图形的初步认识精选习题
- 格式:doc
- 大小:98.12 KB
- 文档页数:5
图形认识初步练习题图形认识初步练习题在日常生活中,我们经常会遇到各种各样的图形,它们可以是平面上的,也可以是立体的。
图形认识是我们认识世界的一种基本能力,它不仅能够帮助我们更好地理解周围的事物,还能够培养我们的观察力和思维能力。
以下是一些图形认识的初步练习题,通过解答这些问题,我们能够更好地巩固和提升自己的图形认识能力。
练习题一:平面图形辨认1. 下面的图形中,哪个是正方形?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是矩形?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆形?A. △EFGB. □HIJKC. ○LMNO练习题二:立体图形辨认1. 下面的图形中,哪个是长方体?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是球体?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆柱体?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题三:图形属性判断1. 以下哪个图形具有对称性?A. △ABCB. □DEFGC. ○HIJK2. 下面的图形中,哪个图形具有直角?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个图形具有平行边?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题四:图形组合与变换1. 请将下面的图形组合成一个正方形。
A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 请将下面的图形组合成一个立方体。
A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 请将下面的图形组合成一个圆球。
A. △EFGB. □HIJKC. ○LMNOD. △PQRS通过以上的练习题,我们可以加深对各种图形的认识和理解。
通过观察和思考,我们能够更好地辨认出不同的图形,并理解它们的特点和属性。
一、填空题 (每题3分,共30分)1、三棱柱有 条棱, 个顶点, 个面;2、 如图1,若是中点,AB=4,则DB= ;3、42.79= 度 分 秒;4、 假如∠α=29°35′,那么∠α的余角的度数为 ;5、如图2,从家A 上学时要走近路到学校B ,最近的路途为 (填序号),理由是 ;6、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 条线段,共有 射线,共有 个角;7.如图4,把书的一角斜折过去,使点A 落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD =8.如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ;9.2:35时钟面上时针与分针的夹角为 ;10. 经过平面内四点中的随意两点画直线,总共可以画 条直线;二选择题(每题3分,共24分)题号12345 6789CBAD E F(1(2(3图2图3 图图A B C D7、 将一个直角三角形绕它的直角边旋转一周得到的几何体是( )12、 假如与互补,与互余,则与的关系是( ) A.=B. C.D.以上都不对13、 对于直线,线段,射线,在下列各图中能相交的是( )14、 下面图形经折叠后可以围成一个棱柱的有( )A. 1个B. 2个C. 3个D. 4个15、 已知M 是线段AB 的中点,那么,①AB=2AM ;②BM=12AB ;③AM=BM ;④AM+BM=AB 。
上面四个式子中,正确的有 ( ) A .1个 B .2个 C .3个 D .4个16、 在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、 如右图,AB 、CD交于点O ,∠AOE=90°,若∠AOC :∠COE=5:4,则∠AOD 等于 ( )A .120°B .130°C .140°D .150°答案18、图中(1)-(4)各图都是正方体的外表绽开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB使AB=2a-b(不写作法,保存作图痕迹)20、根据要求,在图中画出表示下列方向的射线:(1)南偏东300(2)北偏西600(3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。
图形认识初步——点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是( ).(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是( ).(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是( ).8.下列说法错误的是( ).(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1) (2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.。
图形认识初步图形认识初步一三视图:主视图、左视图、俯视图直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
直线的特征:①直线没有端点,不可量度,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”;②用一个小写字母表示。
射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短;③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
线段:直线上两点和它们之间的部分叫做线段。
线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
线段的表示方法:①用两个端点的大写字母表示;②用一个小写字母表示。
线段的基本性质:两点的所有连线中,线段最短。
简称,两点之间线段最短。
两点的距离:连接两点间的线段的长度叫做这两点的距离。
线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点。
线段大小的比较方法:(1)叠合法;(2)度量法;(3)估测法。
若线段上有n个点(含两个端点),则共有2)1(-nn条线段。
若线段内有n个点(不含端点),则共有2)1(+nn条线段。
例1.棱长为1的正方体,横放成如图所示的形状,现请回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,请求出该物体的表面积.(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.例2.如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资建一个蓄水池,不考虑其它因素,请画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.例3.将线段AB 延长至C ,使BC=31AB ,延长BC 至点D ,使CD =31BC ,延长CD 至点E ,使DE=31CD ,若CE=8㎝,求AB 的长。
图形认识初步练习题一、选择题1. 一个正方形有几条边?A. 2B. 3C. 4D. 52. 下列哪个图形不是平面图形?A. 三角形B. 圆形C. 立方体D. 长方形3. 一个正五边形的内角是多少度?A. 90度B. 108度C. 120度D. 135度4. 一个圆的周长与直径的比值称为什么?A. 半径B. 直径C. 圆周率D. 面积5. 两个全等三角形可以组成哪种图形?A. 三角形B. 四边形C. 五边形D. 六边形二、填空题6. 一个正六边形的内角和为________度。
7. 一个圆的面积公式为________。
8. 一个等腰三角形的两个底角相等,其顶角为________度。
9. 一个直角三角形的两条直角边长度相等,这种三角形称为________三角形。
10. 一个平行四边形的对角线将平行四边形分成两个________三角形。
三、判断题11. 所有正多边形的外角和都是360度。
()12. 一个圆的半径增加1倍,其面积增加2倍。
()13. 所有等边三角形的内角都是60度。
()14. 一个矩形的对角线相等,这个矩形一定是正方形。
()15. 一个正二十边形的中心角是18度。
()四、简答题16. 描述一个圆的对称性。
17. 解释什么是相似图形,并给出两个相似图形的例子。
18. 为什么说三角形是最稳定的图形?19. 说明什么是黄金分割,并给出一个自然界中的例子。
20. 描述如何使用勾股定理来解决一个直角三角形的问题。
五、计算题21. 已知一个圆的半径为7厘米,求这个圆的周长和面积。
22. 如果一个等腰三角形的底边长为10厘米,高为8厘米,求其周长。
23. 一个长方形的长为15厘米,宽为10厘米,求其面积和对角线的长度。
24. 已知一个正六边形的边长为5厘米,求其周长和面积。
25. 如果一个直角三角形的两条直角边分别为3厘米和4厘米,求其斜边的长度。
六、作图题26. 画一个边长为5厘米的正方形,并标出其四个顶点。
图形的初步认识练习题一、选择题1. 下列哪个图形不是二维图形?A. 圆形B. 正方形C. 三角形D. 立方体2. 在平面几何中,一个点可以表示为:A. 一条线段B. 一个圆C. 一个平面D. 没有长度和宽度的标记3. 直线和射线的区别在于:A. 直线有两端点,射线没有B. 直线无限长,射线有限长C. 直线可以旋转,射线不能D. 直线有方向,射线没有方向4. 一个角的度数范围是:A. 0°到90°B. 0°到180°C. 0°到360°D. 180°到360°5. 一个四边形的对角线数量是:A. 1B. 2C. 3D. 4二、填空题6. 一个平面上不共线的三点可以确定一个________。
7. 一个圆的周长公式是________。
8. 直角三角形的两个锐角之和等于________。
9. 一个平行四边形的对边是________。
10. 一个多边形的内角和公式是(n-2)×180°,其中n代表________。
三、判断题11. 所有的正方形都是矩形。
()12. 两条平行线永远不会相交。
()13. 一个圆的直径是半径的两倍。
()14. 一个三角形的内角和总是180°。
()15. 一个多边形的外角和总是360°。
()四、简答题16. 描述什么是平面图形,并给出两个例子。
17. 解释什么是对称图形,并给出一个例子。
18. 什么是相似图形?它们有哪些性质?19. 描述什么是图形的平移和旋转,并给出一个例子。
20. 什么是图形的相似比?请给出计算相似比的公式。
五、计算题21. 如果一个圆的半径是5厘米,计算它的周长和面积。
22. 一个三角形的三个内角分别是40°,60°和80°,请判断它是什么类型的三角形,并计算它的外角和。
23. 一个矩形的长是10厘米,宽是5厘米,计算它的周长和面积。
图形初步认识练习题在学习图形的初步认识中,我们需要通过实际操作和练习题来加深对各种图形的理解。
下面是一些图形初步认识的练习题,通过解答这些题目,你能更好地掌握图形相关知识。
题目一:根据图形特征,判断下列图形的名称。
1. 该图形是由四条相等长度的线段构成,且相邻的两条线段之间夹角为90度。
图形名称:正方形。
2. 该图形是由三条线段以其中两条线段为基边,通过连接这两条线段的中点而形成的一个三角形。
图形名称:等腰三角形。
3. 该图形是由四条不相交的线段构成,其中两条相对的线段长度相等,且两两夹角均为90度。
图形名称:长方形。
题目二:判断下列说法的正确性。
正确的写“√”,错误的写“×”。
1. 正方形的特点是四个角都是直角。
√2. 所有的长方形都是正方形。
×3. 任意两条线段长度相等的四边形一定是正方形。
×4. 等边三角形的三个内角都是直角。
×5. 长方形和正方形的特点是两对对边相等。
√题目三:判断下列图形是否是多边形。
是的写“是”,不是的写“不是”。
1. 圆形不是2. 五角星是3. 梯形是4. 椭圆不是5. 正多边形是题目四:判断下列图形是否为全等图形。
是的写“是”,不是的写“不是”。
1. 正方形和长方形是2. 三角形和四边形不是3. 等腰三角形和等边三角形是4. 长方形和平行四边形不是5. 圆和椭圆不是题目五:根据图形特征,填写下列空格中的数字。
1. 正方形的内角和是____。
答案:360度。
2. 正三角形的内角和是____。
答案:180度。
3. 长方形的内角和是____。
答案:360度。
4. 五边形的内角和是____。
答案:540度。
5. 六边形的内角和是____。
答案:720度。
通过以上练习题的解答,相信你对图形的初步认识会更加深入。
继续进行类似的练习,并多进行实际操作,操练各种图形的绘画和测量,可以更好地巩固所学内容。
希望你能在图形认识的学习中取得更好的成绩!。
54西东北北西东AB第4章 图形的初步认识单元测试题一、选择题:(每小题4分,共48分)1.如图所示哪个图形不能折成一个正方体表面?( )A B CD2.下图中所示的三视图是什么立体图形?( )正视图左视图俯视图GOAE D B(第8题) A.棱锥 B.圆柱 C.圆锥 D.圆柱与圆锥组合体3.如上图所示,OE ⊥AB 于O.OC 、OD 分别是∠AOE 、∠BOE 的平分线,图中互余的角共有( )A.3对B.4对C.5对D.6对4.如果两个角两条边对应平行,其中一个角为34度,则另一个角为______度. A.34° B.56° C.34°或56° D.34°或146°5.下列4种说法中,正确的说法有( )(1)相等且互补的两个角都是直角; (2)两个角互补,则它们的角平分线互相垂直(3)两个角互为邻补角,则它们的角平分线互相垂直; (4)一个角的两个邻补角是对顶角. A.1个 B.2个 C.3个 D.4个6.∠A 与∠B 互为补角,且∠A>∠B,那么∠B 的余角等于( )A. 12(∠A-∠B)B. 12(∠A+∠B)C. 12∠AD. 12∠B7.如图所示的立方体,如果把它展开的图形是( )8.如图,由B 测A 的方向是( )A.北偏西36°B.北偏西54°C.南偏东36°D.南偏东54° 9.平行于同一直线的两条直线( )3题O C A D BA.平行B.垂直C.相交D.平行或重合10.将线段AB 延长至C,再将AB 反向延长至D,则图中共有( )条线段. A.3 B.4 C.5 D.611.已知∠AMB=45°,∠BMC=30°,则∠AMC=( )A.45°B.15°或30°C.75°D.15°或75° 二、填空题:(每小题3分,共12分)12.若一个角的补角相等于这个角的余角的6倍,则这个角为______度.第12题O CADB13.如图所示,已知∠AOB=160°,∠AOC=∠BOD=90°,则∠COD=_____度.14.如图所示,已知直线AB 、CD 相交于O,OE 平分∠AOC,∠AOE=25°,则∠BOD= ____度. 15. 计算:180°-23°13′6″=__________. 三、解答题:16,如图,OC 平分∠AOB,∠AOB=60°,∠AOD=50°,求∠COD 的度数.17. 若线段AB=16cm,在直线AB 上有一点C,且BC=8cm,M 是线段AC 的中点,求AM 的长.第13题 OCA E DB13题 114题。
东
西
图形的初步认识精选题
一、选择题:
1、一条直线上有n 个点,则以这n 个点为端点的射线共有( )
A.n 条
B.)1(+n 条
C.)2(+n 条
D.n 2条
2.一条直线上有n 个点,则以这n 个点为端点的射线共有( )
A.n 条
B.)1(+n 条
C.)2(+n 条
D.n 2条
3.一个角的余角和这个角的补角也互为补角,这个角的度数等于( )
A 、900
B 、750
C 、450
D 、150
4.下列关于角的说法正确的个数是( )
①角是由两条射线组成的图形;②角的边越长,角越大;
③在角一边延长线上取一点D;
④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4
个
5.如图所示哪个图形不能折成一个正方体表面?(
)
A
B
C
D
6.下图中所示的三视图是什么立体图形?( )
正视图左视图俯视图
(第8题)
A.棱锥
B.圆柱
C.圆锥
D.圆柱与圆锥组合体
7.∠A 与∠B 互为补角,且∠A>∠B,那么∠B 的余角等于( ) A.
12
(∠A-∠B) B.
12
(∠A+∠B) C.
12
∠A D.
12
∠B
8.如图,由B 测A 的方向是( )
O
A
B
A
B
C
D E F
1
2
3
A.北偏西36°
B.北偏西54°
C.南偏东36°
D.南偏东54° 9.平行于同一直线的两条直线( )
A.平行
B.垂直
C.相交
D.平行或重合
10.将线段AB 延长至C,再将AB 反向延长至D,则图中共有( )条线段. A.3 B.4 C.5 D.6 二、填空题:
11.若一个角的补角相等于这个角的余角的6倍,则这个角为______度.
第12题
O C
A
D
B
12.如图所示,已知∠AOB=160°,∠AOC=∠BOD=90°,则∠COD=_____度.
13.如图所示,已知直线AB 、CD 相交于O,OE 平分∠AOC,∠AOE=25°,则∠BOD= ____度.
14.四条直线两两相交时,交点个数最多有 个.
15. 计算:180°-23°13′6″=__________.
三、解答题:
16.如图所示,已知AB ∥CD,∠A=∠C 试判断AD 与BC 的位置关系并加以说
明.
C
A
D B
17题 18题 19题
17. 如图,直线AB 、CD 被EF 所截,如果1115,265
∠=∠=
,就可以说明,AB //CD .
请把下面说明过程补充完整.
因为265∠= ( ),
第13
题 O
C
A E
D
B
14题 15题
O
C A
D B
所以3∠= .又因为1115,∠=
所以13∠=∠,
所以 // ( ,两直线平行).
18.如图,已知∠AOB ,请你画出它的余角、补角及对顶角.
19,如图,OC 平分∠AOB,∠AOB=60°,∠AOD=50°,求∠COD 的度数.
20.已知,CB=4cm,DB=7cm ,D 是线段AC 的中点,,求AC 、 AB 的长。
21.如图11所示,已知∠AOB =90°,∠BOC =60°,OD 是∠AOC 的平分线, 求∠BOD 。
22.如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,
∠COF =34°,求∠BOD 的度数.
23.如图所示是由几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体的主视图和左视图:
22. 若线段AB=16cm,在直线AB 上有一点C,且BC=8cm,M 是线段AC 的中点,求AM 的长.
23已知,如图,直线MN 与直线AB 、CD 相交于M 、N ,且∠3=∠4,试说明∠1=∠2.
C
D
B A
M N
1
3
4 2 C
A
E D
B
23题 24题
24、如图,AB平行于CD,BE与CD交于E点,判断角ABE,角BED。
角CDE的和的大小。