初中培优竞赛 第1讲 整数的基本性质
- 格式:docx
- 大小:91.99 KB
- 文档页数:6
初中数学竞赛培优讲义含答案共70讲01:数的整除(一)装订线初中数学竞赛培优讲义初中数学竞赛练习(1)数的整除(一)一、内容提要:如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. 一些数的整除特征除数2或5 4或25 3或9 能被整除的数的特征末位数能被2或5整除末两位数能被4或25整除各位上的数字和被3或9整除(如771,54324) 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等) 8或125 末三位数能被8或125整除11 7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等) 能被7整除的数的特征:①抹去个位数②减去原个位数的2倍③其差能被7整除。
如1001 100-2=98(能被7整除)又如7007 700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)1 二、例题例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除。
求x,y解:x,y都是0到9的整数,∵5y7能被9整除,∴y=6.∵328+2x9=567,∴x=3例2己知五位数1234x能被12整除,求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8当末两位4X能被4整除时,X=0,4,8∴X=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
初中数学知识归纳整数的概念和性质整数是数学中最基本且重要的概念之一。
它包含了自然数、零以及负整数。
在本文中,我们将对整数的概念和性质进行归纳整理,帮助大家更好地理解和应用整数。
一、整数的概念整数是指包括正数、负数和零在内的一类数。
正整数是大于零的数,用正整数来表示物体的个数或度量的数量;负整数是小于零的数,表示与正数相反的方向或数值;零表示一个事物的状态是没有的,也可以看作是正数与负数的分界点。
二、整数的有序性整数在数轴上可以表示,并且可以根据数轴上的位置进行比较。
整数的大小关系可以分为三种情况:当两个整数的差值为正数时,大的数大于小的数;当差值为负数时,大的数小于小的数;当差值为零时,两个数相等。
三、整数的加法和减法整数的加法满足交换律和结合律,即改变加数或次序,结果不变;整数的减法可以通过加上减数的相反数来表示,即a-b=a+(-b)。
四、整数的乘法和除法整数的乘法满足交换律和结合律,即改变因数或次序,结果不变。
负整数之间或正整数和负整数相乘得到的结果为负数,其他情况为正数。
整数的除法规则是:两个非零整数相除,商的符号与被除数和除数的符号相同,若被除数为零,则结果为零。
五、整数的倍数和约数一个整数能被另一个整数整除时,前者称为后者的倍数,后者称为前者的约数。
正整数与负整数之间不具备倍数和约数的关系。
六、整数的奇偶性一个整数除以2,若得到的余数为0,则这个整数是偶数;若余数为1,则这个整数是奇数。
对于任意一个整数,要么是偶数,要么是奇数。
七、整数的相反数和绝对值一个整数与它的相反数的和为0,即a+(-a)=0;一个整数的绝对值是它与0的距离,用|a|来表示,若a大于或等于0,则|a|=a;若a小于0,则|a|=-a。
八、整数的分数与小数一个整数除以另一个整数,通常会得到一个分数或小数。
对于整数而言,分子为整数、分母为1的分数是整数本身;整数除以一个大于1的整数,结果是一个小于这个整数的真分数;整数除以一个小于1的整数,结果是一个比这个整数大的假分数或带分数。
初中数学竞赛专题1——整数的基本性质1.(1,2)(数学#初中#竞赛#初中竞赛#数学竞赛#初中数学竞赛#整数#选择题)【标准答案】1#0#1#4#A三人中每两个人的平均年龄加上余下一人的年龄分别是47,61,60,那么这三个人中最大年龄与最小年龄的差是 ( ) A. 28 B. 27 C. 26 D. 25【分析】设三个人的年龄分别为X1,X2,X3,根据题意,则+X2+2X3=47×2 ①XX2+X3+2X1=61×2 ②X3+X1+2X2=60×2 ③由①+②+③得X1+X2+X3=84,分别代入①②③得X1=38,X2=36,X3=10.所以X1-X3=28.【答案】A【技巧】设未知数列方程(组)来解应用题是常用的方法.2.(2,3)(数学#初中#竞赛#初中竞赛#数学竞赛#初中数学竞赛#整数#选择题)【标准答案】2#0#1#4#B三角形的三边长a、b、c都是整数,且[a,b,c]=60,(a,b) =4,(b,c)=3则a+b+c的最小值是 ( ) {注:[a,b,c]表示a、b、c的最小公倍数,(a,b)表示a,b的最大公约数}A.30 B.31 C.32 D. 33【分析】因为(a,b)=4,所以a,b都是4的倍数.因为(b,c)=3,所以b,c都是3的倍数.从而a=4a1,b=12b1,c=3c1,a1、b1、c1都是正整数;又因为[a,b,c]=60,所以a,b,c中至少有一个被5整除,即a1、b1、c1中至少有一个被5整除.因为abc三个数的系数中,c的系数最小为3,所以只有当a1、b1 取最小时,三个数之和才最小,那么当a1= b1=1,c1=5时,a+b+c=4+1+15=31最小.【答案】B【技巧】根据最大公约数和最小公倍数的性质,用解析式表示未知数.【易错点】若不注意三角形三边的关系(两边之和大于第三边)就容易出错.3.(3,4)(数学#初中#竞赛#初中竞赛#数学竞赛#初中数学竞赛#整数#选择题)【标准答案】3#0#1#4#B从1开始的自然数中,把能表示成两个整数的和与它们的差的乘积的数从小到大排列,在这种排列中,第1998个数是( )A. 2662 B.2664 C. 2665 D.2666【分析】依题意设这个数为x,x≥1,且x=(a+b)(a-b)(a、b是自然数且a>b)。
整数的性质及应用(一) 奇数与偶数全体整数可以分为两大类,一类是奇数,一类是偶数。
任何一个整数不是偶数就是奇数,奇数和偶数,有以下几条性质:一、性质1:任何奇数不可能与偶数相等。
性质2:奇数±奇数=偶数 偶数±偶数=偶数 奇数±偶数=奇数性质3:奇数X 奇数=奇数 奇数X 偶数=偶数 偶数X 偶数=偶数性质4:整数a 的a n 幂与a 的奇偶性相同 性质5:两个连续整数的积是偶数。
二、例题:例1.设4个正整数之和为9,求证:它们的立方和不可能为100例2.若n 是大于1的整数,那么数2)1(12)1(n n n p ---+=的值一定是偶数?一定是奇数?还是可以是偶数也可以是奇数。
例3.是否有满足x 2-y 2=1986的整数解x 和y?例4.平面上有15个点,任意三点不共线,试问能不能从每个点都引三条线段,且仅引三条线段和其余的某三点相连?证明你的结论。
例5.设有n 盏亮着的灯,规定每次拉动n-1个拉线开关,试问:能否将所有的灯都关闭?证明你的结论。
例6.用15个由4个小方格组成的L 字形纸片和1个田字形纸片,能否盖满1个8X8的方格棋盘 例7.设a 1,a 2,…,a n 是一组数,它们中的每一个数都取1或-1,而且013221=+++a a a a a a n ,证明:n 必是4的倍数。
例8. 在1,2,3,…,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?例9 设a ,b 是自然数,且满足关系式(11111+a)(11111-b)=123456789.求证:a-b 是4的倍数. 例10 某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数.*例11.是否存在整数m,n,使得5m 2-6mn+7n 2=1987*例12.设正整数d 不等于2,5,13,证明从数2,5,13,d 中可以找到两个数a,b,使得ab-1不是整数的平方。
初中数学竞赛精品标准教程及练习70正整数简单性质的复习正整数的简单性质是数学中的基本知识点,它是我们解题的基础。
掌握了正整数的简单性质,我们就能更好地去理解和应用其他的数学概念和方法。
下面是关于正整数简单性质的复习,包括常用性质和应用技巧。
一、数的分类1.自然数:1,2,3,……2.整数:包括正整数、0和负整数3.有理数:可以表示为两个整数的比值,包括整数、分数和小数4.实数:包括有理数和无理数二、正整数的性质1.正整数除以正整数仍为正整数2.正整数的倍数是正整数3.一个数除以它自己等于1,即n÷n=14.1不是任何一个数的倍数5.0不是任何一个数的倍数,除数和被除数都不可为0三、正整数的应用技巧1.数的整体性质:对于一些数的性质,可以通过对数的整体进行分析得出结论。
例如:一个数是3的倍数,那么它的个位数的特点就是3的倍数,根据个位数特点就可以判断这个数是否是3的倍数。
2.数的划分:可以将给定的数划分为多个部分进行讨论。
例如:一个数是4的倍数,则根据4的特点可知它的末两位是4的倍数,根据末两位是4的倍数可知这个数本身是4的倍数。
3.数的逆否:当一个数不满足一些性质时,可以考虑用逆否否定的方式进行处理。
例如:如果一个数不是素数,则它一定有一个小于它的因数。
4.数的特殊情况:特殊情况下的数学性质可以通过实际例子加以验证。
例如:一个奇数的平方的个位数是什么?可以取一个例子进行验证,例如3的平方是9,5的平方是25,7的平方是49,可以看出,奇数的平方的个位数只可能是1、5、95.数的表示法:用不同的表示法来考虑一个数的性质,有时会有不同的发现。
例如,一个正整数的个位数是2,十位数是3,百位数是4,可以表示为432,也可以表示为4×100+3×10+2,用这种方式表示可以更好地发现数的性质。
4.数的递推公式:通过找出数列中的规律,使用递推公式来找到数列中的任意一项。
例如,求1+2+3+...+n的和,可以通过找到前n项和和前n-1项和的关系,得到递推公式n(n+1)/2这些是关于正整数的简单性质的复习内容,掌握了这些知识点,可以帮助我们更好地应对数学竞赛中的题目。
初中数学竞赛教程21整数的性质整数是数学中非常基本且重要的概念之一、它是全体正整数、负整数和零的集合,用整数集表示为Z,数学符号为Z={...,-3,-2,-1,0,1,2,3,...}。
整数的性质涉及到整数的四则运算、整数的大小比较以及整数的奇偶性等方面。
下面就对整数的性质进行详细介绍。
一、整数的四则运算1.加法:对于整数a和b,它们的和a+b也是一个整数。
加法满足交换律,即a+b=b+a;加法还满足结合律,即(a+b)+c=a+(b+c)。
2.减法:对于整数a和b,它们的差a-b也是一个整数。
3.乘法:对于整数a和b,它们的积a×b也是一个整数。
乘法满足交换律,即a×b=b×a;乘法还满足结合律,即(a×b)×c=a×(b×c)。
4.除法:对于整数a和b,其中b不等于0,a/b的商可能是一个整数,也可能是一个带有小数部分的数。
二、整数的大小比较1.大小关系:对于两个整数a和b,如果a<b,称a小于b;如果a>b,称a大于b;如果a=b,称a等于b。
2.大于0和小于0:正整数都大于零;负整数都小于零。
三、整数的奇偶性1.奇数:整数中,除了能被2整除的数字外,其他的数字都是奇数。
奇数可以表示为2k+1的形式,其中k为任意整数。
2.偶数:能被2整除的数字为偶数。
偶数可以表示为2k的形式,其中k为任意整数。
3.奇数和奇数的和是偶数,奇数和偶数的和是奇数,偶数和偶数的和是偶数。
四、整数的性质定理1.整数的加法性质:对于任意整数a和b,有a+b=b+a,即整数的加法满足交换律。
2.整数的减法性质:对于任意整数a和b,有a-b=a+(-b),即整数的减法可以转化为加法运算。
3.整数的乘法性质:对于任意整数a、b和c,有(a+b)×c=a×c+b×c,即整数的乘法满足分配律。
4.整数的除法性质:对于任意整数a、b和c,如果a=b×c,且b不等于0,则a除以b的余数为0。
人教版初一数学培优和竞赛二合一讲炼教程(15)整数的分类【知识精读】1.余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数,r为小于m的非负整数,那么我们称r是A 除以m的余数。
即:在整数集合中被除数=除数×商+余数(0≤余数<除数)例如:13,0,-1,-9除以5的余数分别是3,0,4,1(∵-1=5(-1)+4。
-9=5(-2)+1。
)2.显然,整数除以正整数m ,它的余数只有m种。
例如整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。
3.整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。
例如:m=2时,分为偶数、奇数两类,记作{2k},{2k-1}(k为整数)m=3时,分为三类,记作{3k},{3k+1},{3k+2}.或{3k},{3k+1},{3k-1}其中{3k-1}表示除以3余2。
m=5时,分为五类,{5k}.{5k+1},{5k+2},{5k+3},{5k+4}或{5k},{5k±1},{5k±2},其中5k-2表示除以5余3。
4.余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。
举例如下:①(3k1+1)+(3k2+1)=3(k1+k2)+2 (余数1+1=2)②(4k1+1)(4k2+3)=4(4k1k2+3k1+k2)+3(余数1×3=3)③(5k±2)2=25k2±20k+4=5(5k2±4k)+4(余数22=4)以上等式可叙述为:①两个整数除以3都余1,则它们的和除以3必余2。
②两个整数除以4,分别余1和3,则它们的积除以4必余3。
③如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是4或9。
余数的乘方,包括一切正整数次幂。
如:∵17除以5余2 ∴176除以5的余数是4 (26=64)5.运用整数分类解题时,它的关鍵是正确选用模m。
整数的概念和性质整数是数学中的一种基本数集,由正整数、负整数和零组成。
本文将以探讨整数的概念和性质为主题,详细阐述整数的定义、运算规则以及在实际生活中的应用。
一、整数的定义整数是数学中的一种数集,用符号“Z”表示,其定义如下:Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}在整数集中,包含了无穷多个整数,其中包括正整数、负整数和零。
正整数表示大于零的整数,负整数表示小于零的整数,而零表示不大于也不小于零的整数。
二、整数的性质1. 整数的加法性质:- 任何整数加零,结果仍然是原整数。
- 正整数相加,结果仍然是正整数。
- 负整数相加,结果仍然是负整数。
- 正整数与负整数相加,结果可能是正整数、负整数或零。
2. 整数的减法性质:- 任何整数减零,结果仍然是原整数。
- 正整数减正整数,结果可能是正整数、负整数或零。
- 负整数减负整数,结果可能是正整数、负整数或零。
- 正整数减负整数,结果可能是正整数、负整数或零。
- 负整数减正整数,结果可能是正整数、负整数或零。
3. 整数的乘法性质:- 任何整数乘以零,结果为零。
- 正整数乘以正整数,结果为正整数。
- 负整数乘以负整数,结果为正整数。
- 正整数乘以负整数,结果为负整数。
- 负整数乘以正整数,结果为负整数。
4. 整数的除法性质:- 任何整数除以零是不符合数学规则的,因为除数不能为零。
- 正整数除以正整数,结果可能是正整数、负整数或零。
- 负整数除以负整数,结果可能是正整数、负整数或零。
- 正整数除以负整数,结果可能是正整数、负整数或零。
- 负整数除以正整数,结果可能是正整数、负整数或零。
5. 整数的乘方性质:- 任何整数的零次幂等于1。
- 非零整数的正整数次幂结果仍然是整数。
- 非零整数的负整数次幂结果可能是整数或小数。
三、整数在实际生活中的应用整数在我们的日常生活中有着广泛的应用,尤其在计算、统计和代数等领域中起到了重要作用。
第一章 整数一、自然数的十进制表示数的进位制很多,常用的是十进位制,简单地说,就是用十个不同的数字符号(0,1,2,3,4,5,6,7,8,9)和由低向高位“满十进一”的位制原则,就可以写出一切自然数来.对于一切十进位制的自然数,都可以用其各位上单位的和的形式来表示,如:510910*********3+⨯+⨯+⨯=,对于任意自然数N ,都可以表示为:01221110101010a a a a a N n n nn +⨯+⨯++⨯+⨯=-- 的形式,这里0121,,,,,a a a a a n n -各表示0到9这十个数字中的任意一个,但0≠n a . 有时还把该自然数N 表示成0121a a a a a n n -(0≠n a ),在上面加一横,意在避免与0121,,,,,a a a a a n n -的乘积发生混淆.例1.一个六位数的最高位是1,若把1移作个位数,其余各数的大小和顺序都不变,则所得的新六位数恰好是原数的3倍,求原六位数.例2.设n 为正整数,计算 99999个n × 99999个n +199999个n例3.试问,是否存在整数ab 和cd ,使得abcd cd ab =⋅?二、奇数与偶数一个整数,不是奇数就是偶数.概念:偶数:能被2整除的整数叫做偶数;奇数:不能被2整除的整数就叫做奇数.我们常用n2表示偶数,用12+n或12-n表示奇数(n为整数).奇数偶数的常用性质:(1)奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数奇数×奇数=奇数奇数×偶数=偶数,偶数×偶数=偶数(2)奇数个奇数相加,其和为奇数;偶数个奇数相加,其和为偶数;任意多个偶数相加,和总为偶数;(3)任意多个奇数相乘,积为奇数;任意个偶数相乘,积为偶数.推论:奇数的正整数次幂是奇数,偶数的正整数次幂是偶数,(4)若干个整数的积为奇数,则每个整数都为奇数;若干个整数的积为偶数,则其中至少有一个是偶数;(5)两个连续整数,必有一个是奇数,一个是偶数;两个连续整数的和是奇数,积是偶数. (6)若a是整数,则a,a-,a具有相同的奇偶性;(7)若a,b是整数,则babaabbaba-+--+,,,,具有相同的奇偶性.例4.在2010个自然数1,2,3,…,2010的每一个数前面任意添加“+”号或“-”号,然后将这2010个整数相加,请你判断,最后的结果是奇数还是偶数?例5.已知cba,,中有两个奇数,一个偶数,试判断()()()321+++cba的奇偶性.例6.计算:()223521+-例7.已知y x ,均为一位正整数,且满足y x y x 9292=⋅,求y x ,的值.例8.已知自然数y x ,满足606341993=+y x ,求xy 的值.例9.某次九年级数学竞赛共有20道题,规定答对一题得5分,不答得1分,答错扣1分. 求证:不论多少人参赛,全体学生的得分总分一定是偶数.三、整数的整除(1)定义:设a ,b 是整数,0≠b ,如果有整数p ,使得bp a =,那么称a 能被b 整除,或称b 整除a ,记作a b .又称b 为a 的约数,a 为b 的倍数.如果a 不是b 的倍数,则称整数b 不整除a ,或称a 不能被b 整除.(2)整除的常用性质: ① 若b a ,c b ,则c a .② k 是任意整数,若a b ,则ka b . ③ 若b a ,c a ,则()c b a ±. ④ 若ab m ,()1,=a m ,则b m .⑤若mb,则[]ma,ma,.b⑥若mb,且()1a,mab.a,则m,=b(3)整数整除的常用判定方法:①若整数M的个位数是偶数,则M2.②若整数M的个位数是0或5,则M5.③若整数M的各位数字之和是3的倍数,则M3;若整数M的各位数字之和是9的倍数,则M9.4;④若整数M的末两位数是4的倍数,则M若整数M的末两位数是25的倍数,则M25.⑤若整数M的末三位数是8的倍数,则M8;若整数M的末三位数是125的倍数,则M125.11.⑥若整数M的奇位上数字之和与偶位上的数字之和的差是11的倍数,则M例10.在一个两位数的两个数字中间插入一个数字后,这个两位数就变成了一个三位数,且该三位数是原来两位数的9倍,则这样的两位数有多少个?例11.若78N=是一个能被17整除的四位数,求x.2x例12.从1到2000这2000个数中,有多少个数既不能被4整除,又不能被6整除?例13.五位数xy 538能被3,7,11整除,求22y x -的值.例14.已知整数45613ab 能被198整除,求a 与b 的值.四、质数与合数(没有说明的情况下,只在正整数范围内讨论)如果一个大于1的正整数只能被1和其本身整除,就把这个数叫做质数(也叫素数),如果还能被1和本身以外的数整除,就称其为合数.(负数的绝对值是质数的话,这个负数也是质数,在后面的章节中,如果没有特殊说明,只在正整数范围内考虑质数合数) 特别注意的是:1即不是质数也不是合数.五、质因数的分解我们经常把一个大于1的整数分解为若干个质数的连乘积形式,这就是所谓的分解质因数,乘积中的每一个质数,都叫做这个整数的质因数.关于质因数分解有以下定理:算数基本定理 任意一个大于1的整数N 都可以分解为质因数的乘积.如果不考虑这些质因数的次序,那么这种分解是唯一的.通常可以表示成以下形式:n n p p p N ααα 2121=()*在上式中,n p p p ,,,21 都是质数且互不相同,n ααα,,,21 都是正整数.这种分解式称为 正整数N 的标准分解式.例如540的标准分解式是53254022⨯⨯=.推论1(约数个数定理) 如果对于大于1的整数N ,其标准分解式如()*式所示, 那么N 共有正约数()()()11121+++n ααα 个,这些约数包括1和N 本身.推论2 如果对于大于1的整数N ,其标准分解式如()*式所示,那么N 是一个完全平方数的充要条件是n ααα,,,21 都是偶数,即N 的正约数个数是奇数.由此可以得到 质数的如下整除性质:(1)p 是质数,b a ,都是整数,如果ab p ,则a p 或b p ,特别地2a p 时,a p ; (2)n p p p ,,,21 是不同的质数,a 是整数,如果a p 1,a p 2,a p n , ,则a p p p n 21.例15.已知质数q p ,满足3153=+q p ,求13+q p 的值.例16.3个质数之积是这3个质数之和的17倍,求这3个质数.例17.已知p 是质数,36+p 也是质数,求4811-p 的值.例18.写出30个连续的自然数,使得个个都是合数.例19.360能被多少个不同的正整数整除.例20.写出在100以内的具有10个正约数的所有正整数.例21.求392的标准分解式,并求其全部正约数的和.例22.已知三位数abc是一个质数,如果将这个三位数重复写一遍,就得到一个六位数abcabc,问这个六位数一共有多少个不同的正约数.六、公约数与公倍数(一般情况下,只在正整数范围内讨论)(1)公约数与最大公约数整数a和b都有的约数,叫做a和b的公约数,a和b的最大公约数可以表示为()ba,,若()1a,则称a和b互质.b,=(2)公倍数和最小公倍数如果一个数既是a 的倍数又是b 的倍数,那么就称其为a 和b 的公倍数,a 和b 的最小公倍数记作[]b a ,定理1:若a ,b 是正整数,则()[]b a b a ab ,,=定理2:若a ,b 是正整数,则()()b a b b a ,,=+;()()b a b b a ,,=-例23.已知b a ,两正整数的最大公约数是6,最小公倍数是36,求b a ,这两个数.例24.正整数n m ,的最大公约数大于1,且满足3713=+n m ,求mn 的值.七、完全平方数如果N 是整数,且M N =2,则称整数M 为完全平方数(简称平方数),平方数M 有 以下常用性质:(1) 若M 是整数,则平方数2M 与()21+M 之间不存在其他平方数,即两个连续平方数之间任何一个数都不是平方数;(2) 平方数M 的末尾数只能是0,1,4,5,6,9,而不能是2,3,7,8; (3) 偶数的平方必是4的倍数,而奇数的平方必是8的倍数加1;(4) 平方数的末尾数是奇数时,其十位数必为偶数,平方数的末尾是6时,其十位数必为奇数;(5) 两个平方数的乘积还是平方数,一个平方数与一个非平方数的乘积肯定不是平方数; (6) 任何平方数除以3,余数不可能是2;除以4,余数不可能是2,3;除以5,余数不可能是2,3;除以8,余数不可能是2,3,5,6,7;除以9,余数不可能是2,3,5,6,8.例25.若N 是一个完全平方数,则它后面的一个完全平方数是_______________.例26.求自然数n ,使得n n S n 542+=为完全平方数.例27.直角三角形两条斜边长b a ,均为正整数,且a 为质数,若斜边场也是整数,求证 ()12++b a 是完全平方数.八、带余除法设整数a 除以整数b ()0≠b ,所得的商和余数分别为q 和r ()b r <≤0,则有r bq a +=, 即:被除数=除数×商+余数.(1)整数n m ,除以d 所得余数相同()n m d -⇔.(2)用任意连续n ()0>n 个整数除以n ,所得的余数中,0,1,…,1-n 各出现一次.九、末位数rk a+4与r a 有相同的末位数.其中a 为整数,k 为非负整数,r 为1、2、3、4中的任意一个.(注意:不要取0=r )例28.今有自然数带余除法算式8 C B A =÷,如果2178=++C B A ,求A 的值.例29.若一个正整数a 被2,3,4,5,6,7,8,9这八个自然数除,所得的余数都为1,求a 的最小值.例30.20032003的个位数是多少?习题一1、某校九年级(1)班同学做一个数学实验:在黑板上写上1,2,3,…,40这40个数,第一个同学上来擦去其中任意两个数,然后写上他们的和或者差,第二个同学、第三个同学及以后每位同学都按此规则操作,直到黑板上只有一个数为止,问:最后一个数是奇数还是偶数,为什么?2、已知z y x ,,为正整数,且z y ,均为质数,并满足zyxyz x 111,=+=,求x 的值.3、有()3≥n n 位同学围成一圈,求证:相邻两人是一男一女的对数必是偶数.4、设有101个自然数,记为101321,,,,a a a a ,已知10132110132a a a a x ++++= 为 偶数,判断10199531a a a a a y +++++= 是奇数还是偶数,说明理由.5、设y x ,为两个不同的正整数,并且5211=+yx,求y x +的值.6、设k a a a a ,,,,321 是k 个互不相等的正整数,且1995321=++++k a a a a ,求k 的最大值.7、已知正整数a 恰有12个正约数(包括1和a ),求符合要求的a 的最小值.8、将1,2,3,…,37排成一行:3721,,,a a a ,1,3721==a a ,并使k a a a +++ 21能被1+k a 整除(36,,2,1 =k ).求(1)37a ;(2)3a .9、一个三位数,等于它的各位数字之和的12倍,试写出所有这样的三位数.10、求方程10047=+y x 的非负整数解.11、已知q p 、都是质数,1是以x 为未知数的方程9752=+q px 的根,则410140++q p 的值是多少?12、正方体的每个面上都写着一个自然数,并且相对的两个面所写的两数之和相等, 若10的对面写的是质数a ,12的对面写的是质数b ,15的对面写的是质数c , 那么ac bc ab c b a ---++222的值是多少?13、已知两个连续奇数的平方差是2000,则这两个连续奇数可以是多少?14、今天是星期日,若明天算第一天,则第333201121+++ 天是星期几?15、z y x ,,为互不相等的自然数,且135032=z xy ,则z y x ++的最大值是多少?16、[]x 表示不超过x 的最大整数,如[]32.3=,已知正整数n 小于2002,且263nn n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡,则这样的n 有多少个?。
装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。