切削加工基本概述
- 格式:doc
- 大小:53.50 KB
- 文档页数:7
第十二章切削加工基础知识一、教学组织1.复习提问10分钟2.讲解75分钟3.小结5分钟二、教学内容第一节切削加工概述一、切削加工的实质和分类♦切削加工是指利用切削工具从工件上切除多余材料,获得符合预定技术要求的零件或半成品的加工方法。
切削加工包括机械加工和钳工加工两种,其主要形式有:车削、钻削、刨削、铣削、磨削、齿轮加工以及钳工等。
二、切削加工在工业生产中的地位及特点(1)切削加工可获得相当高的尺寸精度和较小的表面粗糙度参数值。
(2)切削加工几乎不受零件的材料、尺寸和质量的限制。
第二节切削运动与切削用量一、切削运动♦在切削过程中,加工刀具与工件间的相对运动,就是切削运动。
切削运动包括主运动和进给运动两个基本运动。
1.主运动♦主运动是由机床或人力提供的主要运动,它促使刀具和工件之间产生相对运动,从而使刀具前面接近工件。
主运动可以是旋转运动,也可以是直线运动。
多数机床的主运动为旋转运动,如车削、钻削、铣削、磨削中的主运动均为旋转运动。
2.进给运动♦进给运动是由机床或人力提供的运动,它使刀具与工件之间产生附加的相对运动,加上主运动,即可不断地或连续地切屑,并获得具有所需几何特性的已加工表面。
进给运动有直线、圆周及曲线进给之分。
直线进给又有纵向、横向、斜向三种。
任何切削过程必须有一个,也只有一个主运动。
进给运动则可能有一个或几个。
主运动和进给运动可以由刀具、工件分别来完成,也可以是由刀具单独完成。
二、切削用量切削用量要素包括切削速度、进给量和背吃刀量三个要素。
要完成切削,三者缺一不可,故又称为切削用量三要素。
♦待加工表面──工件上有待切除的表面;♦已加工表面──工件上经刀具切削后产生的表面;♦过渡表面──工件上由切削刃形成的那部分表面,它是待加工表面和已加工表面之间的过渡表面。
1.切削速度υc♦切削速度是指切削刃上选定点相对于工件的主运动的瞬时速度,单位为m/s 。
2.进给量f♦进给量是指主运动的一个循环内(一转或一次往复行程)刀具在进给方向上相对工件的位移量。
第一章金属切削加工的根本学问教学方法导入课:金属切削加工,通常又称为机械加工,是通过刀具与工件之间的相对运动,从毛坯上切除多余的金属,从而获得合格零件的加工方法。
切削加工的根本形式有:车、铣、刨、磨、钻等,包括钳工加工〔錾、锉、锯、刮削、钻孔、铰孔、攻丝、套丝等〕一般状况下,通过铸造、锻造、焊接及轧制的型材毛坯精度低和外表粗糙度大,必需进展切削加工才能成为零件。
本章主要介绍金属切削加工中的根本规律和现象。
讲授课:第一节金属切削加工的根本概念一、切削运动和切削要素1、切削运动切削运动是为了形成工件所必需的刀具和工件之间的相对运动。
切削运动按其作用不同,分为主运动和进给运动。
(1)主运动是切削运动中速度最高、消耗功率最大的运动;一般切削运动中,主运动只有一个。
各种机械加工的主运动:车削:工件的旋转铣削:铣刀的旋转刨削:刨刀〔牛头刨〕或工件〔龙门刨〕的往复直线运动钻削:刀具〔钻床上〕或工件〔车床上〕的旋转。
(2)进给运动是使的切削层金属不断地投入切削,从而切出整个外表的运动;进给运动可以是一个或多个。
各种机械加工的进给运动:车削:刀具的移动铣削:工件的移动钻孔:钻头沿轴向移动内外圆磨削:工件旋转和移动切削加工过程中,为实现机械化和自动化,提高效率,除切削运动外,还需要关心运动。
如切入运动,空程运动,分度转位运动、送夹料运动及机床掌握运动等。
切削过程中形成三个外表:待加工外表、加工外表、已加工外表2、切削要素包括切削用量和切削层横截面要素。
(1)切削用量三要素1)切削速度v是主运动的线速度〔m/s 或m/min 〕a = d w旋转主运动:2) 进给速度 v f 或进给量 fv f :单位时间内刀具对工件沿进给方向的相对位移〔 mm/s或 mm/min 〕进给量 f :工件或刀具每转一周,刀具对工件沿进给方向的相对位移。
〔mm/r 〕切削时间 t = L/v f = L/nf3〕背吃刀量 a p 〔切削深度〕工件已加工外表和待加工外表的垂直距离〔mm 〕 教学方法 外圆车削: - d p 2钻孔: a = d mp 2合成切削运动 :v e = v +v f 〔向量的关系〕(2) 切削层横截面要素切削层是指刀具与工件相对移动一个进给量时,相邻两个加工外表之间的金属层,切削层的轴向剖面称为切削层横截面。
切削加工基本知识第一节概述一、切削加工切削加工是用工具去除毛坯上多余的材料,以获得具有所需要的尺寸精度、形状精度、位置精度和表面粗糙度的零件的加工方法。
切削加工通常分为机械加工(简称机加工)和钳工两大类。
机械加工是通过操纵机床对工件进行的切削加工,如车、铣、刨、磨、镗、钻、拉、插及齿形加工等。
由于现代机械产品的精度和性能要求越来越高,对零件的加工质量也提出了更高的要求。
目前除少数零件采用精铸、精锻或粉末冶金直接获得外,绝大部分零件都需经过切削加工才能保证其精度。
因此,掌握切削加工的基本规律,正确地组织生产,对于实现优质、高产、低耗有着十分重要的意义。
钳工一般是指手持工具进行的装配、维修或切削加工,如划线、錾、锯、锉、刮研、攻螺纹和套螺纹等。
虽然钳工使用的工具简单,操作灵活,加工方法多种多样,但生产率低,劳动强度大,因而只有在装配和维修时,才比较经济和方便。
随着科学技术的发展和对产品质量要求的不断提高,钳工工具和操作方法也在不断改进和发展。
要实现切削过程,必须具备以下3 个条件:(1)工件与刀具之间要有相对切削运动;(2)刀具材料必须具有一定的切削性能;(3)刀具必须具有合理的切削角度。
二、切削运动和切削用量(一)切削运动切削加工是靠刀具和工件之间作一定的相对运动来实现的,这个相对运动称为切削运动,它包括主运动和进给运动。
1.主运动形成机床切削速度或消耗主要动力的运动叫主运动。
没有这个运动,切削加工就无法进行。
它可以是旋转运动,也可以是往复直线运动,如车削时工件的旋转,钻、铣、磨削时刀具的旋转,刨削时(牛头刨)刨刀的往复直线运动等都是主运动。
2.进给运动使工件多余的材料不断投入切削的运动叫进给运动。
没有这个运动,就不能进行连续切削。
它可以是直线运动、旋转运动或两者的组合,如车削和钻削时刀具的移动,铣、刨(牛头刨)时工件的移动,磨外圆时工件的旋转和轴向移动等。
无论那种切削加工,都必须有主运动和进给运动,但主运动只有一个,而进给运动可以有多个。
用切削工具(包括刀具、磨具和磨料)把坯料或工件上多余的材料层切去成为切屑,使工件获得规定的几何形状、尺寸和表面质量的加工方法。
任何切削加工都必须具备3个基本条件:切削工具、工件和切削运动。
切削工具应有刃口,其材质必须比工件坚硬。
不同的刀具结构和切削运动形式构成不同的切削方法。
用刃形和刃数都固定的刀具进行切削的方法有车削、钻削、镗削、铣削、刨削、拉削和锯切等;用刃形和刃数都不固定的磨具或磨料进行切削的方法有磨削、研磨、珩磨和抛光等。
切削加工是机械制造中最主要的加工方法。
虽然毛坯制造精度不断提高,精铸、精锻、挤压、粉末冶金等加工工艺应用日广,但由于切削加工的适应范围广,且能达到很高的精度和很低的表面粗糙度,在机械制造工艺中仍占有重要地位。
图1 畜力驱动铣削大铜环(1668)简史切削加工的历史可追溯到原始人创造石劈、骨钻等劳动工具的旧石器时期。
在中国,早在商代中期(公元前13世纪),就已能用研磨的方法加工铜镜;商代晚期(公元前12世纪),曾用青铜钻头在卜骨上钻孔;西汉时期(公元前 206~公元23),就已使用杆钻和管钻,用加砂研磨的方法在“金缕玉衣”的4000多块坚硬的玉片上钻了 18000多个直径1~2mm的孔。
17世纪中叶,中国开始利用畜力代替人力驱动刀具进行切削加工。
如公元1668年,曾在畜力驱动的装置上,用多齿刀具铣削天文仪上直径达2丈(古丈)的大铜环,然后再用磨石进行精加工。
18世纪后半期的英国工业革命开始后,由于蒸汽机和近代机床的发明,切削加工开始用蒸汽机作为动力。
到19世纪70年代,切削加工中又开始使用电力。
对种新的刀具材料相继出现。
19世纪末出现的高速钢刀具,使刀具许用的切削速度比碳素工具钢和合金工具钢刀具提高两倍以上,达到25m/min左右。
1923年出现的硬质合金刀具,使切削速度比高速钢刀具又提高两倍左右。
30年代以后出现的金属陶瓷(见陶瓷)和超硬材料(人造金刚石和立方氮化硼),进一步提高了切削速度和加工精度。
随着机床和刀具不断发展,切削加工的精度、效率和自动化程度不断提高,应用范围也日益扩大,从而促进了现代机械制造业的发展。
分类金属材料的切削加工有许多分类方法。
常见的有以下3种。
车削外圆刨削平面磨削外圆用靠模车削成形面图2 刀尖轨迹法按工艺特征区分切削加工的工艺特征决定于切削工具的结构以及切削工具与工件的相对运动形式。
按工艺特征,切削加工一般可分为:车削、铣削、钻削、镗削、铰削、刨削、插削、拉削、锯切、磨削、研磨、珩磨、超精加工、抛光、齿轮加工、蜗轮加工、螺纹加工、超精密加工、钳工和刮削等。
按材料切除率和加工精度区分可分为:粗加工:用大的切削深度,经一次或少数几次走刀从工件上切去大部分或全部加工余量,如粗车、粗刨、粗铣、钻削和锯切等,粗加工加工效率高而加工精度较低,一般用作预先加工,有时也可作最终加工。
半精加工:一般作为粗加工与精加工之间的中间工序,但对工件上精度和表面粗糙度要求不高的部位,也可以作为最终加工。
精加工:用精细切削的方式使加工表面达到较高的精度和表面质量,如精车、精刨、精铰、精磨等。
精加工一般是最终加工。
精整加工:在精加工后进行,其目的是为了获得更小的表面粗糙度,并稍微提高精度。
精整加工的加工余量小,如珩磨、研磨、超精磨削和超精加工等。
修饰加工:目的是为了减小表面粗糙度,以提高防蚀、防尘性能和改善外观,而并不要求提高精度,如抛光、砂光等。
超精密加工:航天、激光、电子、核能等尖端技术领域中需要某些特别精密的零件,其精度高达IT4以上,表面粗糙度不大于R a0.01µm。
这就需要采取特殊措施进行超精密加工,如镜面车削、镜面磨削、软磨粒机械化学抛光等。
按表面形成方法区分切削加工时,工件的已加工表面是依靠切削工具和工件作相对运动来获得的。
按表面形成方法,切削加工可分为3类。
刀尖轨迹法:依靠刀尖相对于工件表面的运动轨迹来获得工件所要求的表面几何形状,如车削、外圆、刨削平面、磨削外圆、用靠模车削成形面等。
刀尖的运动轨迹取决于机床所提供的切削工具与工件的相对运动。
成形刀具法:简称成形法,用与工件的最终表面轮廓相匹配的成形刀具或成形砂轮等加工出成形面。
此时机床的部分成形运动被刀刃的几何形状所代替,如成形车削、成形铣削和成形磨削等。
由于成形刀具的制造比较困难,机床-夹具-工件-刀具所形成的工艺系统所能承受的切削力有限,成形法一般只用于加工短的成形面。
成形车削成形铣削成形磨削图3 成形刀具法展成法:又称滚切法,加工时切削工具与工件作相对展成运动,刀具(或砂轮)和工件的瞬心线相互作纯滚动,两者之间保持确定的速比关系,所获得加工表面就是刀刃在这种运动中的包络面。
齿轮加工中的滚齿、插齿、剃齿、珩齿和磨齿(不包括成形磨齿)等均属展成法加工。
滚齿滚切包络过程图4 展成法(滚切法)有些切削加工兼有刀尖轨迹法和成形刀具法的特点,如螺纹车削。
加工精度和表面粗糙度各类切削加工方法所能达到的精度和表面粗糙度等级见表(各种加工方法的加工精度)。
提高切削加工质量的途径切削加工质量主要是指工件的加工精度(包括尺寸、几何形状和各表面间相互位置)和表面质量(包括表面粗糙度、残余应力和表面硬化)。
随着技术的进步,切削加工的质量不断提高。
18世纪后期,切削加工精度以mm计;20世纪初,切削加工精度最高已达0.01mm;至50年代,切削加工精度最高已达µm 级;70年代,切削加工精度又提高到0.1µm。
影响切削加工质量的主要因素有机床、刀具、夹具、工件毛坯、工艺方法和加工环境等方面。
要提高切削加工质量,必须对上述各方面采取适当措施,如减小机床工作误差、正确选用切削工具、提高毛坯质量、合理安排工艺、改善环境条件等。
减小机床工作误差通常采用的方法有:选用具有足够精度和刚度的机床。
必要时可以采取补偿校正的方法,如在螺纹磨床或滚齿机上,根据事先测得的机床传动链误差加装误差校正装置,以校正机床的传动系统误差。
采用机床夹具来保证加工精度,如利用镗模加工箱体上的孔系,使孔距精度由镗模决定而不受机床定位误差的影响。
防止机床热变形对加工精度的影响。
消除机床内部振源和采取隔振措施,以减少振动对加工精度和粗糙度的影响。
提高机床自动化程度,如采用主动测量或自动控制系统,以减少加工过程中的人为误差。
正确选用切削工具应采用耐磨性好的刀具,合理选用刀具几何参数,并仔细地研磨刃口,使其光滑而锋利。
例如用磨具加工,一般选用较细、较硬磨粒的磨具,砂轮要正确和及时地修整。
提高毛坯质量工件毛坯要具有均匀的材质和加工余量,同时采用适当的热处理,如时效处理、退火、正火、调质等措施以消减内应力,并改善材料的切削加工性。
合理安排工艺采用合理的工艺程序;正确选用切削用量,以减小切削力和切削热的影响,并防止产生自激振动;选用合适的切削液对切削区进行充分冷却和润滑;选择工件的安装定位基准和夹紧方式时,注意减小安装误差和工件变形。
改善环境条件保持加工环境清洁;对外部振源和热源采取隔离措施;精密加工在恒温、恒湿和防尘的条件下进行。
提高切削加工效率的途径提高切削用量以提高材料切除率,是提高切削加工效率的基本途径。
常用的高效切削加工方法有高速切削、强力切削、等离子弧加热切削和振动切削。
高速切削一般指采用|<< 硬质合金刀具所能达到的切削速度的切削加工。
磨削速度在45m/s以上的切削称为高速磨削。
采用高速切削(或磨削)既可提高效率,又可减小表面粗糙度。
用硬质合金刀具高速车削普通钢材的切削速度可达200m/min;用陶瓷刀具可达500m/min;用金刚石刀具车削有色金属的切削速度可达 900m/min。
实验室中试验的超高速切削的速度可达4000m/min以上。
60年代以来,磨削速度已从 30m/s左右逐步提高到45、60、80以至100m/s;实验室中的磨削速度已达200m/s。
高速切削(或磨削)要求机床具有高转速、高刚度、大功率和抗振性好的工艺系统;要求刀具有合理的几何参数和方便的紧固方式,还需考虑安全可靠的断屑方法。
强力切削指大进给或大切深的切削加工,一般用于车削和磨削(见缓进给磨削)。
强力车削的主要特点是车刀除主切削刃外,还有一个平行于工件已加工表面的副切削刃同时参与切削,故可把进给量比一般车削提高几倍甚至十几倍。
在一般机床上,只要功率足够和工艺系统刚度好就可实行强力切削。
与高速切削比较,强力切削的切削温度较低,刀具寿命较长,切削效率较高;缺点是加工表面较粗糙。
强力切削时,径向切削力很大,故不适于加工细长工件。
等离子弧加热切削利用等离子弧的高温把工件切削区的局部瞬时加热到800~900℃的切削方法,常采用陶瓷刀具,适用于加工大件。
切削时要根据工件的材质、尺寸以及切削速度、切削深度和进给量来调整等离子弧的加热强度。
适当调整后,可使工件已加工表面的温度保持在150℃以下而不致发生金相组织变化。
这种方法适于加工淬硬工件和难加工金属材料的切削。
材料切除率可提高2~20倍,成本降低30~85%。
振动切削沿刀具进给方向附加低频或高频振动的切削加工,可以提高切削效率。
低频振动切削具有很好的断屑效果,可不用断屑装置,使刀刃强度增加,切削时的总功率消耗比带有断屑装置的普通切削降低40%左右。
高频振动切削也称超声波振动切削,有助于减小刀具与工件之间的摩擦,降低切削温度,减小刀具的粘结磨损,从而提高切削效率和加工表面质量,刀具寿命约可提高40%。
非金属材料的切削加工对木材、塑料、橡胶、玻璃、大理石、花岗石等非金属材料的切削加工,虽与金属材料的切削类似,但所用刀具、设备和切削用量等各有特点。
木材切削加工木材制品的切削加工主要在各种木工机床上进行,其方法主要有:锯切、刨切、车削、铣削、钻削和砂光等。
木材的锯切通常采用木工圆锯机或木工带锯机(见木工锯机)。
两者都可用不同锯齿形状的刀具(锯片或锯带)进行截料、剖料或切榫。
带锯切的锯缝较窄,窄带锯切还能切割曲面和不规则的形状。
刨削通常用木工平刨床或木工压刨床(见木工刨床)。
两者都可用旋转的刨刀刨削平面或型面,其中压刨床加工可得到较高的尺寸精度。
当表面的光洁程度要求较高时可用木工精光刨。
木料的外圆一般在木工车床上车削。
木料的开榫、开槽、刻模和各种型面的加工,可用成形铣刀在木工铣床上铣削。
钻孔可用木工钻头、麻花钻头或扁钻,在台钻或木工钻床上进行。
小孔也可用手电钻加工。
木料表面的精整可用木工砂光机。
平面砂光可用带式砂光机;各种型面的砂光可用滚筒式砂光机;端面砂光和边角倒棱可用盘式砂光机。
也可用木工车床或木工钻床砂光。
木料加工的切削速度比金属切削高得多,所以刀具的刃口都较薄而锋利,进给量也较大。
如锯切速度常达40~60m/s;车削或刨削时,刀具前角常达30°~35°,切削速度达60~100m/s,故出屑量很大。