案D;考点平行四边形的性质,相似三角形的判定和性质;分析由DE :EC=2:3得DE :DC=2:5,根据平行四边形对边相等的性质,得DE :AB=2:5 由平行四边形对边平行的性质易得△DFE∽△BFA∴DF:FB= DE :AB=2:5,S △DEF :S △ABF =4:25;又∵S △DEF 和S △EBF 是等高三角形,且DF :FB =2:5,∴S △DEF :S △EBF =2:5=4:10;∴S △DEF :S △EBF :S △ABF =4:10:25;故选D;二、填空题1. 2012广东汕头4分如图,在 ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E,连接CE,则阴影部分的面积是 ▲ 结果保留π.答案133π-;考点平行四边形的性质,扇形面积的计算分析过D点作DF⊥AB于点F;∵AD=2,AB=4,∠A=30°,∴DF=AD sin30°=1,EB=AB﹣AE=2;∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-;2. 2012浙江衢州4分如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为▲ 用a的代数式表示.答案12a;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴△DEF∽△CEB,△DEF∽△ABF;∴S△DEF:S△CE B=DE:CE2,S△DEF:S△ABF=DE:AB2,∵CD=2DE,∴DE:CE=1:3,DE:AB=1:2,∵S△DEF=a,∴S△CBE=9a,S△ABF=4a,∴S四边形BCDF=S△CEB﹣S△DEF=8a;∴S ABCD=S四边形BCDF+S△ABF=8a+4a=12a;3. 2012江苏南京2分如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE= ▲ cm答案;考点平行四边形的性质,平行的性质,等腰三角形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,AD=10cm,CD=5cm,∴BC=AD=10cm,AD∥BC,∴∠2=∠3;∵BE=BC,CE=CD,∴BE=BC=10cm,CE=CD=5cm,∠1=∠2,∠3=∠D;∴∠1=∠2=∠3=∠D;∴△BCE∽△CDE;∴BC CECD DE=,即1055DE=,解得DE=;4. 2012江苏镇江2分如图,E是平行四边形ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,CE1AB3=,则CF的长为▲ ;答案2;考点平行四边形的性质,相似三角形的判定和性质的;分析∵四边形ABCD 是平行四边形,∴AB∥DC,BC=AD=4;∴△CEF∽△ABF;∴CE CF AB BF =; 又∵CE 1AB 3=,BF=BC+CF=4+ CF,∴CF 14CF 3=+,解得CF=2; 5. 2012湖北鄂州3分如图,ABCD 中,AE⊥BC 于E,AF⊥CD 于F,若AE=4,AF=6,sin∠BAE=31,则CF= ▲ .考点平行四边形的性质,锐角三角函数定义,勾股定理,相似三角形的判定和性质;分析由AE⊥BC 和sin∠BAE=13,得BE 1AB 3=;∴可设BE=k,则AB=3k;∵AE=4,∴根据勾股定理得222AB AE BE =+,即()2223k 4k =+,解得;;∵四边形ABCD ,∠D=∠B;又∵AE⊥BC,AF⊥CD,∴∠AFD=∠AEB=900;∴△AFD∽△AEB;∴DF AF BE AE=;64=,解得DF DF= =6. 2012湖南永州3分如图,平行四边形ABCD 的对角线相交于点O,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 ▲ .答案20;考点平行四边形的性质,线段垂直平分线的性质;144482分析∵四边形ABCD 是平行四边形,∴OB=OD,AB=CD,AD=BC 平行四边形对边相等,对角线互相平分;∵OE⊥BD,∴BE=DE 线段垂直平分线上的点到线段两端的距离相等;∵△CDE 的周长为10,即CD+DE+EC=10,∴平行四边形ABCD 的周长为:AB+BC+CD+AD=2BC+CD=2BE+EC+CD=2DE+EC+CD=2×10=20;7. 2012湖南怀化3分如图,在ABCD 中,AD=8,点E 、F 分别是BD 、CD 的中点,则EF=▲ .答案4;考点平行四边形的性质,三角形中位线定理;分析∵四边形ABCD 是平行四边形,∴BC=AD=8;∵点E 、F 分别是BD 、CD 的中点,∴EF=12BC=12×8=4; 8. 2012湖南湘潭3分如图,在ABCD 中,点E 在DC 上,若EC :AB=2:3,EF=4,则BF=▲ . 答案6;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AB∥CD;∴∠CAB=∠ACD,∠ABE=∠BEC; ∴△ABF∽△CEF;∴AB BF CE EF=, 又∵EC:AB=2:3, EF=4,∴3BF 24=,解得BF=6; 9. 2012四川成都4分如图,将ABCD 的一边BC 延长至E,若∠A=110°,则∠1= ▲ .答案70°;考点平行四边形的性质,平角的性质; 分析∵平行四边形ABCD 的∠A=110°,∴∠BCD=∠A=110°;∴∠1=180°﹣∠BCD=180°﹣110°=70°;10. 2012辽宁本溪3分如图,在□ABCD 中,∠ABC 的平分线BE 交AD 边于点E,交对角线AC 于点F,若AB 3BC 5=,则AF AC = ▲ ; 答案38; 考点平行四边形的性质,平行的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AD∥BC,∠EBC=∠AEB;∵BE 是∠ABC 的角平分线,∴∠EBC=∠AEB=∠ABE,AB=AE; ∵AB 3BC 5=,∴AE 3BC 5=; ∵AD∥BC,∴△AFE∽△CFB;∴AE AF 3BC FC 5==;∴AF 3AF FC 8=+;∴AF 3AC 8=; 11. 2012贵州黔西南3分如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE2012山东烟台3分ABCD中,已知点A﹣1,0,B2,0,D0,1.则点C的坐标为▲ .答案3,1;考点平行四边形的性质,坐标与图形性质;分析画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案:∵平行四边形ABCD中,已知点A﹣1,0,B2,0,D0,1,∴AB=CD=2﹣﹣1=3,DC∥AB;∴C的横坐标是3,纵坐标和D的纵坐标相等,是1;∴C的坐标是3,1;13. 2012吉林长春3分如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若△ACD的面积为3,则图中的阴影部分两个三角形的面积和为▲ .答案3;考点平行四边形和矩形的性质;分析∵四边形ABCD是平行四边形,∴△ACD的面积=△ACB的面积;又∵△ACD的面积为3,∴△ACB的面积为3;∵△ACB的面积矩形AEFC的面积的一半, ∴阴影部分两个三角形的面积和=△ACB的面积=3; 14. 2012黑龙江龙东地区3分如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件使四边形AECF是平行四边形只填一个即可;答案AF=CE答案不唯一;考点平行四边形的判定和性质;分析根据平行四边形性质得出AD∥BC,AF=CE,得出AF∥CE;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE 或FD=EB;根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC;添加∠AEC=∠FCA 或∠DAE=∠DFC 等得到AE∥FC,也可使四边形AECF 是平行四边形;三、解答题1. 2012北京市5分已知:如图,点E,A,C 在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.答案证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC 和△E CD 中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECDSAS;∴CB=ED;考点平行线的性质,全等三角形的判定和性质;分析首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED;2. 2012陕西省6分如图,在ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F .1求证:AB=AF ;2当AB=3,BC=5时,求AE AC 的值. 答案解:1证明:如图,在ABCD 中,AD∥BC, ∴∠2=∠3;∵BF 是∠ABC 的平分线,∴∠1=∠2;∴∠1=∠3;∴AB=AF;2∵AEF CEB 23∠=∠∠=∠,,∴△AEF∽△CEB;∴AE AF 3EC BC 5==, ∴AE 3AC 8=; 考点平行四边形的性质,平行线的性质,等腰三角形的判定,相似三角形的判定和性质;分析1由在ABCD 中,AD∥BC,利用平行线的性质,可求得∠2=∠3,又由BF 是∠ABC 的平分线,易证得∠1=∠3,利用等角对等边的知识,即可证得AB=AF;2易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得AE AC的值; 3. 2012广东省6分已知:如图,在四边形ABCD 中,AB∥CD,对角线AC 、BD 相交于点O,BO=DO . 求证:四边形ABCD 是平行四边形.答案证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO 与△CDO 中,∵∠ABO=∠CDO,BO=DO,∠AOB=∠COD,∴△ABO≌△CDOASA;∴AB=CD;∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠COD,即可根据ASA得出△ABO≌△CDO,故可得出AB=CD,从而根据一组对边平行且相等的四边是平行四边形的判定得出结论;4. 2012广东湛江8分如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:1△ABE≌△CDF;2四边形BFDE是平行四边形.答案证明:1∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CD FSAS;2∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF;∴四边形BFDE是平行四边形;考点平行四边形的性质和判定,全等三角形的判定;分析1由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;2由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF;根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形;5. 2012浙江湖州8分已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.1说明△DCE≌△FBE的理由;2若EC=3,求AD的长.答案1证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠CDE=∠F;又∵BF=AB,∴DC=FB;在△DCE和△FBE中,∵ ∠CDE=∠F,∠CED=∠BEF, DC=FB,∴△DCE≌△FBEAAS;2解:∵△DCE≌△FBE,∴EB=EC;∵EC=3,∴BC=2EB=6;∵四边形ABCD是平行四边形,∴AD=BC;∴AD=6;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析1由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE;2由1,可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长;6. 2012浙江衢州6分如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系并对你的猜想加以证明.答案解:猜想:AE=CF;证明如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴∠ABE=∠CDF;在△ABE和△CDF中,AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDFSAS,∴AE=CF;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质; 分析由四边形ABCD是平行四边形,即可得AB∥CD,AB=CD,然后利用平行线的性质,求得∠ABE=∠CDF,又由BE=DF,即可由SAS证得△ABE≌△CDF,从而可得AE=CF;7. 2012江苏淮安8分已知:如图在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F;求证:△BEF≌△CDF答案证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB; ∴∠CDF=∠B,∠C=∠FBE;又∵BE=AB,∴BE=CD;∵在△BEF和△CDF中,∠CDF=∠B,BE=CD,∠C=∠FBE,∴△BEF≌△CDFASA;考点平行四边形的性质,平行的性质,全等三角形的判定;分析根据平行四边形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠C=∠FBE,然后利用ASA证明即可;8. 2012江苏泰州10分如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.答案证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠CFB=90°;∵AE∥CF,∴∠AED=∠CFB;在Rt△AED和Rt△CFB中,∵∠EAD=∠CFB=90°,∠AED=∠CFB, AE=CF,∴Rt△AED≌Rt△CFBASA;∴AD=BC;又∵AD∥BC,∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析由垂直得到∠EAD=∠BCF=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可;9. 2012江苏无锡8分如图,在ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.答案证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠B=∠DCF;∵在△ABE和△DCF中,AB=DC,∠B=∠DCF,BE=CF,∴△ABE≌△DCFSAS;∴∠BAE=∠CDF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AB=DC,AB∥DC,再根据平行线的性质可得∠B=∠DCF,即可由SAS证明△ABE≌△DCF,再根据全等三角形对应边相等的性质得到结论;10. 2012江苏徐州6分如图,C为AB的中点;四边形ACDE为平行四边形,BE与CD相交于点F;求证:EF=BF;答案证明:∵四边形ACDE为平行四边形,∴ED=AC,ED∥AC;∴∠D=∠FCB,∠DEF=∠B;又∵C为AB的中点,∴AC=BC;∴ED=BC;在△DEF和△C BF中,∵∠D=∠FCB,ED=BC,∠DEF=∠B,∴△DEF≌△CBFSAS;∴EF=BF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形对边平行且相等的性质,易用SAS证明△DEF≌△CBF,从而根据全等三角形对应边相等的性质即可证得EF=BF;11. 2012福建厦门10分已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.1如图,若PE=错误!,EO=1,求∠EPF的度数;2若点P是AD的中点,点F是DO的中点,BF =BC+3错误!-4,求BC的长.答案解:1连接PO ,∵ PE=PF,PO=PO,PE⊥AC、PF⊥BD,∴ Rt△PEO≌Rt△PFOHL;∴∠EPO=∠FPO;在Rt△PEO中, tan∠EPO=错误!=错误!,∴ ∠EPO=30°;∴ ∠EPF=60°;2∵点P是AD的中点,∴ AP=DP;又∵ PE=PF,∴ Rt△PEA≌Rt△PFDHL;∴∠OAD=∠ODA;∴ OA=OD;∴ AC=2OA=2OD=BD;∴ABCD是矩形;∵ 点P是AD的中点,点F是DO的中点,∴ AO∥PF;∵ PF⊥BD,∴ AC⊥BD;∴ABCD是菱形;∴ABCD是正方形;∴ BD=错误!BC;∵ BF=错误!BD,∴BC+3错误!-4=错误!BC,解得,BC=4;考点平行四边形的性质,角平分线的性质,三角形中位线定理,全等三角形的判定和性质,正方形的判定和性质,锐角三角函数定义;分析1连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;2根据条件证出 ABCD是正方形;根据正方形的对角线与边长的关系列式计算即可得解; 12. 2012福建莆田8分如图,四边形ABCD是平行四边形,连接AC.14分请根据以下语句画图,并标上相应的字母用黑色字迹的钢笔或签字笔画.①过点A画AE⊥BC于点E;②过点C画CF∥AE,交AD于点F;24分在完成1后的图形中不再添加其它线段和字母,请你找出一对全等三角形,并予以证明.答案解:1画图如下:2△ABC≌△CDA ;证明如下:∵ 四边形ABCD是平行四边形,∴ AB=CD,BC=DA;又∵ AC=CA,∴△ABC≌△CDASSS;考点作图复杂作图,平行四边形的性质,全等三角形的判定;分析1根据语句要求画图即可;2首先根据平行四边形的性质和AE∥CF,可得①△ABC≌△CDA,②△AEC≌△CFA,③△ABE≌△CDF;下面给出其它两个的证明:②△AEC≌△CFA;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC;∴ ∠DAC=∠ACE;∵AE∥CF,∴ ∠EAC=∠ACF;∵AC=CA,∴ △AEC≌△CFAASA;③△ABE≌△CDF;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC,∠B=∠D,AB =CD ;又∵AE∥CF,∴四边形AECF是平行四边形;∴∠AEC=∠AFC;∴∠AEB=∠CFD;∴△ABE≌△CDFAAS;13. 2012福建南平8分如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明, 备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明答案解:添加的条件可以是BE=DF答案不唯一;证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵BE=DF,∴AF=CE,即AF=CE,AF∥CE;∴四边形AECF是平行四边形;考点平行四边形的判定和性质,全等三角形的判定和性质,平行的判定和性质;分析根据平行四边形性质得出AD∥BC,AD=BC,求出AF∥CE,AF=CE,根据平行四边形的判定推出即可;当AE=CF时,四边形AECF可能是平行四边形,也可能是等腰梯形;当∠AEB=∠CFD时,四边形AECF也是平行四边形,证明如下:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D;∵∠AEB=∠CFD,∴△AEB≌△CFDAAS;∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠AEB=∠EAF;∴∠CFD=∠EAF;∴AE∥FC;∴四边形AECF是平行四边形;14. 2012福建泉州9分如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F,求证∠DAE=∠BCF.答案证明:证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC平行四边形对边平行且相等∴∠ADB=∠CBD两直线平行,内错角相等;∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°垂直的定义;在△ADE和△CBF中,∵∠ADB=∠CBD,∠AED=∠CFB,AD=CB,∴△ADE≌S△CBFAAS;∴∠DAE=∠BCF全等三角形的对应角相等;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析由四边形ABCD为平行四边形,根据平行四边形的对边平行且相等得到AD=BC,AD与BC平行,利用两直线平行内错角相等得到一对角相等,再由AE⊥BD,CF⊥BD得到一对直角相等,利用AAS可得出三角形ADE与三角形CBF全等,利用全等三角形的对应角相等可得出∠DAE=∠BCF,得证;15. 2012湖北黄石7分如图,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.答案证明:∵四边形ABCD为平行四边形, ∴AD∥BC,且AD=BC;∴∠ADE=∠BCF;又∵BE=DF, ∴BF=DE;∴△ADE≌△CBFSAS;∴∠DAE=∠BCF ;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质;分析根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,由SAS证△ADE≌△CBF,推出∠DAE=∠BCF即可;16. 2012湖南郴州8分已知:点P是ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC 于点F.求证:AE=CF.答案证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠PAE=∠PCF;∵点P是ABCD的对角线AC的中点,∴PA=PC;在△PAE和△PCE中,∵∠PAE=∠PCF,PA=PC,∠APE=∠CPF,∴△PAE≌△PCEASA;∴AE=CF;考点平行四边形的性质,全等三角形的判定和性质;分析由四边形ABCD是平行四边形,易得∠PAE=∠PCF,由点P是 ABCD 的对角线AC的中点,可得PA=PC,又由对顶角相等,可得∠APE=∠CPF,即可利用ASA证得△PAE≌△PCF,即可证得AE=CF;17. 2012四川广安6分如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.答案证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD; ∴∠D=∠EAF;∵AF=AB,BE=AD,∴AF=CD,AD﹣AF=BE﹣AB,即DF=AE;在△AEF和△DFC中,∵AE=DF,∠EAF=∠D,AF=DC,∴△AEF≌△DFCSAS,考点平行四边形的性质,平行线的性质,全等三角形的判定;分析由四边形ABCD是平行四边形,利用平行四边形的性质,即可得AB=CD,AB∥CD,又由平行线的性质,即可得∠D=∠EAF,然后由BE=AD,AF=AB,求得AF=CD,DF=AE,从而由SAS证得;18. 2012辽宁鞍山8分如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.答案证明:∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DGC=∠GCB,∵DG=DC,∴∠DGC=∠DCG;∴∠DCG=∠GCB;∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°,∴∠DCP=∠FCP;∵在△PCF和△PCE中,CE=CF,∠FCP=∠ECP,CP=CP,∴△PCF≌△PCESAS;∴PF=PE;考点平行四边形的性质,平行的性质,等腰三角形的性质,全等三角形的判定和性质;分析根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG,推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可;19. 2012辽宁大连9分如图,□ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O.求证:OA=OC.答案证明:∵四边形ABCD是平行四边形,∴AD=BC;∵ED=BF,∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠OAE=∠OCF,∠OEA=∠OFC;在△AOE 和△COF中,∵∠OAE=∠OCF,AE=CF,∠OEA=∠OFC,∴△AOE ≌△COFASA;∴OA=OC;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AD BC;由等量减等量差相等得AE=CF;由两直线平行内错角相等得∠OAE=∠OCF,∠OEA=∠OFC;由ASA证得△AOE ≌△COF,从而根据全等三角形对应边相等的性质得OA=OC;20. 2012辽宁沈阳10分已知,如图,在荀ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.1求证:△AEM≌△CFN;21世纪教育网2求证:四边形BMDN是平行四边形.答案证明:1 ∵四边形ABCD是平行四边形,∴AB∥DC ,AD∥BC;∴∠E=∠F,∠DAB=∠BCD; ∴∠EAM=∠FCN;又∵AE=CF ∴△AEM≌△CFNASA;2 ∵由1△AEM≌△CFN, ∴AM=CN;又∵四边形ABCD是平行四边形,∴AB CD ;∴BM DN;∴四边形BMDN是平行四边形;考点平行四边形的判定和性质,平行的性质,全等三角形的判定和性质;分析1根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;2根据平行四边形的性质及1的结论可得BM DN,则由有一组对边平行且相等的四边形是平行四边形即可证明;21. 2012贵州六盘水12分如图,已知E是 ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.1求证:△ABE≌△FCE.2连接AC.BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.答案证明:1∵四边形ABCD为平行四边形,∴AB∥DC;∴∠ABE=∠ECF;又∵E为BC的中点,∴BE=CE;在△ABE和△FCE中,∵∠ABE=∠FCE,BE=CE,∠AEB=∠FEC,∴△ABE≌△FCEASA;2∵△ABE≌△FCE,∴AB=CF;又AB∥CF,∴四边形ABFC为平行四边形;∴BE=EC,AE=EF;又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB;∴∠ABC=∠EAB,∴AE=BE;∴AE+EF=BE+EC,即AF=BC;∴四边形ABFC为矩形;考点平行四边形的性质,平行的性质,全等三角形的判定和性质,等腰三角形和判定,矩形的判定;分析1由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;2由△ABE≌△FCE,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEB等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形;22. 2012山东济南7分1如图1,在ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.2如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.答案1证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,AD=CB ,∠A=∠C ,AE=CF,∴△ADE≌△CBFSAS;∴DE=BF;2解:∵AB=AC,∠A=40°,∴∠ABC=∠C=12180°-40°=70°,又∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=35°;∴∠BDC=180°-∠DBC-∠C=75°;考点平行四边形的性质,全等三角形的判定和性质;等腰三角形的性质,角平分线的定义,角形的内角和定理;分析1根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,由“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;2根据AB=AC,利用等角对等边和已知的∠A的度数求出∠ABC和∠C的度数,再根据已知的BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,最后根据三角形的内角和定理即可求出∠BDC的度数;23. 2012山东潍坊10分如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.。
三年(2021-2023)中考数学真题分项汇编(全国通用)直角三角形与勾股定理(优选真题60道)一.选择题(共28小题)1.(2023•湖北)如图,在△ABC 中,∠ABC =90°,AB =3,BC =4,点D 在边AC 上,且BD 平分△ABC 的周长,则BD 的长是( )A .√5B .√6C .6√55D .3√642.(2023•济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A ,B ,C ,D ,E 均在小正方形方格的顶点上,线段AB ,CD 交于点F ,若∠CFB =α,则∠ABE 等于( )A .180°﹣αB .180°﹣2αC .90°+αD .90°+2α3.(2023•天津)如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边BC ,AC 相交于点D ,E ,连接AD .若BD =DC ,AE =4,AD =5,则AB 的长为( )A .9B .8C .7D .64.(2023•泸州)《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a ,b ,c 的计算公式:a =12(m 2﹣n 2),b =mn ,c =12(m 2+n 2),其中m >n >0,m ,n 是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是( )A .3,4,5B .5,12,13C .6,8,10D .7,24,255.(2023•无锡)如图,在四边形ABCD 中,AD ∥BC ,∠DAB =30°,∠ADC =60°,BC =CD =2,若线段MN 在边AD 上运动,且MN =1,则BM 2+2BN 2的最小值是( )A .132B .293C .394D .106.(2023•日照)已知直角三角形的三边a ,b ,c 满足c >a >b ,分别以a ,b ,c 为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S 1,均重叠部分的面积为S 2,则( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1,S 2大小无法确定7.(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC 中,∠A =30°,AC =3,∠A 所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A .2√3B .2√3−3C .2√3或√3D .2√3或2√3−38.(2022•南充)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,DE ∥AB ,交AC 于点E ,DF ⊥AB 于点F ,DE =5,DF =3,则下列结论错误的是( )A .BF =1B .DC =3 C .AE =5D .AC =99.(2022•遵义)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .210.(2022•安徽)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△P AB ,△PBC ,△PCA 的面积分别记为S 0,S 1,S 2,S 3.若S 1+S 2+S 3=2S 0,则线段OP 长的最小值是( )A .3√32B .5√32C .3√3D .7√3211.(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .52B .3C .2√2D .10312.(2022•南京)直三棱柱的表面展开图如图所示,AC =3,BC =4,AB =5,四边形AMNB 是正方形,将其折叠成直三棱柱后,下列各点中,与点C 距离最大的是( )A .点MB .点NC .点PD .点Q13.(2022•温州)如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,连结CF ,作GM ⊥CF 于点M ,BJ ⊥GM 于点J ,AK ⊥BJ 于点K ,交CF 于点L .若正方形ABGF 与正方形JKLM 的面积之比为5,CE =√10+√2,则CH 的长为( )A .√5B .3+√52C .2√2D .√1014.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .4√2B .6C .2√10D .3√515.(2022•攀枝花)如图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC .若OC =√5,BC =1,∠AOB =30°,则OA 的值为( )A .√3B .32C .√2D .116.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校17.(2021•山西)在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想18.(2021•襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺19.(2021•自贡)如图,A(8,0),C(﹣2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5)B.(5,0)C.(6,0)D.(0,6)20.(2021•常德)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④21.(2023•赤峰)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是()A.16,6B.18,18C.16,12D.12,1622.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm23.(2022•永州)如图,在Rt △ABC 中,∠ABC =90°,∠C =60°,点D 为边AC 的中点,BD =2,则BC 的长为( )A .√3B .2√3C .2D .424.(2022•大连)如图,在△ABC 中,∠ACB =90°.分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN .直线MN 与AB 相交于点D ,连接CD ,若AB =3,则CD 的长是( )A .6B .3C .1.5D .125.(2021•新疆)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AB =4,CD ⊥AB 于点D ,E 是AB 的中点,则DE 的长为(A .1B .2C .3D .426.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m27.(2021•黑龙江)如图,矩形ABCD的边CD上有一点E,∠DAE=22.5°,EF⊥AB,垂足为F,将△AEF 绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B处,连接BE.下列结论:①BM⊥AE;②四边形EFBC是正方形;③∠EBM=30°;④S四边形BCEM:S△BFM=(2√2+1):1.其中结论正确的序号是()A.①②B.①②③C.①②④D.③④28.(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°二.填空题(共27小题)29.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km 至C港,则A,C两港之间的距离为km.30.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD<BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.31.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC 的角平分线,则AD=.32.(2023•扬州)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若b﹣a=4,c=20,则每个直角三角形的面积为.33.(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF =3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.34.(2022•无锡)已知△ABC中,∠B=45o,∠C=60o,AB=√6,则AC=.35.(2022•无锡)如图,在Rt△ABC中,∠C=90o,AC=2,BC=4,点E、F分别在AB、AC上,点A关于EF的对称点A'落在BC上,设CA'=x.若AE=AF,则x=;设AE=y,请写出y关于x的函数表达式:.36.(2022•鄂尔多斯)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=13,则AB的长是.237.(2022•泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为.38.(2021•丹东)如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE>CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为.39.(2021•玉林)如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.40.(2021•深圳)如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为.41.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.42.(2021•宿迁)《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的C'处(如图),水深和芦苇长各多少尺?则该问题的水深是尺.43.(2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为.44.(2021•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为.45.(2021•齐齐哈尔)直角三角形的两条边长分别为3和4,则这个直角三角形斜边上的高为.46.(2021•无锡)锐角△ABC中,∠A=30°,AB=m,则△ABC面积S的取值范围是.47.(2023•荆州)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD=5,则DE =.48.(2023•郴州)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB的中点,求CM=.49.(2022•荆州)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于AE=1,则CD=.D,E,连接CD.若CE=1350.(2021•盐城)如图,在Rt△ABC中,CD为斜边AB上的中线,若CD=2,则AB=.51.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN =50(√3−1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m (结果取整数,参考数据:√3≈1.7).52.(2021•陕西)如图,在Rt△中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为.53.(2021•乐山)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=4.若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则CP的长为.54.(2021•常州)如图,在Rt△ABC中,∠ACB=90°,∠CBA=30°,AC=1,D是AB上一点(点D与点A不重合).若在Rt△ABC的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则AD长的取值范围是.55.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连接BD.若CD=1,则AD的长为.三.解答题(共5小题)56.(2023•金华)如图,为制作角度尺,将长为10,宽为4的矩形OABC分割成4×10的小正方形网格,在该矩形边上取点P,来表示∠POA的度数,阅读以下作图过程,并回答下列问题:(1)分别求点P3,P4表示的度数.(2)用直尺和圆规在该矩形的边上作点P5,使该点表示37.5°(保留作图痕迹,不写作法).57.(2022•陕西)我国三国时期的杰出数学家赵爽在注解《周髀算经》时,巧妙地运用弦图证明了勾股定理.如图,在10×15的正方形网格中,将弦图ABCD放大,使点A,B,C,D的对应点分别为A′,B′,C′,D′.(1)A′C′与AC的比值为;(2)补全弦图A′B′C′D′.58.(2021•攀枝花)如图是“弦图”的示意图,“弦图”最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的,它标志着中国古代的数学成就.它由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形,每个直角三角形的两条直角边分别为a、b,斜边为c.请你运用此图形证明勾股定理:a2+b2=c2.59.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.60.(2021•杭州)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC =60°,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.。
勾股定理常见考点分类例析勾股定理是数学中最重要的定理之一,学好勾股定理对我们的学习有很多的帮助,为了使同学们更好地复习本章,本文从部分省市的中考题中撷取数例加以说明,共同学们复习时参考.考点1:利用勾股定理求面积例1 图1是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A.13B.26C.47D.94分析:根据勾股定理,直角三角形两直角边的平方和等于斜边的平方,得正方形A 、正方形B 的面积和为正方形甲的面积; 正方形C 、正方形D 的面积和为正方形乙的面积; 正方形甲、正方形乙的面积和为正方形E 的面积; 即正方形E 的面积为正方形A 、B 、C 、D 的面积和. 解:最大正方形E 的面积为32+52+22+32=47.故选C.点评:本题看似无法求解,但抓住直角三角形中的勾股定理,把正方形E 的面积转化为四个正方形A 、B 、C 、D 的面积和,使得问题简捷获解.考点2:利用勾股定理求周长例2 图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC=6,BC=5,将四个直角三甲乙图1AD角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是__________.解析:结合图甲、图乙可知:AD=BC=5,DE=AC=6,DF=2DE=2×6=12.在Rt △ADF 中,由勾股定理得,AF=22DF AD +=22125+=13.所以这个风车的周长为4EF+4AF=4×6+4×13=76.点评:勾股定理反映了三角形三边之间的数量关系,因而只要存在直角三角形,就可联想到勾股定理,进而利用它来求一些线段的长.考点3:确定点的位置例2 如图3所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 中点 B .BC 中点C .AC 中点D .∠C 的平分线与AB 的交点解析:在△ABC 中,因为BC 2+AC 2=6002+8002=1000000=10002=AB 2,根据勾股定理的逆定理可知,△ABC 为直角三角形,且∠C 为直角.显然AB 的中点到点A 、B 、C 的距离均相等,故选A.点评:本题是勾股定理的逆定理在实际问题中的应用. 考点4:利用勾股定理求最短路程例4 如图4,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A.215B.25C.5510+D.35解析:可将该长方体的右表面翻折至前表面,然后运用勾股定理求解即可.CB图3连接AB ,线段AB 的长度即为最短距离(如图5所示).由勾股定理可知AB=22BD AD +=221520+=25.故选B.点评:运用勾股定理解题时要注意转化思想的运用,具体说来,如把四边形转化为三角形、通过把一般三角形问题转化为直角三角形问题,把立体图形问题转化为平面图形等等.考点5:验证勾股定理例5 如图6是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a 、b ,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的示意图.(1)画出拼成的这个图形的示意图. (2)证明勾股定理.解析:方法一解:(1)如图7.(2)证明:∵大正方形的面积表示为(a+b )2, 大正方形的面积也可表示为c 2+4×21ab. ∴(a+b )2=c 2+4×21ab.图6图7 图8图4 B AC D图5∴a 2+b 2=c 2.即直角三角形两直角边的平方和等于斜边的平方. 方法二解:(1)如图8.(2)证明:∵大正方形的面积可表示为:c 2. 又可以表示为:21ab ×4+(b-a )2. ∴c 2=21ab ×4+(b-a )2,∴c 2=a 2+b 2. 即直角三角形两直角边的平方和等于斜边的平方.点评:本题考查了勾股定理的验证,方法多种多样,有兴趣的同学们不妨探讨其他拼图及证明方法.。
2012年全国中考数学试题分类解析汇编(159套63专题)专题54:图形的旋转变换一、选择题1. (2012天津市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【 】(A )平行四边形 (B )矩形 (C )菱形 (D )正方形 【答案】D 。
【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。
故选D 。
2. (2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB ..3+42π.11124π【答案】D 。
【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。
【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。
∴AC =∴AB C 1S B C A C 22∆=⨯⨯=设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC=DC,∴△BCD 是等边三角形。
∴BD=CD=1。
∴点D 是AB 的中点。
∴AC D AB C 11S S 2224∆∆==⨯=S 。
∴1AC D AC A BC D ABC S S S ∆∆=++扇形扇形的面扫过积26013113603604464124ππππ⨯⨯=+=++=+故选D 。
3. (2012广东汕头4分)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【 】A .110° B.80° C.40° D.30° 【答案】B 。
中考数学试题分类汇编:北师版数学八年级上册第1章《勾股定理》考点一:勾股定理1.(•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦的平方为32+42=25,弦长为5.故选:A.2.(•模拟)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.3.(•模拟)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.4.(•模拟)如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=()A.3B.4C.5D.6【分析】先判定△ABC为等腰三角形,利用等腰三角形的性质可求得BD,在Rt△ABD中利用勾股定理可求得AD的长.【解答】解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=3,在Rt△ABD中,AB=5,BD=3,∴AD=4,故选:B.考点二:勾股定理得证明1.(•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.2.(•期中)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.【分析】通过图中小正方形面积证明勾股定理.【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2.3.(•期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.【分析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.【解答】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为12ab,12ab和12c2.直角梯形的面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.4.(•模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a),∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b﹣a),∴12ab+12b2+12ab=12ab+12c2+12a(b﹣a),∴a2+b2=c2.考点三:勾股定理的逆定理1.(•南通)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.2.(•模拟)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD2=AC2+CD2=25,CD=5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.3.(•期中)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25【分析】只要验证两小边的平方和等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【解答】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选:A.4.(•期末)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.b2﹣c2=a2,则b2=a2+c2,△ABC是直角三角形;B.a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;C.∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;D.∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.5.(•期中)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【分析】因为△ABC的三边分别是6,8,10,根据勾股定理的逆定理可求出此三角形为直角三角形,根据三角形面积公式可求出面积.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.6.(•期中)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.7.(•期末)观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:.【分析】勾股定理和了解数的规律变化是解题关键.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.8.(•期中)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD2=AC2-AD2=225,CD=15,∴S△ABC=12BC•AD=12(BD+CD)•AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点四:勾股定理的应用1.(•期末)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.2.(•模拟)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC=4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.3.(•模拟)如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【解答】解:∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC﹣FC=32﹣25=7cm,在直角△ADF中,AD=24(cm).故选:C.4.(•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.5.(•包头)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8 56.(•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2=A′D2+BD2=400,A′B=20(cm).故答案为20.7.(•期中)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+(102)2=(x+1)2,再解答即可.【解答】解;设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.故答案是:12尺;13尺.8.(•期中)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.11/ 11。
中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(及答案)(14)
一、易错易错压轴选择题精选:勾股定理选择题 1.将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm,则 h 的取值范围是( ) A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 2.如图,在四边形ABCD中,∠DAB=30°,点E为AB的中点,DE⊥AB,交AB于点E,DE=3,BC=1,CD=13,则CE的长是( )
A.14 B.17 C.15 D.13
3.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c三个正方形的面积之和为( )
A.11 B.15 C.10 D.22 4.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=53,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短长为( )
A.5 B.53 C.532 D.
53
4
5.如图,在ABC中,,90ABACBAC,ABC的平分线BD与边AC相交于点D,DEBC,垂足为E,若CDE的周长为6,则ABC的面积为( ).
A.36 B.18 C.12 D.9 6.如图钢架中,∠A=15°,现焊上与AP1等长的钢条P1P2,P2P3…来加固钢架,若最后一根钢条与射线AB的焊接点P到A点的距离为4+23,则所有钢条的总长为( )
A.16 B.15 C.12 D.10 7.已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,下列结论错误的是( ).
A.AF⊥AQ B.AF=AQ C.AF=AD D.
FBAQ
8.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接B,D和B,E.下列四个结论:
2012年全国中考数学试题分类解析汇编(159套63专题)专题48:圆锥和扇形的计算一、选择题1. (2012山西省2分)如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是【 】A .10π⎛-⎝米2B .π⎛-⎝米2 C .6π⎛-⎝米2D .(6π-米2【答案】 C 。
【考点】扇形面积的计算,勾股定理,锐角三角函数定义,特殊角的三角函数值。
【分析】连接OD ,则D O C AO D S S S ∆=-扇形影阴。
∵弧AB 的半径OA 长是6米,C 是OA 的中点,∴OC=12OA=12×6=3。
∵∠AOB=90°,CD∥OB,∴CD⊥OA。
在Rt△OCD 中,∵OD=6,OC=3,∴==又∵C D sin D O C =O D62∠=,∴∠DOC=60°。
∴2D O C AO D 6061S S S =33602ππ∆⋅⋅=--⋅⋅-扇形影阴2)。
故选C 。
2. (2012宁夏区3分)如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是【 】A.1217πm 2B.617πm 2C.425πm 2D.1277πm 2【答案】D 。
【考点】扇形面积的计算。
【分析】如图,小羊A 在草地上的最大活动区域是:一个以点B 为圆心5m 为半径圆心角是900的扇形+一个以点C 为圆心5m -4m =1m 为半径圆心角是1800-1200=600的扇形的面积。
∴小羊A 在草地上的最大活动区域面积=2290560177+36036012πππ⋅⋅⋅⋅=。
故选D 。
3. (2012广东湛江4分)一个扇形的圆心角为60°,它所对的弧长为2πcm ,则这个扇形的半径为【 】A .6cmB .12cmC .2cmD .cm【答案】A 。
2012年全国各地中考数学考点分类解析汇编(22)二 次 函 数一、选择题1.(2012菏泽)已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图像大致是( )A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象。
解答:解:∵二次函数图象开口向下,∴a <0,∵对称轴x=﹣<0, ∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数a y x=位于第二四象限, 纵观各选项,只有C 选项符合.2.(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个考点: 二次函数的性质。
专题: 常规题型。
分析: 结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.解答: 解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A .点评: 本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.(2012•广州)将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y=x 2﹣1B .y=x 2+1C .y=(x ﹣1)2D .y=(x+1)2考点: 二次函数图象与几何变换。
专题: 探究型。
分析: 直接根据上加下减的原则进行解答即可.解答: 解:由“上加下减”的原则可知,将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x 2﹣1.故选A .点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.(2012泰安)将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--考点:二次函数图象与几何变换。
2012年山西省中考数学试卷一.选择题(共12小题)1.(2012山西)计算:﹣2﹣5的结果是()A.﹣7 B.﹣3 C. 3 D. 7考点:有理数的加法。
解答:解:﹣2﹣5=﹣(2+5)=﹣7.故选A.2.(2012山西)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于()A. 35°B. 40°C. 45°D. 50°考点:平行线的性质。
解答:解:∵∠CEF=140°,∴∠FED=180°﹣∠CEF=180°﹣140°=40°,∵直线AB∥CD,∴∠A∠FED=40°.故选B.3.(2012山西)下列运算正确的是()A.B.C. a2a4=a8D.(﹣a3)2=a6考点:幂的乘方与积的乘方;实数的运算;同底数幂的乘法。
解答:解:A.=2,故本选项错误;B.2+不能合并,故本选项错误;C.a2a4=a6,故本选项错误;D.(﹣a3)2=a6,故本选项正确.故选D.4.(2012山西)为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A. 0.927×1010B. 92.7×109C. 9.27×1011D. 9.27×109考点:科学记数法—表示较大的数。
解答:解:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.5.(2012山西)如图,一次函数y=(m﹣1)x﹣3的图象分别与x轴、y轴的负半轴相交于A.B,则m的取值范围是()A. m>1 B. m<1 C. m<0 D. m>0 考点:一次函数图象与系数的关系。
解答:解:∵函数图象经过二.四象限,∴m﹣1<0,解得m<1.故选B.6.(2012山西)在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A.B.C.D.考点:列表法与树状图法。
精品资源 欢迎下载 2012年全国各地中考数学试卷分类汇编 第二十一章 勾股定理 21.1 勾股定理 (2012广州市,7, 3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
A. 365 B. 1225 C. 94 D. 334
DCB
A
【解析】首先根据勾股定理求出直角三角形的斜边,利用直角三角形面积的两种求法,求出点C到AB的距离。
【答案】由勾股定理得AB=2222912ab=15,根据面积有等积式11BC=ABCD22AC,于是有CD=365。
【点评】本题用了考查常用的勾股定理,直角三角形根据面积得到的一个等积式,列方程求线段CD的长。
(2012安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )
A.10 B.54 C. 10或54 D.10或172 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的. 解答:解:如下图,54)44()22(22,1054)44()32(22 精品资源
欢迎下载 故选C. 点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A或B;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.
(2012四川省南充市,14,4分) 如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是24cm2,则AC长是_____________cm.
【解析】过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.则⊿ABE≌⊿ADF,得AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等.则
24=26AE,所以222643ACAE.
【答案】43cm. 【点评】本题考查了三角形的全等变换、正方形的性质以及勾股定理.解题的关键是正确的做出旋转的全等变换,将四边形的问题转化成正方形的问题来解决. (2012山东省荷泽市,16(2),6)(2)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标. 精品资源 欢迎下载 【解析】根据折叠问题及矩形的性质,可以利用勾股定理求出线段的长来确定点的坐标. 【答案】(1)依题意可知,折痕AD是四边形OAED的对称轴,
在RtABE中,10,8AEAOAB,22221086BEAEAB,
4CE,(4,8)E.
在RtDCE中,222DCCEDE,
又DEOD,222(8)4ODOD, 5OD,(0,5)D.
【点评】在平面直角坐标系中,求点的坐标实质就是求这个点到两轴的距离,也就是求线段的长,求线段的就是利用勾股定理、三角函数或相似三角形的对应边成比例.
(2012贵州贵阳,8,3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长( )
A.3 B.2 C.3 D.1 解析:由已知得,BF=2BD=AB,所以FC=AD,不难得到Rt△FEC≌Rt△AED,故得EC=ED=1,结合∠F=30°,∠FCE=90°,可得EF=2EC=2. 解答:选B. 点评:本题主要考查 “直角三角形中30°度角所对的直角边等于斜边的一半”的知识,也涉及到全等三角形的判定与性质,相对综合.
(2012浙江省嘉兴市,6,4分)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90° , ∠C=40° ,则AB等于( )米
A. asin4o° B. acos40° C.atan4o° D.tan40a
【解析】如图,在Rt△ABC中,∵∠A=90° , ∠C=40° , AC=a米,∴tan40°=ABAC,∴AB=atan4o°, 故选C. 【答案】C. 【点评】本题要求适当选用三角函数关系,解直角三角形. 精品资源 欢迎下载 22.2 勾股定理的逆定理 22.3 直角三角形的性质 (2012浙江省湖州市,5,3分)如图,在Rt△ABC中,∠ACB=900,AB=10,CD是AB边上的中线,则CD的长是( )
A.20 B.10 C.5 D.25
【解析】直角三角形斜边上的中线等于斜边的一半,故CD=21AB=21×10=5. 【答案】选:C. 【点评】此题考查的是直角三角形的性质,属于基础题。
( 2012年四川省巴中市,15,3)已知a、b、c是△ABC的三边长,且满足关系c2-a2-b2 +|a-b|=0,则△ABC的形状为______ 【解析】由关系c2-a2-b2 +|a-b|=0,得c2-a2-b2=0,即a2+b2= c2,且a-b=0即a=b,∴△ABCJ是等腰直角三角形. 应填等腰直角三角形. 【答案】等腰直角三角形 【点评】本题考查非负数的一个性质: “两个非负数之和为零时,这两个非负数同时为零.”及勾股定理逆定理的应用.
(2012山东省青岛市,14,3)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm.
【解析】将圆柱展开,AB=22(182)(1244)15错误!未找到引用源。. 【答案】15 【点评】本题考查圆柱的侧面展开为矩形,关键是在矩形上找出A和B两点的位置,据“两点之间线段最短”得出结果.“化曲面为平面”,利用勾股定理解决.要注意展开后有一直角边长是9cm而不是18 cm.
(2012,黔东南州,6)如图1,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( ) 精品资源 欢迎下载 A、(2,0) B、(51,0) C、(101,0) D、(5,0) 解析:在ABCRt中,13BCAB,,所以1013222BCABAC,所以10ACAM,故),0110(M. 答案:C. 点评:本题考查矩形、勾股定理、圆弧及数轴知识,是一道综合性的题目,比较简单,难度较小.
(2012陕西 16,3分)如图,从点02A,发出的一束光,经x轴反射,过点43B,,则这束光从点A到点B所经过路径的长为. 【解析】设这一束光与x轴交与点C,作点B关于x轴的对称点'B,过'B作'BDy轴 于点D.由反射的性质,知'ACB,,这三点在同一条直线上.再由轴对称的性质知'=BCBC.则+=''ACCBACCBAB.
由题意得=5AD,'=4BD,由勾股定理,得'=41AB.所以C=41ACB.
【答案】41 【点评】本题从物理学角度综合考查了平面直角坐标系中点的坐标应用、 轴对称性质以及勾股定理等.难度中等
(2012贵州黔西南州,18,3分)如图6,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为______________.
C D 'B 精品资源
欢迎下载 【解析】由于∠ACB=90°,DE⊥BC,所以AC∥DE.又CE∥AD,所以四边形ACED是平行四边形,所以DE=AC=2. 在Rt△CDE中,由勾股定理CD=CD2―DE2=23.又因为D是BC的中点,所以 BC=2CD=43. 在Rt△ABC中,由勾股定理AB=AC2+BC2=213. 因为D是BC的中点,DE⊥BC,所以EB=EC=4,所以四边形ACEB的周长=AC+CE+BE+BA=10+213. 【答案】10+213. 【点评】本题是一个几何的综合计算题,尽管难度不大,但综合考查了平行四边形、垂直平分线的性质和判定,理清思路,找准图形中的相等线段,并不难解决.
(2012贵州六盘水,23,12分)如图12,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.
分析:先根据题意画出示意图,过点C作CE⊥AD于点E,设BE=x,则在RT△ACE中,可得出CE,利用等腰三角形的性质可得出BC,继而在RT△BCE中利用勾股定理可求出x的值,也可得出CE的长度. 解答:解:过点C作CE⊥AD于点E, 由题意得,AB=30m,∠CAD=30°,∠CBD=60°, 故可得∠ACB=∠CAB=30°, 即可得AB=BC=30m,
设BE=x,在Rt△BCE中,可得CE= 3x, 又∵BC2=BE2+CE2,即900=x2+3x2, 解得:x=15,即可得CE= 153m.
答:小丽自家门前的小河的宽度为153m.