薛定谔方程
- 格式:ppt
- 大小:1.44 MB
- 文档页数:34
薛定谔方程(英语:Schrodinger equation)是由奥地利物理学家薛定谔在1926年提出的一个用于描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。
薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。
含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。
不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。
波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。
而概率幅的绝对值的平方,就是事件发生的概率密度。
薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。
量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。
薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。
薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。
海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。
[编辑]含时薛定谔方程虽然,含时薛定谔方程能够启发式地从几个假设导引出来。
理论上,我们可以直接地将这方程当作一个基本假定。
在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(1)其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。
类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(2)假若,系统内有个粒子,则波函数是定义于-位形空间,所有可能的粒子位置空间。
用方程表达,。
其中,波函数的第个参数是第个粒子的位置。
所以,第个粒子的位置是。
[编辑]不含时薛定谔方程不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。
顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。
应用分离变量法,猜想的函数形式为;其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量.代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程:。
爱因斯坦薛定谔方程
爱因斯坦-薛定谔方程(Einstein-Schrödinger equation)是一个量子力学中的方程,将爱因斯坦的相对论和薛定谔方程结合在一起,描述了物质和场相互作用的行为。
这个方程是在广义相对论和量子力学之间的理论框架下提出的。
具体而言,爱因斯坦-薛定谔方程描述了物质在引力场中的行为,以及粒子与电磁场的相互作用。
它是一个偏微分方程,通常被写成:iħ∂ψ/∂t = (c^2√(p^2c^2 + m^2c^4) + eφ)ψ。
其中,ψ是波函数,描述了量子态的演化;t是时间;ħ是约化普朗克常数;c是光速;p是动量算符;m是粒子的静质量;e是元电荷;φ是电磁场势。
爱因斯坦-薛定谔方程是一个非常复杂的方程,它描述了物质在引力场和电磁场中的量子行为。
这个方程在理论物理的研究中扮演着重要的角色,帮助我们理解微观世界的行为。
但是,由于其复杂性,解析解很难找到,通常需要使用数值方法进行求解。
薛定谔方程是量子力学中的一个基本方程,它描述了微观系统在给定初始条件下的演化规律。
该方程的形式非常复杂,涉及到时间和空间的偏微分以及波函数等概念。
下面是对薛定谔方程形式解的一些说明:
1. 薛定谔方程的基本形式为:
- ihbar/tau粒*▽ψ(x, t) = Hψ(x, t)
其中,H是哈密顿量,ψ(x, t)是波函数,τ是时间演化参数。
这个方程表示,在给定初始条件下的波函数随时间的演化满足微分方程。
2. 波函数的求解依赖于具体的哈密顿量以及初始条件。
一般来说,我们可以通过分离变量等方法将波函数展开成一系列不同频率的谐波之和,从而得到波函数的解析解。
但是,对于一些复杂的哈密顿量,波函数的求解通常需要使用数值方法。
3. 薛定谔方程的解通常被称为波包,它描述了微观系统随时间的演化过程。
波包的形状和大小取决于初始条件和哈密顿量的性质。
对于一些简单的情况,例如一维无限深势阱或者谐振子等,我们可以得到一些具有实际意义的波包形状。
4. 薛定谔方程在量子力学中具有非常重要的地位,它描述了微观系统的波粒二象性以及量子叠加态等基本概念。
通过求解薛定谔方程,我们可以得到微观系统的量子态,从而对量子系统进行计算和控制。
5. 除了薛定谔方程本身,还有许多其他的量子力学方程和近似方法,例如狄拉克方程、海森堡方程、路径积分等。
这些方法在量子力学中都有重要的应用,可以解决不同类型的问题和计算任务。
总之,薛定谔方程是量子力学中的一个基本方程,它描述了微观系统在给定初始条件下的演化过程。
通过对波函数的求解和计算,我们可以对量子系统进行深入的研究和实验控制。
薛定谔方程最简单的形式引言薛定谔方程是量子力学中最重要的方程之一,描述了量子系统的演化和行为。
它的最简单形式可以用来描述自由粒子的运动,本文将对薛定谔方程最简单的形式进行介绍。
薛定谔方程薛定谔方程是用来描述量子系统的演化的方程。
对于一个自由粒子,它的薛定谔方程可以写作:$$i \\hbar \\frac{\\partial \\psi}{\\partial t} = -\\frac{\\hbar^2}{2m}\\frac{\\partial^2 \\psi}{\\partial x^2}$$其中,i是虚数单位,$\\hbar$是约化普朗克常数,$\\psi$是波函数,m是粒子的质量,t是时间,x是粒子的位置。
波函数与概率密度波函数是薛定谔方程的解,它包含了系统的全部信息。
但是,波函数本身并不直接描述粒子的物理性质,而是通过概率密度来给出具体的可观测结果。
概率密度$|\\psi|^2$表示在空间中找到粒子的几率。
根据波函数的性质,其概率密度要满足归一化条件,即在整个空间内的积分等于1。
这意味着粒子一定存在于某个位置。
在最简单的薛定谔方程中,波函数是一个平面波,可以写为$\\psi(x,t) = Ae^{i(kx - \\omega t)}$。
其中,A是振幅,k是波数,$\\omega$是频率。
根据平面波的性质,概率密度$|\\psi|^2$是恒定不变的,并且在整个空间范围内都有非零概率。
波函数的演化薛定谔方程描述了波函数随时间的演化。
对于自由粒子,它的薛定谔方程是线性的,意味着波函数的形式在时间演化中保持不变,只是振幅发生变化。
这也说明了自由粒子的能量是守恒的。
根据薛定谔方程,波函数的时间导数与空间二阶导数之间存在简单的线性关系。
由此可得,波函数的形式在不同位置上的变化是类似的,只是相位和振幅的变化不同。
自由粒子的波函数演化可以用平面波的形式简洁地表示。
根据平面波的性质,波函数在空间中传播,形成波动。
薛定谔方程(Schrödinger equation)是物理学家薛定谔于 1926 年提出的一个基本的量子力学方程,用它可以描述不同粒子的波函数随时间的变化。
薛定谔方程的推导: 1)以原子核心为中心,建立相对论性的电子动力学方程,即:$$ \frac{d^2\psi}{dt^2} = - \frac{\alpha}{m}\frac{\partial^2\psi}{\partial x^2} +V\psi $$ 式中,Ψ 为电子的波函数,α 为常数,m 为电子的质量,V 为外力作用下的电子电势能。
2)将上式改写成: $$ \frac{d^2\psi}{dt^2} +\frac{\alpha}{m}\frac{\partial^2\psi}{\partial x^2} = - V\psi $$ 3)用微分方程的表达式: $$ \frac{\partial \psi}{\partial t} = \frac{\partial \psi}{\partial x} \cdot\frac{\partial x}{\partial t} $$ 将上式中的Ψ 的二阶偏导数改写如下: $$\frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2} \cdot\left(\frac{\partial x}{\partial t}\right)^2 + \frac{\partial \psi}{\partial x} \cdot\frac{\partial^2 x}{\partial t^2} $$ 4)在特殊情况下,假设 $\frac{\partialx}{\partial t}$ 为常数,即电子的移动速度为常数,该常数的值为$v=\frac{\alpha}{m}$ ,则可以将上式中的 $\left(\frac{\partial x}{\partialt}\right)^2$ 改写为 $v^2$ 。
描述微观粒子体系运动的薛定谔方程是
薛定谔方程是用于描述微观粒子如电子、原子、分子等运动状态的基本方程之一,其数学表达式如下所示:
iℏ∂Ψ/∂t = HΨ
其中,i为虚数单位,ℏ为约化普朗克常数,∂/∂t表示对时间的偏导数,Ψ为波函数,H为哈密顿算符,其表达式为:
H = -(ℏ²/2m)∇² + V
其中,m为粒子质量,∇²表示拉普拉斯算子(即二阶偏导数算子,用于描述三维空间中的微分运算),V表示粒子在势场中的势能。
薛定谔方程的解也就是波函数Ψ,可以用来预测微观粒子在不同条件下的运动状态。
薛定谔方程描述了粒子在不同位置的概率分布情况和不同能量的特征,但它本质上是一个波动方程,粒子的运动状态和概率分布等性质需要基于波函数进行分析和解释。
薛定谔方程在量子力学中有广泛应用,如用于描述原子、分子的结构和性质,以及在电子、光学、半导体物理等领域中的应用。
薛定谔方程是啥薛定谔方程(Schrodinger Equation)是量子力学的基本方程之一,描述了微观粒子的行为。
它是由奥地利物理学家艾尔温·薛定谔于1925年提出的,并成为量子力学的基石之一。
薛定谔方程的导出薛定谔方程的导出源自对电子行为的研究。
在量子力学中,电子被视为波粒二象性的粒子。
为了描述电子的运动状态,薛定谔引入了波函数(Wave Function)的概念,将电子的运动状态与波函数建立了联系。
假设一个电子所处的状态可以由一个波函数Ψ(x, t)来描述,其中x表示位置,t表示时间。
根据量子力学的基本原理,波函数Ψ应满足薛定谔方程。
薛定谔方程的标准形式如下:$$ i\\hbar\\frac{{\\partial}}{{\\partial t}}\\Psi(x, t) = \\left(-\\frac{{\\hbar^2}}{{2m}}\\frac{{\\partial^2}}{{\\partial x^2}} + V(x,t)\\right)\\Psi(x, t) $$其中,i代表虚数单位,ħ代表约化普朗克常数,m代表电子的质量,V(x, t)代表电子所受到的势能。
薛定谔方程的物理意义薛定谔方程描述了波函数随时间演化的行为,它是量子力学中的基本方程之一,提供了了解粒子行为和性质的框架。
薛定谔方程的左边代表了波函数随时间的变化速率,右边代表了波函数在空间中的变化情况。
薛定谔方程描述的是波函数随时间和空间的变化规律,从中可以推导出粒子的能量、位置和动量等物理量的概率分布。
这使得薛定谔方程成为预测粒子行为的重要工具。
波函数Ψ的模的平方(|Ψ|²)表示某一时刻粒子出现在空间中的概率密度分布。
根据薛定谔方程,粒子的能量和位置等性质是用波函数的特定解来描述的。
薛定谔方程的应用薛定谔方程在研究微观世界中的粒子行为方面有着重要应用。
薛定谔方程被广泛应用于量子力学中的各个领域,如原子物理学、凝聚态物理学、粒子物理学等。
薛定谔方程和抛物方程
薛定谔方程和抛物方程是两个不同的方程,分别用于描述量子力学和经典力学中的物理现象。
薛定谔方程,也称为量子力学的定态薛定谔方程,是描述微观粒子(如电子、原子等)行为的基本方程。
它是由奥地利物理学家薛定谔于1925年提出的,用于描述粒子波函数的时间演化。
薛定谔方程的一般形式是:
HΨ = EΨ
其中,Ψ是粒子的波函数,H是哈密顿算子,E是粒子的能量。
薛定谔方程的解决给出了粒子在不同能级上的波函数及能谱。
抛物方程,也称为二阶偏微分方程,是一种经典物理中常见的方程形式。
它描述了一维空间中的平衡状态下某个物理量随时间变化的规律。
一般形式的抛物方程可以写作:
∂²u/∂t² = c²∂²u/∂x²
其中,u是待求的物理量,t是时间,x是空间变量,c是传播
速度。
抛物方程可以用来描述热传导、扩散等现象。
总之,薛定谔方程和抛物方程分别适用于量子力学和经典力学中的不同物理现象,具有不同的数学形式和应用范围。
§12-6 薛定谔方程德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告。
报告后, 德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来,它是否正确,只能由实验检验。
一、薛定谔方程 1 一维薛定谔方程1)一维自由运动粒子(无势场)设:一维自由运动粒子,无势场,不受力,动量不变。
一维自由运动粒子的波函数(前已讲)ψ(x , t ) = ψ0 e -i(2π/h ) (Et - px )由此有再利用 可得此即一维自由运动粒子(无势场)的含时薛定谔方程。
2)若粒子在势场U (x , t ) 中运动由 有此即一维自由运动粒子在势场中的含时薛定谔方程。
3)定态薛定谔方程若粒子在恒定势场U = U (x )中运动,微观粒子的势能仅是坐标的函数,与时间无关,可把上式中的波函数分成坐标函数与时间函数的乘积,即2222ip x hp x hψψψψ∂=∂∂=-∂22p E m=222282h h i m x tψψππ∂∂-=∂∂22p p E E m =+222282p h h E i m x tψψψππ∂∂-+=∂∂2(,)()()()iEt hx t x f t x eπψϕϕ-==式中 ψ =ψ (x , t )是粒子在势场U = U (x , t )中运动的波函数。
将ψ =ψ (x , t ) = ψ(x )T (t )代入得一维定态薛定谔方程式中ψ =ψ (x )是定态波函数,它所描写的粒子的状态称作定态,是能量取确值的状态。
定态的概率密度ψ(x ,t ) ψ*(x ,t ) = ψ (x ) ψ *(x ) 定态下的概率密度和时间无关。
在量子力学中用薛定谔方程式加上波函数的物理条件,求解微观粒子在一定的势场中的运动问题(求波函数,状态能量,概率密度等)。
量子问题薛定谔方程
薛定谔方程是量子力学中的基本方程,用于描述粒子的波函数随时间的变化。
这个方程在量子力学中非常重要,因为它描述了粒子的行为如何受到势能和其他力的影响。
在这个问题中,我们将使用薛定谔方程来模拟一个简单的量子系统。
假设我们有一个粒子在一个无限深势阱中,势阱的宽度为 a。
粒子的质量为 m,动量为 p,势能为 V(x),总能量为 E。
薛定谔方程可以表示为:
Hψ = Eψ
其中 H 是哈密顿算子,ψ是波函数,E 是能量。
对于无限深势阱,势能 V(x) 在 x < 0 和 x > a 的区域是无穷大,而在 0 < x < a 的区域是0。
因此,薛定谔方程可以简化为:
p^2ψ/2m + V(x)ψ = Eψ
现在我们要解这个方程,找出波函数ψ和能量 E 的关系。
计算结果为: [{psi: 0}]
所以,在无限深势阱中,粒子的波函数为:0。
薛定谔方程名词解释薛定谔方程,又称“薛定谔等式”,是量子力学中最重要的基本方程之一。
由俄国物理学家薛定谔于1925年创立,一直是量子力学理论的基础,被称为“量子力学的常律”,也是现代量子物理学理论最重要的基础方程之一。
薛定谔方程是一个展示量子物质的发展过程的有效的数学描述式。
它是对微观客观世界的细节描述,描述客观世界的力学原理以及微观系统的运行机制,它包括了量子力学重要的基本原理,如不确定性原理,相互作用原理和简并原理等,它也是物理学家理解量子物质及其运动的基础。
薛定谔方程的最多的格式有能量与动量的关系式,二阶偏微分方程,它可以用来描述量子系统的行为,如量子对的结构以及相互作用的结果。
因此,薛定谔方程在量子物理学的研究中起着非常重要的作用。
薛定谔方程以简洁的数学模型描述了量子物质的发展历程,主要由五个特征组成:首先,量子物质属于自身不可观测的状态,即量子力学中描述的状态称为量子态;其次,量子物质在空间中的分布的发展是随机的,因此,它的行为是概率的;第三,量子物质的发展过程受到它本身和外部环境的交互影响;第四,量子物质在空间中受物理场(如实验室电场、磁场、重力场等)的影响;第五,量子物质的发展过程由多个因素构成,其结果是态对态的转化,这也是薛定谔方程最重要的特点之一。
薛定谔方程由两个重要的部分组成:等号左边是波函数,它描述了物体的状态,而等号右边代表了物体的能量,以及外部环境对物体的影响。
由此可见,薛定谔方程展示了复杂的量子系统和它们之间的相互作用,有助于我们对量子物质的本质有更深入的理解。
薛定谔方程的建立不仅为物理学研究奠定了重要的理论基础,而且在应用领域也起着至关重要的作用。
目前,薛定谔方程已经广泛应用于电子显微镜量子计算、量子通信、量子计算机等领域,其结果也可以用于激光和太赫兹技术、核聚变、太空探测等。
总之,薛定谔方程是量子物理学和量子技术研究领域中最重要的基础方程之一。
它描述了不可观测的量子物质及其相互作用的动态发展,并为我们揭示了复杂的量子系统及其相互作用的本质。