薛定谔方程
- 格式:ppt
- 大小:1.44 MB
- 文档页数:34
薛定谔方程(英语:Schrodinger equation)是由奥地利物理学家薛定谔在1926年提出的一个用于描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。
薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。
含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。
不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。
波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。
而概率幅的绝对值的平方,就是事件发生的概率密度。
薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。
量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。
薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。
薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。
海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。
[编辑]含时薛定谔方程虽然,含时薛定谔方程能够启发式地从几个假设导引出来。
理论上,我们可以直接地将这方程当作一个基本假定。
在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(1)其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。
类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(2)假若,系统内有个粒子,则波函数是定义于-位形空间,所有可能的粒子位置空间。
用方程表达,。
其中,波函数的第个参数是第个粒子的位置。
所以,第个粒子的位置是。
[编辑]不含时薛定谔方程不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。
顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。
应用分离变量法,猜想的函数形式为;其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量.代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程:。
爱因斯坦薛定谔方程
爱因斯坦-薛定谔方程(Einstein-Schrödinger equation)是一个量子力学中的方程,将爱因斯坦的相对论和薛定谔方程结合在一起,描述了物质和场相互作用的行为。
这个方程是在广义相对论和量子力学之间的理论框架下提出的。
具体而言,爱因斯坦-薛定谔方程描述了物质在引力场中的行为,以及粒子与电磁场的相互作用。
它是一个偏微分方程,通常被写成:iħ∂ψ/∂t = (c^2√(p^2c^2 + m^2c^4) + eφ)ψ。
其中,ψ是波函数,描述了量子态的演化;t是时间;ħ是约化普朗克常数;c是光速;p是动量算符;m是粒子的静质量;e是元电荷;φ是电磁场势。
爱因斯坦-薛定谔方程是一个非常复杂的方程,它描述了物质在引力场和电磁场中的量子行为。
这个方程在理论物理的研究中扮演着重要的角色,帮助我们理解微观世界的行为。
但是,由于其复杂性,解析解很难找到,通常需要使用数值方法进行求解。
薛定谔方程是量子力学中的一个基本方程,它描述了微观系统在给定初始条件下的演化规律。
该方程的形式非常复杂,涉及到时间和空间的偏微分以及波函数等概念。
下面是对薛定谔方程形式解的一些说明:
1. 薛定谔方程的基本形式为:
- ihbar/tau粒*▽ψ(x, t) = Hψ(x, t)
其中,H是哈密顿量,ψ(x, t)是波函数,τ是时间演化参数。
这个方程表示,在给定初始条件下的波函数随时间的演化满足微分方程。
2. 波函数的求解依赖于具体的哈密顿量以及初始条件。
一般来说,我们可以通过分离变量等方法将波函数展开成一系列不同频率的谐波之和,从而得到波函数的解析解。
但是,对于一些复杂的哈密顿量,波函数的求解通常需要使用数值方法。
3. 薛定谔方程的解通常被称为波包,它描述了微观系统随时间的演化过程。
波包的形状和大小取决于初始条件和哈密顿量的性质。
对于一些简单的情况,例如一维无限深势阱或者谐振子等,我们可以得到一些具有实际意义的波包形状。
4. 薛定谔方程在量子力学中具有非常重要的地位,它描述了微观系统的波粒二象性以及量子叠加态等基本概念。
通过求解薛定谔方程,我们可以得到微观系统的量子态,从而对量子系统进行计算和控制。
5. 除了薛定谔方程本身,还有许多其他的量子力学方程和近似方法,例如狄拉克方程、海森堡方程、路径积分等。
这些方法在量子力学中都有重要的应用,可以解决不同类型的问题和计算任务。
总之,薛定谔方程是量子力学中的一个基本方程,它描述了微观系统在给定初始条件下的演化过程。
通过对波函数的求解和计算,我们可以对量子系统进行深入的研究和实验控制。
薛定谔方程最简单的形式引言薛定谔方程是量子力学中最重要的方程之一,描述了量子系统的演化和行为。
它的最简单形式可以用来描述自由粒子的运动,本文将对薛定谔方程最简单的形式进行介绍。
薛定谔方程薛定谔方程是用来描述量子系统的演化的方程。
对于一个自由粒子,它的薛定谔方程可以写作:$$i \\hbar \\frac{\\partial \\psi}{\\partial t} = -\\frac{\\hbar^2}{2m}\\frac{\\partial^2 \\psi}{\\partial x^2}$$其中,i是虚数单位,$\\hbar$是约化普朗克常数,$\\psi$是波函数,m是粒子的质量,t是时间,x是粒子的位置。
波函数与概率密度波函数是薛定谔方程的解,它包含了系统的全部信息。
但是,波函数本身并不直接描述粒子的物理性质,而是通过概率密度来给出具体的可观测结果。
概率密度$|\\psi|^2$表示在空间中找到粒子的几率。
根据波函数的性质,其概率密度要满足归一化条件,即在整个空间内的积分等于1。
这意味着粒子一定存在于某个位置。
在最简单的薛定谔方程中,波函数是一个平面波,可以写为$\\psi(x,t) = Ae^{i(kx - \\omega t)}$。
其中,A是振幅,k是波数,$\\omega$是频率。
根据平面波的性质,概率密度$|\\psi|^2$是恒定不变的,并且在整个空间范围内都有非零概率。
波函数的演化薛定谔方程描述了波函数随时间的演化。
对于自由粒子,它的薛定谔方程是线性的,意味着波函数的形式在时间演化中保持不变,只是振幅发生变化。
这也说明了自由粒子的能量是守恒的。
根据薛定谔方程,波函数的时间导数与空间二阶导数之间存在简单的线性关系。
由此可得,波函数的形式在不同位置上的变化是类似的,只是相位和振幅的变化不同。
自由粒子的波函数演化可以用平面波的形式简洁地表示。
根据平面波的性质,波函数在空间中传播,形成波动。
薛定谔方程(Schrödinger equation)是物理学家薛定谔于 1926 年提出的一个基本的量子力学方程,用它可以描述不同粒子的波函数随时间的变化。
薛定谔方程的推导: 1)以原子核心为中心,建立相对论性的电子动力学方程,即:$$ \frac{d^2\psi}{dt^2} = - \frac{\alpha}{m}\frac{\partial^2\psi}{\partial x^2} +V\psi $$ 式中,Ψ 为电子的波函数,α 为常数,m 为电子的质量,V 为外力作用下的电子电势能。
2)将上式改写成: $$ \frac{d^2\psi}{dt^2} +\frac{\alpha}{m}\frac{\partial^2\psi}{\partial x^2} = - V\psi $$ 3)用微分方程的表达式: $$ \frac{\partial \psi}{\partial t} = \frac{\partial \psi}{\partial x} \cdot\frac{\partial x}{\partial t} $$ 将上式中的Ψ 的二阶偏导数改写如下: $$\frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2} \cdot\left(\frac{\partial x}{\partial t}\right)^2 + \frac{\partial \psi}{\partial x} \cdot\frac{\partial^2 x}{\partial t^2} $$ 4)在特殊情况下,假设 $\frac{\partialx}{\partial t}$ 为常数,即电子的移动速度为常数,该常数的值为$v=\frac{\alpha}{m}$ ,则可以将上式中的 $\left(\frac{\partial x}{\partialt}\right)^2$ 改写为 $v^2$ 。
描述微观粒子体系运动的薛定谔方程是
薛定谔方程是用于描述微观粒子如电子、原子、分子等运动状态的基本方程之一,其数学表达式如下所示:
iℏ∂Ψ/∂t = HΨ
其中,i为虚数单位,ℏ为约化普朗克常数,∂/∂t表示对时间的偏导数,Ψ为波函数,H为哈密顿算符,其表达式为:
H = -(ℏ²/2m)∇² + V
其中,m为粒子质量,∇²表示拉普拉斯算子(即二阶偏导数算子,用于描述三维空间中的微分运算),V表示粒子在势场中的势能。
薛定谔方程的解也就是波函数Ψ,可以用来预测微观粒子在不同条件下的运动状态。
薛定谔方程描述了粒子在不同位置的概率分布情况和不同能量的特征,但它本质上是一个波动方程,粒子的运动状态和概率分布等性质需要基于波函数进行分析和解释。
薛定谔方程在量子力学中有广泛应用,如用于描述原子、分子的结构和性质,以及在电子、光学、半导体物理等领域中的应用。