图形的初步认识练习题
- 格式:doc
- 大小:1.16 MB
- 文档页数:12
图形认识初步练习题图形认识初步练习题在日常生活中,我们经常会遇到各种各样的图形,它们可以是平面上的,也可以是立体的。
图形认识是我们认识世界的一种基本能力,它不仅能够帮助我们更好地理解周围的事物,还能够培养我们的观察力和思维能力。
以下是一些图形认识的初步练习题,通过解答这些问题,我们能够更好地巩固和提升自己的图形认识能力。
练习题一:平面图形辨认1. 下面的图形中,哪个是正方形?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是矩形?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆形?A. △EFGB. □HIJKC. ○LMNO练习题二:立体图形辨认1. 下面的图形中,哪个是长方体?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是球体?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆柱体?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题三:图形属性判断1. 以下哪个图形具有对称性?A. △ABCB. □DEFGC. ○HIJK2. 下面的图形中,哪个图形具有直角?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个图形具有平行边?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题四:图形组合与变换1. 请将下面的图形组合成一个正方形。
A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 请将下面的图形组合成一个立方体。
A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 请将下面的图形组合成一个圆球。
A. △EFGB. □HIJKC. ○LMNOD. △PQRS通过以上的练习题,我们可以加深对各种图形的认识和理解。
通过观察和思考,我们能够更好地辨认出不同的图形,并理解它们的特点和属性。
一、填空题 (每题3分,共30分)1、三棱柱有 条棱, 个顶点, 个面;2、 如图1,若是中点,AB=4,则DB= ;3、42.79= 度 分 秒;4、 假如∠α=29°35′,那么∠α的余角的度数为 ;5、如图2,从家A 上学时要走近路到学校B ,最近的路途为 (填序号),理由是 ;6、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 条线段,共有 射线,共有 个角;7.如图4,把书的一角斜折过去,使点A 落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD =8.如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ;9.2:35时钟面上时针与分针的夹角为 ;10. 经过平面内四点中的随意两点画直线,总共可以画 条直线;二选择题(每题3分,共24分)题号12345 6789CBAD E F(1(2(3图2图3 图图A B C D7、 将一个直角三角形绕它的直角边旋转一周得到的几何体是( )12、 假如与互补,与互余,则与的关系是( ) A.=B. C.D.以上都不对13、 对于直线,线段,射线,在下列各图中能相交的是( )14、 下面图形经折叠后可以围成一个棱柱的有( )A. 1个B. 2个C. 3个D. 4个15、 已知M 是线段AB 的中点,那么,①AB=2AM ;②BM=12AB ;③AM=BM ;④AM+BM=AB 。
上面四个式子中,正确的有 ( ) A .1个 B .2个 C .3个 D .4个16、 在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、 如右图,AB 、CD交于点O ,∠AOE=90°,若∠AOC :∠COE=5:4,则∠AOD 等于 ( )A .120°B .130°C .140°D .150°答案18、图中(1)-(4)各图都是正方体的外表绽开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB使AB=2a-b(不写作法,保存作图痕迹)20、根据要求,在图中画出表示下列方向的射线:(1)南偏东300(2)北偏西600(3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。
图形认识初步——点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是( ).(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是( ).(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是( ).8.下列说法错误的是( ).(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1) (2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.。
图形认识初步练习题一、选择题1. 一个正方形有几条边?A. 2B. 3C. 4D. 52. 下列哪个图形不是平面图形?A. 三角形B. 圆形C. 立方体D. 长方形3. 一个正五边形的内角是多少度?A. 90度B. 108度C. 120度D. 135度4. 一个圆的周长与直径的比值称为什么?A. 半径B. 直径C. 圆周率D. 面积5. 两个全等三角形可以组成哪种图形?A. 三角形B. 四边形C. 五边形D. 六边形二、填空题6. 一个正六边形的内角和为________度。
7. 一个圆的面积公式为________。
8. 一个等腰三角形的两个底角相等,其顶角为________度。
9. 一个直角三角形的两条直角边长度相等,这种三角形称为________三角形。
10. 一个平行四边形的对角线将平行四边形分成两个________三角形。
三、判断题11. 所有正多边形的外角和都是360度。
()12. 一个圆的半径增加1倍,其面积增加2倍。
()13. 所有等边三角形的内角都是60度。
()14. 一个矩形的对角线相等,这个矩形一定是正方形。
()15. 一个正二十边形的中心角是18度。
()四、简答题16. 描述一个圆的对称性。
17. 解释什么是相似图形,并给出两个相似图形的例子。
18. 为什么说三角形是最稳定的图形?19. 说明什么是黄金分割,并给出一个自然界中的例子。
20. 描述如何使用勾股定理来解决一个直角三角形的问题。
五、计算题21. 已知一个圆的半径为7厘米,求这个圆的周长和面积。
22. 如果一个等腰三角形的底边长为10厘米,高为8厘米,求其周长。
23. 一个长方形的长为15厘米,宽为10厘米,求其面积和对角线的长度。
24. 已知一个正六边形的边长为5厘米,求其周长和面积。
25. 如果一个直角三角形的两条直角边分别为3厘米和4厘米,求其斜边的长度。
六、作图题26. 画一个边长为5厘米的正方形,并标出其四个顶点。
图形的初步认识练习题一、选择题1. 下列哪个图形不是二维图形?A. 圆形B. 正方形C. 三角形D. 立方体2. 在平面几何中,一个点可以表示为:A. 一条线段B. 一个圆C. 一个平面D. 没有长度和宽度的标记3. 直线和射线的区别在于:A. 直线有两端点,射线没有B. 直线无限长,射线有限长C. 直线可以旋转,射线不能D. 直线有方向,射线没有方向4. 一个角的度数范围是:A. 0°到90°B. 0°到180°C. 0°到360°D. 180°到360°5. 一个四边形的对角线数量是:A. 1B. 2C. 3D. 4二、填空题6. 一个平面上不共线的三点可以确定一个________。
7. 一个圆的周长公式是________。
8. 直角三角形的两个锐角之和等于________。
9. 一个平行四边形的对边是________。
10. 一个多边形的内角和公式是(n-2)×180°,其中n代表________。
三、判断题11. 所有的正方形都是矩形。
()12. 两条平行线永远不会相交。
()13. 一个圆的直径是半径的两倍。
()14. 一个三角形的内角和总是180°。
()15. 一个多边形的外角和总是360°。
()四、简答题16. 描述什么是平面图形,并给出两个例子。
17. 解释什么是对称图形,并给出一个例子。
18. 什么是相似图形?它们有哪些性质?19. 描述什么是图形的平移和旋转,并给出一个例子。
20. 什么是图形的相似比?请给出计算相似比的公式。
五、计算题21. 如果一个圆的半径是5厘米,计算它的周长和面积。
22. 一个三角形的三个内角分别是40°,60°和80°,请判断它是什么类型的三角形,并计算它的外角和。
23. 一个矩形的长是10厘米,宽是5厘米,计算它的周长和面积。
第4章图形的初步认识检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F、E. V分别表示正多而体的而数、棱数、顶点数,则有F + V — E = 2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.203.如果Na与N/?是邻补角,且/a> 很那么Z侄的余角是(A.l(Za+Z/?)B.|ZaC.|(Za-Z/?)D.不能确定4.下列四个立体图形中,主视图为圆的是()。
5.将“创建文明城市”六个字分别写在一个正方体的六个而上,这个正方体的平面展开图如所示, 那么在这个正方体中,和“创”相对的字是( A.文B.明C.城6.如图, 已知直线曲、CD 相交于点。
, ZEOC = 110% 则ZBOD 的大小C.45°D.55QD rH第6题图B.35A.25 共5页8. 下列平而图形不能够国成正方体的是(9. 过平面_匕4, B, C 三点中的任意两点作直线,可作()那么线段OB 的长度是( )二、填空题(每小题3分,共24分)11. 如图,直线CD 相交于点。
,OE 平分匕AOD,若ZBOC = 80°,贝ljZAOE = 12. 直线上的点有—个,射线上的点有—个,线段上的点有—个.13. 两条直线相交有 个交点,三条直线相交最多有 个交点,最少有 个交点.14. 如图,OM 平分ZAOB, ON 平分ZCOD.若NMON= 50。
,ZBOC = 10% 则匕4OD = 15 .如图给出的分别有射线、16.下列表面展开图的立体图形的名称分别是:A.1条B.3条C.1条或3条D.无数条10.在直线[上顺次取4、B 、 C 三点,使得= 5 cm, BC = 3 cm.如果。
是线段AC 的中点,A.2 cmB.0.5 cmC.1.5 cmD.l cmA第11题图直线、线段,其中能相交的图形有 个. 第15题图17.如图,C, D是线段上两点,若CB = 4 cm, DB = 7 cm,且D^L AC的中点,贝脂。
图形初步认识练习题在学习图形的初步认识中,我们需要通过实际操作和练习题来加深对各种图形的理解。
下面是一些图形初步认识的练习题,通过解答这些题目,你能更好地掌握图形相关知识。
题目一:根据图形特征,判断下列图形的名称。
1. 该图形是由四条相等长度的线段构成,且相邻的两条线段之间夹角为90度。
图形名称:正方形。
2. 该图形是由三条线段以其中两条线段为基边,通过连接这两条线段的中点而形成的一个三角形。
图形名称:等腰三角形。
3. 该图形是由四条不相交的线段构成,其中两条相对的线段长度相等,且两两夹角均为90度。
图形名称:长方形。
题目二:判断下列说法的正确性。
正确的写“√”,错误的写“×”。
1. 正方形的特点是四个角都是直角。
√2. 所有的长方形都是正方形。
×3. 任意两条线段长度相等的四边形一定是正方形。
×4. 等边三角形的三个内角都是直角。
×5. 长方形和正方形的特点是两对对边相等。
√题目三:判断下列图形是否是多边形。
是的写“是”,不是的写“不是”。
1. 圆形不是2. 五角星是3. 梯形是4. 椭圆不是5. 正多边形是题目四:判断下列图形是否为全等图形。
是的写“是”,不是的写“不是”。
1. 正方形和长方形是2. 三角形和四边形不是3. 等腰三角形和等边三角形是4. 长方形和平行四边形不是5. 圆和椭圆不是题目五:根据图形特征,填写下列空格中的数字。
1. 正方形的内角和是____。
答案:360度。
2. 正三角形的内角和是____。
答案:180度。
3. 长方形的内角和是____。
答案:360度。
4. 五边形的内角和是____。
答案:540度。
5. 六边形的内角和是____。
答案:720度。
通过以上练习题的解答,相信你对图形的初步认识会更加深入。
继续进行类似的练习,并多进行实际操作,操练各种图形的绘画和测量,可以更好地巩固所学内容。
希望你能在图形认识的学习中取得更好的成绩!。
图形的初步认识练习题
图形的初步认识练习题
一、精心选一选(每小题2分,共30分)
1、下列说法正确的是()
A、直线AB和直线BA是两条直线;
B、射线AB和射线BA是两条射线;
C、线段AB和线段BA是两条线段;
D、直线AB和直线a不能是同一条直线
2、下列图中角的表示方法正确的个数有()
A、1个
B、2个
C、3个
D、4个
3、下面图形经过折叠可以围成一个棱柱的是()
4、经过同一平面内任意三点中的两点共可以画出()
A、一条直线
B、两条直线
C、一条或三条直线
D、三条直线
5、若∠A=20 o 18′,∠B=20 o 15′30〞,∠C=20.25 o,则()
A、∠A>∠B>∠C
B、∠B>∠A>∠C
C、∠A>∠C >∠B
D、∠C >∠A >∠B
6、如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()
7、如左图所示的正方体沿某些棱展开后,能得到的图形是(
)
- 2 -
- 3 -
8、计算:50°24′×3+98°12′25″÷5= 9、在时刻8:30,时钟上的时针和分针的夹角是为( ) A 、85 ° B 、75° C 、70 ° D 、60°
10、一条铁路上有10个站,则共需要制 ( ) 种火车票。
A .45
B .55
C .90
D .110
11、一个正方体,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为( )
A .51
B .52
C .57
D .58
12、如果要在一条直线上得到10条不同的线段,那么在这条直线
上至少要选用( )个不同的点。
A .20
B .10
C .7
D .5 13、下列说法中错误的有( )
(1)线段有两个端点,直线有一个端点;
(2)角的大小与我们画出的角的两边的长短无关;
(3)线段上有无数个点;(4)两个锐角的和一定大于直角 A .1个 B .2个 C .3个 D .4个 14、如图∠AOD -∠AOC =( )
A 、∠ADC
B 、∠BO
C C 、∠BO
D D 、∠COD
15、如图把一个圆绕虚线旋转一周,得到的几何体是( ) 二、细心填一填(每空2分,共30分) 16. 将下列几何体分类,柱体有: ,锥体有 (填序号) 。
A B C D
7
1
1
- 4 -
17、已知点A 、B 、C 三个点在同一条直线上,若线段AB=8
,BC=5,则线段AC=_________。
18、时针指示6点15分,它的时针和分针所成的锐角度数是_______· 19、要在墙上钉一根木条,至少要用两颗钉子,这是因为: .
20.如图所示,C 是线段AB 外一点,那么AC+BC_____AB (填“>”,“=”或“<”),理由是 .
C
B
A
21、已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则CB =_______AB .
(第21题) (第22题) (第23题) 22、如图,若CB = 4 cm ,DB = 7 cm ,且D 是AC 的中点,则AC = ; 23、如图所示,小于平角的角有 个;
24、如图,从学校A 到书店B 最近的路线是 号路线,其
中的道理用数学知识解释应
是 ;
25、计算:50°24′×3+98°12′25″÷5= 三、耐心做一做(7分+4分+6分+5分+5分+13分,共40分) 26、如图,平面上有四个点A 、B 、C 、D,根据下列语句画图(7分) (1)画直线AB ; (2)作射线BC ; (3)画线段CD ;
(4)连接AD,并将其反向延长至E ,使DE=2AD ; (5)找到一点F ,使点F 到A 、B 、C 、D 四点距离和最短。
27.如图,∠AOB 是直角,已知∠AOC ︰∠COD ︰∠DOB=2︰1︰2,那么∠COB=__________.
B A
28、如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数。
(6分)
29、如图,已知∠AOB=90 o,∠AOC是60 o,OD平分∠BOC,OE平分∠AOC。
求∠DOE。
(5分)
30、如图、线段AB=14cm,C是AB上一点,且AC=9cm,O是AB的中点,求线段OC的长度。
(5分)
- 5 -
一、填的圆圆满满(每小题4分,共24分)
1. 下列图形是某些多面体的平面展开图,说出这些多面体的名称.
- 6 -
__________ _________
_________ __________ __________
2. 指出右面的三个图形分别是左面这个物体从哪个方向看到的图形.
()()
()
3.若线段AB=a,C是线段AB上的任意一点,M、N 分别是AC和CB的中点,则MN=_______.
4.如图,∠AOB是直角,已知∠AOC︰∠COD︰∠DOB=2︰1︰2,那么∠COB=__________.
5.时钟指示2点15分,它的时针和分针所成的锐角是___________.
6.学校、电影院、公园在平面图形上的标点分别是
A、B、C,电影院在学校的正东方向、公园在学
校的南偏西25°方向,那么平面图上的∠CAB等于______________.
- 7 -
二、做出你的选择(每小题4分,共24分)
1.(丽水)如图,将图中的阴影部分剪下来,围
成一个几何体的侧面,使
AB
、DC重合,则所围成的几何体图形是().
(A)(B)(C)(D)
2.小丽制作了一个对面图案均相同的正方体礼品
盒(如下左图所示),则这个正方体礼品盒的平面展开图可能是().
(A)(B)(C)(D)
3.如果线段MN=6cm,NP=2cm,那么M、P两点的距离是().
(A)8cm (B)4cm (C)8cm或4cm (D)
- 8 -
- 9 -
无法确定
4. 如图所示,从A 地到达B 地,最短的路线是( ). (A )A →C →E →B (B )A →F →E →B (C )A →D →E →B (D )A →C →G →E →B
5.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( ).
(A )12
(∠1+∠2) (B )1
2∠1 (C )12
(∠1-∠2) (D )12
∠
2
6. 如图所示,从O 点出发的五条射线,可以组成
小于平角的角的个数是( ).
(A )10个 (B )9个 (C )8个 (D )4个
三、用心解答,规范书写(共52分)
1.(12分)如图是一个长方体的表面展开图,每
个面上都标注了字母,请根据要求回答问题: (1)如果A 面在长方体的底部,那么哪一个面会在上面?
- 10 -
(2)如果F 面地前面,B 面在左面,那么哪一个面会在上面?(字母朝外)
(3)如果C 面在右面,D 面在后面,那么哪一个面会在上面?((字母朝外)
2.(12分)在一条直线上取两上点A 、B,共得几条线段?在一条直线上取三个点A 、B 、 C,共得几条线段?在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?
C B A C B A 3.(14分)如图所示,(1)按下列语句画出图形: ①延长AC 到
D ,使CD=AC ; ②反向延长CB 到
E ,使CE=BC ;
③连结DE.
(2)度量其中的线段和角,你有什么发现?(3)试判断图中两个三角形的面积是否相等?
4.(14分)如图,一个机器人从点O出发,每前
进2米就向左转体45°(机器人的前进方向与身体的朝向相同).
(1)假设机器人从O点出发时,身体朝向正北方向,试用1厘米代表1米,在图中画出机器人走过6米路程后所处的位置,并指明点A在点O的什么方向上?
(2)机器人从出发到首次回到O点,共走过了多远的路程?。